Homework 4

1. (Birkenhake-Lange, Ch. 2 problem 2, First Chern class of a line bundle) Let $X=V / \Lambda$ be a compact complex torus. Recall that the first Chern class is the image of the class of L via the connecting homomorphism $c_{1}: H^{1}\left(X, \mathcal{O}_{X}^{*}\right) \rightarrow$ $H^{2}(X, \mathbb{Z})$ of the exponential sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O}_{X} \xrightarrow{2 \pi i(\bullet)} \mathcal{O}_{X}^{*} \rightarrow 0$. Suppose that L is given by the 1 -cocycle $\left\{f_{i j}\right\}$ in $Z^{1}\left(\mathcal{U}, \mathcal{O}_{X}^{*}\right)$ associated to the canonical factor $a_{H, \chi} \in Z^{1}\left(\Lambda, H^{0}\left(\mathcal{O}_{V}^{*}\right)\right)$ of L via the homomorphism ϕ_{1} in Appendix B of Birkenhake-Lange discussed in class. So $\pi: V \rightarrow X$ is the universal covering and $\mathcal{U}:=\left\{U_{i}\right\}_{i \in I}$ is a sufficiently fine open covering of X, such the index i determines also a connected component \widetilde{U}_{i} of $\pi^{-1}\left(U_{i}\right)$ and the restriction $\pi_{i}: \widetilde{U}_{i} \rightarrow U_{i}$ of π is a homeomorphism. The cocycle is given by $f_{i j}=a_{H, \chi}\left(\lambda_{i j}, \pi_{i}^{-1}{ }_{\left.\right|_{U_{i j}}}(\bullet)\right)$ where $\lambda_{i j}$ is the unique element of Λ, such that $\left(\lambda_{i j}+\widetilde{U}_{i}\right) \cap \widetilde{U}_{j}$ is non-empty. The image of $c_{1}(L)$ in $H_{\mathrm{DR}}^{2}(X)$ is then given as follows. Choose $C^{\infty} 1$-forms φ_{i} on U_{i}, such that $\frac{1}{2 \pi i} d \log \left(f_{i j}\right)=\varphi_{j}-\varphi_{i}$. Then $c_{1}(L)$ is the class of the global 2-form $\left(d \varphi_{i}\right)_{i \in I}$ (a 0 -cocycle).
(a) Let $\left\{v_{1}, \ldots, v_{g}\right\}$ be complex coordinates on V with respect to a basis $\left\{e_{1}, \ldots, e_{g}\right\}$ of V. Show that

$$
\begin{equation*}
c_{1}(L)=\frac{i}{2} \sum_{j=1}^{g} \sum_{k=1}^{g} H\left(e_{j}, e_{k}\right) d v_{j} \wedge d \bar{v}_{k} . \tag{1}
\end{equation*}
$$

Note that the right hand side above is $\frac{i}{2} \partial \bar{\partial} h(v)$, where $h(v)=H(v, v)$, as $H(v, w)$ is linear (hence holomorphic) in v and anti-linear (hence antiholomorphic) in w, so $\bar{\partial} h(v)=\sum_{j=1}^{g} H\left(v, e_{j}\right) d \bar{v}_{j}$.
(b) Suppose that L is of type $\left(d_{1}, d_{2}, \ldots, d_{g}\right)$. Let $\left\{\lambda_{1}, \ldots, \lambda_{g}, \mu_{1}, \ldots, \mu_{g}\right\}$ be a symplectic basis of Λ for L and let $\left\{x_{1}, \ldots, x_{g}, y_{1}, \ldots, y_{g}\right\}$ be the corresponding real coordinates on V. Show that

$$
\begin{equation*}
c_{1}(L)=-\sum_{j=1}^{g} d_{j} d x_{j} \wedge d y_{j} \tag{2}
\end{equation*}
$$

Hint: Equation (1) reduces the above equation to the equality

$$
\begin{equation*}
\frac{i}{2}(\partial \bar{\partial} h)=-\sum_{j=1}^{g} \operatorname{Im} H\left(\frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial y_{j}}\right) d x_{j} \wedge d y_{j} \tag{3}
\end{equation*}
$$

where we identified the real tangent bundle of X with the trivial bundle with fiber V and regard global translation invariant vector fields as elements of V (so λ_{j} corresponds to $\frac{\partial}{\partial x_{j}}$ etc...). The operators ∂ and $\bar{\partial}$ depend only on the complex structure. Equation (3) can be stated in a coordinate free way as the equality

$$
\frac{i}{2}(\partial \bar{\partial} h)\left(\xi_{1}, \xi_{2}\right)=-\operatorname{Im} H\left(\xi_{1}, \xi_{2}\right)
$$

for every two translation invariant vector fields ξ_{1}, ξ_{2}. Prove the latter equality using coordinates $\tilde{v}_{j}=\tilde{x}_{j}+i \tilde{y}_{j}, 1 \leq j \leq g$, for V with respect to an orthogonal basis $\left\{\tilde{e}_{1}, \ldots, \tilde{e}_{g}\right\}$ of V with respect to H.
2. (Birkenhake-Lange, Ch. 4 problem 1) Suppose X is an abelian variety with period matrix $\Pi \in M(g \times 2 g, \mathbb{C})$ and $A \in M(2 g \times 2 g, \mathbb{Z})$ is the alternating matrix defining a polarization as in the statement of the Riemann bilinear conditions [BirkenhakeLange, Theorem 4.2.1]. There is a matrix $\Lambda \in M(g \times 2 g, \mathbb{C})$, such that $A=$ $\left(\Pi^{t}\right) \Lambda-\left(\Lambda^{t}\right) \Pi$. Hint: Reduce to the case where $A=\left(\begin{array}{cc}0 & D \\ -D & 0\end{array}\right)$ is the matrix with respect to a symplectic basis for the polarization and $\Pi=\left(\Pi_{1} I_{g}\right)$. Recall that in this case the Riemann bilinear conditions state that $Z:=\Pi_{1} D^{-1}$ is symmetric with a positive definite imaginary part.
3. (Birkenhake-Lange, Ch. 4 problem 2) Suppose that X and X^{\prime} are abelian varieties with period matrices $\Pi \in M(g \times 2 g, \mathbb{C})$ and $\Pi^{\prime} \in M\left(g^{\prime} \times 2 g^{\prime}, \mathbb{C}\right)$. There is a nontrivial homomorphism $q: X \rightarrow X^{\prime}$ if and only if there is a non-zero matrix $Q \in M\left(2 g^{\prime} \times 2 g\right)$ with $\Pi^{\prime} Q \Pi^{t}=0$. Hint: Use Question 2.
4. (Birkenhake-Lange, Ch. 4 problem 8)
(a) Show that if $\left(Z, \mathbf{1}_{g}\right)$ is the period matrix of a complex torus, then $\left(Z^{t}, \mathbf{1}_{g}\right)$ is a period matrix of \hat{X}.
(b) Conclude that there exists a complex torus X not isogenous to its dual \hat{X}.
5. (Birkenhake-Lange, Ch. 4 problem 4) Let $X=V / \Lambda$ be an abelian variety of dimension g and D a reduced effective divisor on X. Show that the Gauss map $G: D_{s} \rightarrow \mathbb{P}_{g-1}$ is given as follows. If z_{1}, \ldots, z_{g} denote complex coordinate functions on V and ω_{j} is the restriction to D of the translation invariant form

$$
d z_{1} \wedge \ldots \wedge d z_{j-1} \wedge d z_{j+1} \wedge \ldots \wedge d z_{g}
$$

$1 \leq j \leq g$, then

$$
G(\bar{v})=\left(\omega_{1}(v): \cdots: \omega_{g}(v)\right),
$$

for every $\bar{v} \in D_{s}$ with representative $v \in V$. Above $\omega_{j}(v)$ is considered as the value at v of the section of the canonical line-bundle $\Omega_{\tilde{D}_{s}}^{g-1}$ on the zero divisor $\tilde{D} \subset V$ of the theta function.
6. (Birkenhake-Lange, Ch. 4 problem 5) Let $X=E_{1} \times \cdots \times E_{g}$ be a product of elliptic curves. Consider the divisor $D=\sum_{j=1}^{g} E_{1} \times \cdots \times E_{j-1} \times\{0\} \times E_{j+1} \times \cdots \times E_{g}$. Show that the image of the Gauss map $G: D_{s} \rightarrow \mathbb{P}_{g-1}$ consists of g points spanning \mathbb{P}_{g-1}. In particular, the image is not contained in any hyperplane, in agreement with [Birkenhake-Lange, Proposition 4.4.1].

