Homework 3

1. (A geometric interpretation of Theorem 3.2.7 and Corollary 3.2.9 in BirkenhakeLange) Let $X=V / \Lambda$ be a compact complex torus.
(a) Let $f, g: \Lambda \times V \rightarrow \mathbb{C}^{*}$ be two factors of automorphy in $Z^{1}\left(\Lambda, H^{0}\left(\mathcal{O}_{V}^{*}\right)\right)$ with $[f]=[g]$ in $H^{1}\left(\Lambda, H^{0}\left(\mathcal{O}_{V}^{*}\right)\right)$. Choose a 0-co-chain $h \in C^{0}\left(\Lambda, H^{0}\left(\mathcal{O}_{V}^{*}\right)\right)=$ $H^{0}\left(V, \mathcal{O}_{V}^{*}\right)$, such that $f(\lambda, v)=g(\lambda, v) h(v+\lambda) h(v)^{-1}$, for all $(\lambda, v) \in \Lambda \times V$. Let $L \in \operatorname{Pic}(X)$ be the line bundle with class $[f]$ under the isomorphism $H^{1}\left(\Lambda, H^{0}\left(\mathcal{O}_{V}^{*}\right)\right) \cong \operatorname{Pic}(X)$. Recall that $H^{0}(X, L) \cong H^{0}\left(V, \mathcal{O}_{V}\right)^{f}$, where the latter is the space of global holomorphic functions on V which graph is invariant with respect to the action $\lambda \cdot(v, t)=(v+\lambda, f(\lambda, v) t)$ of Λ on the trivial line bundle $V \times \mathbb{C}$ with respect to the factor of automorphy f

$$
H^{0}\left(V, \mathcal{O}_{V}\right)^{f}:=\left\{\theta \in H^{0}\left(V, \mathcal{O}_{V}\right): \theta(v+\lambda)=f(\lambda, v) \theta(v)\right\}
$$

Show that multiplication by h yields an isomorphism $H^{0}\left(V, \mathcal{O}_{V}\right)^{g} \rightarrow H^{0}\left(V, \mathcal{O}_{V}\right)^{f}$.
(b) Given $c \in V,\left(i d_{\Lambda} \times t_{c}\right)^{*}(f)$ is a factor of automorphy for $t_{\bar{c}}^{*} L$, where $\bar{c}:=$ $c+\Lambda, t_{c}(v)=v+c$, and $t_{\bar{c}}(x)=x+\bar{c}$. Show that pull-back by t_{c} yields an isomorphism

$$
t_{c}^{*}: H^{0}\left(V, \mathcal{O}_{V}\right)^{f} \rightarrow H^{0}\left(V, \mathcal{O}_{V}\right)^{\left(i d_{\Lambda} \times t_{c}\right)^{*}(f)}
$$

(c) Let $L=L(H, \chi)$ be a line bundle with canonical factor $a_{L}=a_{(H, \chi)}$. Show that

$$
\begin{equation*}
\varphi: H^{0}\left(V, \mathcal{O}_{V}\right)^{a_{L}} \rightarrow H^{0}\left(V, \mathcal{O}_{V}\right)^{a_{t} \frac{*}{c} L} \tag{1}
\end{equation*}
$$

given by $\varphi(\theta)=e^{-\pi H(\cdot, c)} t_{c}^{*}(\theta)$, is a well defined isomorphism. Hint: The canonical factor $a_{t_{\bar{c}}^{*} L}$ and the factor $t_{c}^{*} a_{L}$ differ by a coboundary, see the proof of Lemma 2.3.2 in Birkenhake-Lange. Remark: The isomorphism in Corollary 3.2.9 in Birkenhake-Lange is a scalar multiple of φ.
(d) Conclude that if $\bar{w}=w+\Lambda$ belongs to $K(L):=\Lambda(L) / \Lambda$ and θ is in $H^{0}\left(V, \mathcal{O}_{V}\right)^{a_{L}}$, then $\theta_{\bar{w}}:=a_{L}(w, \cdot)^{-1} t_{w}^{*}(\theta)$ belongs to $H^{0}\left(V, \mathcal{O}_{V}\right)^{a_{L}}$ and depends only on \bar{w}. Hence, the following is a subset of $H^{0}\left(V, \mathcal{O}_{V}\right)^{a_{L}}$

$$
\begin{equation*}
\left\{\theta_{\bar{w}}: \bar{w} \in K(L)_{1}\right\}, \tag{2}
\end{equation*}
$$

where $\Lambda(L)=\Lambda(L)_{1} \oplus \Lambda(L)_{2}$ is the decomposition induced by a decomposition $\Lambda=\Lambda_{1} \oplus \Lambda_{2}$ for $L, K(L)_{1}:=\Lambda(L)_{1} / \Lambda_{1}$, and

$$
\begin{equation*}
a_{L}:\left[\Lambda(L)_{1} \oplus \Lambda_{2}\right] \times V \rightarrow \mathbb{C}_{1} \tag{3}
\end{equation*}
$$

is the extension of a_{L} in Remark 3.1.5 in Birkenhake-Lange. Indeed, $a_{L}(w, \cdot):=$ $e^{\pi H(\cdot, w)+\frac{\pi}{2} H(w, w)}$ is a scalar multiple of $e^{\pi H(\cdot, w)}$.
(e) The map (3) above is a factor of automorphy for a line bundle M_{1} on $X_{1}:=$ $X / K(L)_{1}$ such that $L \cong p_{1}^{*} M_{1}$ and so a better notation for this map is $a_{M_{1}}$. We explained in class that the map

$$
\begin{equation*}
K(L)_{1} \times H^{0}\left(V, \mathcal{O}_{V}\right)^{a_{L}} \rightarrow H^{0}\left(V, \mathcal{O}_{V}\right)^{a_{L}} \tag{4}
\end{equation*}
$$

given by $(\bar{w}, \theta) \mapsto a_{M_{1}}(w, \cdot)^{-1} t_{w}^{*}(\theta)$, is the action of the Galois group $K(L)_{1}$ of $p_{1}: X \rightarrow X_{1}$ induced by the action of the fundamental group $\left[\Lambda(L)_{1} \oplus \Lambda_{2}\right]$ of X_{1} on $H^{0}\left(V, \mathcal{O}_{V}\right)$ via the extension $a_{M_{1}}$ of a_{L}. In this language (4) becomes:

$$
\operatorname{Gal}\left(X / X_{1}\right) \times H^{0}\left(X, p_{1}^{*} M_{1}\right) \rightarrow H^{0}\left(X, p_{1}^{*} M_{1}\right)
$$

Use Theorem 3.2.7 of Birkenhake-Lange to show that $H^{0}\left(V, \mathcal{O}_{V}\right)^{a_{L}}$ is the regular representation of $K(L)_{1}$ via (4).
(f) Recall that $K(L)$ depends only on $E:=c_{1}(L)$ and hence $K(L)_{1}$ depends only on $c_{1}(L)$ and the decomposition $\Lambda=\Lambda_{1} \oplus \Lambda_{2}$ of Λ for E. Furthermore, $c_{1}(L)=c_{1}\left(t_{\bar{c}}^{*} L\right)$. Show that the isomorphism φ in (1) is an isomorphism of $K(L)_{1}$-representations.
(g) Set $X_{2}:=X / K(L)_{2}$, let $a_{M_{2}}:\left[\Lambda_{1} \oplus \Lambda(L)_{2}\right] \times V \rightarrow \mathbb{C}_{1}$ be the analogue of $a_{M_{1}}$ given in (3), and let M_{2} be the corresponding line bundle on X_{2}. Show that the isomorphism φ in (1) maps the 1-dimensional subspace $H^{0}\left(V, \mathcal{O}_{V}\right)^{a_{M_{2}}}$ to $H^{0}\left(V, \mathcal{O}_{V}\right)^{a_{t_{p_{2}(\bar{c}}^{*}}^{M_{2}}}$. When θ is a non-zero section of $H^{0}\left(V, \mathcal{O}_{V}\right)^{a_{M_{2}}}$, the subset (2) is a basis of $H^{0}\left(V, \mathcal{O}_{V}\right)^{a_{L}}$, by Corollary 3.2.5 and Theorem 3.2.7 of Birkenhake-Lange. Conclude that φ maps the basis (2) of $H^{0}(X, L)$, obtained as the set of $K(L)_{1}$-translates of a non-zero section of the 1-dimensional subspace $p_{2}^{*} H^{0}\left(X_{2}, M_{2}\right)$ of $H^{0}\left(X, p_{2}^{*} M_{2}\right) \cong H^{2}(X, L)$, to an analogous basis of $H^{0}\left(X, t_{\bar{c}}^{*} L\right)$.

2. (Birkenhake-Lange, Ch. 3 problem 3) With the notation of Section 3.2 show the following generalization of Corollary 3.2.5 of Birkenhake-Lange: For any $\bar{w} \in K(L)_{1}$ the function $\theta_{\bar{w}}^{c}$ is a canonical theta function for $t_{p_{2}(\bar{w})}^{*} M_{2}$, where M_{2} is the descent to X_{2} of the line bundle L as in Remark 3.1.5 of Birkenhake-Lange and $p_{2}: X \rightarrow X_{2}$ is the quotient map. Show, furthermore, that $\theta_{\bar{w}}^{c}$ spans $H^{0}\left(V, \mathcal{O}_{V}\right)^{a_{t_{p_{2}}(\bar{w})^{M}}^{M_{2}}} \cong$ $H^{0}\left(X_{2}, t_{p_{2}(\bar{w})}^{*} M_{2}\right)$.
3. (Birkenhake-Lange, Ch. 3 problem 6, Mumford's Index Theorem) Let L_{0} be a positive definite line bundle and L a non-degenerate line bundle on a compact complex torus $X=V / \Lambda$. Set $E_{0}:=c_{1}\left(L_{0}\right)$ and $E:=c_{1}(L)$ considered as elements of $H^{2}(X, \mathbb{Z}) \cong A l t^{2}(\Lambda, \mathbb{Z})$. The Euler characteristic $\chi\left(L_{0}^{n} \otimes L\right)$ is equal to $(-1)^{s_{n}} f(n)$, where s_{n} is the index of $L_{0}^{n} \otimes L$ and $f(t):=P f\left(t E_{0}+E\right)$, by the Analytic Riemann-Roch Theorem 3.6.1 in Birkenhake-Lange. Prove the following statements.
(a) The polynomial $f(t)$ has only real roots.
(b) The index $i(L)$ is the number of positive roots of $f(t)$. Hint: Show that $f(-t)$ is the characteristic polynomial of $\phi_{H_{0}}^{-1} \circ \phi_{H}$, where H is the hermitian form associated to E and $\phi_{H}: V \rightarrow \bar{\Omega}$ is given by $\phi_{H}(v)=H(v, \bullet)$.
4. (Birkenhake-Lange, Ch. 3 problem 7) Let X be a compact complex torus of dimension g and let \mathcal{P} be the Poincaré line bundle over $X \times \hat{X}$. Show that

$$
h^{q}(\mathcal{P})=\left\{\begin{array}{lll}
\mathbb{C} & \text { if } & q=g, \\
0 & \text { if } & q \neq g .
\end{array}\right.
$$

Hint: Show that \mathcal{P} is non-degenerate of index g.
5. (Birkenhake-Lange, Ch. 3 problem 8, Poincaré's Reducibility Theorem)
(a) Let X be a compact complex torus admitting a non-degenerate line bundle. For any complex subtorus Y of X such that $L \mid Y$ is non-degenerate, there exists a complex subtorus Z of X, such that $Y \cap Z$ is finite and $Y+Z=X$. In other words, X is isogenous to $Y \times Z$.
(b) Consider the complex tori $X=\mathbb{C}^{2} / \Pi \mathbb{Z}^{4}$, with

$$
\Pi=\left(\begin{array}{cccc}
i & \sqrt{2} & 1 & 0 \\
0 & i & 0 & 1
\end{array}\right)
$$

and $Y=\mathbb{C} /(i, 1) \mathbb{Z}^{2}$ embedded as a complex subtorus of X, where the embedding $Y \hookrightarrow X$ has analytic representation $z \mapsto(z, 0)$. Show that X does not admit any subtorus Z, such that $Y \times Z$ is isogenous to X.

