Homework 5

1. (Debbare, Ch. 6, Q5) Let $X=V / \Lambda$ be a compact complex torus and let $f: X \rightarrow \hat{X}$ be a homomorphism. Show that the following are equivalent
(a) There exists a line bundle L on X, such that $f=\phi_{L}$ (i.e., $f(x)=\left(t_{x}^{*} L\right) \otimes L^{-1}$).
(b) $u=\hat{u}$.
2. (Debbare, Ch. 6, Q8) Let D be an ample effective divisor on an abelian variety X. Show that any compact analytic subset Y of X that does not meet the support of D is finite. Hint: Y is contained in a fiber of the morphism $\varphi_{\mathcal{O}_{X}(3 D)}: X \rightarrow|D|^{*}$.
3. (Birkenhake-Lange, Ch. 5 problem 1) For a square free integer $d \geq 1$ consider the imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$ with maximal order R (the ring of integers, i.e., the integral closure of \mathbb{Z}). If $\{1, \omega\}$ denotes the usual basis of R and f is a positive integer, then $R_{f}:=\mathbb{Z} \oplus f \omega \mathbb{Z}$ is a lattice in \mathbb{C} and $E_{f}:=\mathbb{C} / R_{f}$ is an elliptic curve. Show that $\operatorname{End}\left(E_{f}\right)=R_{f}$. In particular, if $f \geq 2$, then $\operatorname{End}\left(E_{f}\right)$ is not a maximal order in $\mathbb{Q}(\sqrt{-D})$.
4. (Birkenhake-Lange, Ch. 5 problem 2) Let X_{j} be an abelian variety with polarization L_{j} of degree d_{j} for $j=1,2$. Then $p_{1}^{*} L_{1} \otimes p_{2}^{*} L_{2}$ is a polarization of $X_{1} \times X_{2}$ of degree $d_{1} d_{2}$.
5. (Birkenhake-Lange, Ch. 5 problem 3 - unreasonably hard as formulated-modified as in Debbare, Ch. 6, Q14). Let (X, H) be a polarized abelian variety, and let n be a non-zero integer such that $n \operatorname{ker}\left(\phi_{H}\right)=0$, so that $n \phi_{H}^{-1}$ defines a homomorphism $\hat{X} \rightarrow X$.
(a) Suppose there exists an endomorphism f of X satisfying

$$
f f^{\prime}=f^{\prime} f=(n-1) i d_{X}
$$

Then there exists a line bundle M on $X \times \hat{X}$, such that the matrix of ϕ_{M} : $X \times \hat{X} \rightarrow(\widehat{X \times \hat{X}})$ is

$$
\left(\begin{array}{cc}
\phi_{H} & \hat{f} \\
f & n \phi_{H}^{-1}
\end{array}\right)
$$

by Problem 1 above. Show that the map ϕ_{M} is injective and that M defines a principal polarization on $X \times \hat{X}$.
(b) Show that there exists a principal polarization on the abelian variety $(X \times \hat{X})^{4}$. Hint: Consider an endomorphism f of X^{4} with matrix

$$
\left(\begin{array}{cccc}
a & -b & -c & -d \\
b & a & d & -c \\
c & -d & a & b \\
a & c & -b & a
\end{array}\right)
$$

where a, b, c, d are suitably chosen integers. Note that the product of the above matrix with its transpose is $\left(a^{2}+b^{2}+c^{2}+d^{2}\right) I$.
6. (Debbare, Ch. 6 Q15) Let X be an abelian variety such that $\operatorname{End}(X)$ is isomorphic to \mathbb{Z}.
(a) Show that any abelian variety isogenous to X has the same property.
(b) Show that X is simple.
(c) Show that the Neron-Severi group $N S(X)$ of X is isomorphic to \mathbb{Z}. In particular, the polarizations of X are all proportional.
7. (Birkenhake-Lange, Ch. 4 problem 10 modified - this beautiful problem is unreasonably hard as originally formulated as the solution depends on later material in Section 5.4 of Birkenhake-Lange). Let X be a simple abelian variety. Show that any algebraic subvarieties V and W of X with $\operatorname{dim}(V)+\operatorname{dim}(W) \geq \operatorname{dim}(X)$ have a non-empty intersection. Hint: Reduce to the case where the two subvarieties have complementary dimensions. Theorem 4.9.4 in Birkenhake-Lange and the moving Lemma [Birkenhake-Lange, Lemma 5.4.1] enable one to define the algebraic endomorphism $\delta(V, W): X \rightarrow X$ sending $x \in X$ to the sum of the points of intersection of V with $t_{x}^{*}(W)$, for x in the Zariski open subset where the intersection is transversal.

