Homework 1

1. (Birkenhake-Lange, Ch. 1 problem 1) Let $X=V / \Lambda$ be a compact complex torus.
(a) Show that X admits a complex subtorus of dimension g^{\prime}, if and only if there exists a subgroup $\Lambda^{\prime} \subset \Lambda$ of rank $2 g^{\prime}$, such that the real subspace $\operatorname{span}_{\mathbb{R}}\left\{\Lambda^{\prime}\right\}$ of V is a complex subspace.
(b) Conclude that the set of complex subtori of X, which pass through $0 \in X$, is at most countable.
(c) Give an example of a complex torus of dimension $g \geq 2$, which does not contain any complex subtorus of dimension $g^{\prime}, 0<g^{\prime}<g$. Hint: Consider a period matrix of the form $\Pi=\left(\begin{array}{cccc}1 & 0 & z_{1} & z_{3} \\ 0 & 1 & z_{2} & z_{4}\end{array}\right)$, satisfying $\operatorname{det}\left(\operatorname{Im}\left(\begin{array}{ll}z_{1} & z_{3} \\ z_{2} & z_{4}\end{array}\right)\right) \neq 0, z_{1} \notin \mathbb{Q}, z_{2} \notin \mathbb{Q}\left(z_{1}\right), z_{3} \notin \mathbb{Q}\left(z_{1}, z_{2}\right), z_{4} \notin \mathbb{Q}\left(z_{1}, z_{2}, z_{3}\right)$.
2. (Birkenhake-Lange, Ch. 1 problem 2) Let $X=V / \Lambda$ be a compact complex torus of dimension g.
(a) Show that there exists a basis $\left\{e_{1}, \ldots, e_{g}\right\}$ of V with respect to which the period matrix of X is of the form $\left(Z I_{g}\right)$, where I_{g} is the $g \times g$ identity matrix and Z is a $g \times g$ matrix with entries in \mathbb{C} and $\operatorname{det}(\operatorname{Im}(Z)) \neq 0$.
(b) Prove the equality $\operatorname{det}\left(\begin{array}{cc}Z & I \\ \bar{Z} & I\end{array}\right)=\operatorname{det}(2 i \operatorname{Im}(Z))$.
3. (Birkenhake-Lange, Ch. 1 problem 6)
(a) There is a bijection between the set of complex structures on $\mathbb{R}^{2 g}$ and $G L_{2 g}(\mathbb{R}) / G L_{g}(\mathbb{C})$.
(b) There is a bijection between the set of isomorphism classes of compact complex tori of dimension g and the set of orbits in $G L_{2 g}(\mathbb{R}) / G L_{g}(\mathbb{C})$ under the action of the subgroup $G L_{2 g}(\mathbb{Z})$ of $G L_{2 g}(\mathbb{R})$.
4. (Birkenhake-Lange, Ch. 1 problem 9) Let X be a compact complex torus and $\mu: X \times X \rightarrow X$ the addition map. Let $p_{i}: X \times X \rightarrow X$ be the projection onto the i-th factor. Show that a C^{∞}-one-form ω on X is translation invariant, if and only if $\mu^{*} \omega=p_{1}^{*} \omega+p_{2}^{*} \omega$.
5. (Birkenhake-Lange, Ch. 1 problem 10) Let Γ be a free abelian group of finite even rank. A Hodge structure of weight 1 on Γ is a decomposition of $\Gamma \otimes_{\mathbb{Z}} \mathbb{C}$ as a direct sum $H^{1,0} \oplus H^{0,1}$ of two complex subspace satisfying $H^{0,1}=\overline{H^{1,0}}$. Show that giving a Hodge structure on Γ is equivalent to giving a complex structure on the real torus $\left(\Gamma \otimes_{\mathbb{Z}} \mathbb{R}\right) / \Gamma$, i.e., an isomorphism of real compact tori $\left(\Gamma \otimes_{\mathbb{Z}} \mathbb{R}\right) / \Gamma \rightarrow X$ with a compact complex torus X.
6. (Birkenhake-Lange, Ch. 2 problem 4, the Néron-Severi group of a complex torus) Let $\left(Z, I_{g}\right)$ be the period matrix of a compact complex torus X. We have seen that the Néron-Severi group $N S(X)$ of X is identified with the set of alternating forms on $\mathbb{R}^{2 g}$, integer valued on $\mathbb{Z}^{2 g}$, which induce hermetian forms on \mathbb{C}^{g} via the \mathbb{R}-linear isomorphism $R^{2 g} \rightarrow \mathbb{C}^{g}$ given by $x \mapsto\left(Z, I_{g}\right) x$. Let E be an alternating form on $\mathbb{R}^{2 g}$ with matrix $M:=\left(\begin{array}{cc}A & B \\ -B^{t} & C\end{array}\right)$ in $M_{2 g}(\mathbb{R})$. Show that the following conditions are equivalent.
(a) E belongs to $N S(X)$.
(b) $A, B, C \in M_{g}(\mathbb{Z})$ and

$$
\begin{equation*}
A-B Z+Z^{t} B^{t}+Z^{t} C Z=0 \tag{1}
\end{equation*}
$$

Note that if $g=2$ and $A=\left(\begin{array}{cc}0 & a \\ -a & 0\end{array}\right), B=\left(\begin{array}{ll}b & d \\ e & f\end{array}\right)$, and $C=\left(\begin{array}{cc}0 & c \\ -c & 0\end{array}\right)$, then condition (6b) reads: $a, b, c, d, e, f \in \mathbb{Z}$ and

$$
\begin{equation*}
a+e z_{1,1}-b z_{1,2}+f z_{2,1}-d z_{2,2}+c \operatorname{det}(Z)=0 \tag{2}
\end{equation*}
$$

Hint: The columns of the period matrix $\left(Z, I_{g}\right)$ form a basis β of \mathbb{C}^{g} as a $2 g$ dimensional vector space over \mathbb{R}. Let $J: \mathbb{C}^{g} \rightarrow \mathbb{C}^{g}$ be multiplication by i and let $R:=[J]_{\beta}$ be the matrix of J in the basis β. Show that condition 6 a above is equivalent to M having integer entries and $R^{t} M R=M$. Note that the latter equality is equivalent to $M R$ being a symmetric matrix, since $R^{-1}=-R$. Now write $Z=X+i Y$, with $X, Y \in M_{g}(\mathbb{R})$, and show that

$$
R=\left(\begin{array}{cc}
Y^{-1} X & Y^{-1} \\
-\left[Y+X Y^{-1} X\right] & -X Y^{-1}
\end{array}\right)
$$

(argue as in the proof of Proposition 2.3 in Chapter 1 of Birkenhake-Lange). Finally show that the symmetry of $M R$ is equivalent to equation (1).
Notes: (i) Set $\mathfrak{T}_{g}:=\left\{Z \in M_{g}(\mathbb{C}): \operatorname{det}(\operatorname{Im}(Z)) \neq 0\right\}$. Denote by X_{Z} the compact complex torus with period matrix $\left(Z, I_{g}\right)$. The symmetry of $M R$ provides real equations for the locus of Z in \mathfrak{T}_{g} where E belongs to $N S\left(X_{Z}\right)$. The equivalent equation (1) shows that this locus is a complex subvariety.
(ii) One can use Equation (2) to give an example of a two-dimensional compact complex torus with a trivial Néron-Severi group.
7. (Birkenhake-Lange, Ch. 2 problem 5) Let X be a compact complex torus of dimension g. The rank $\rho(X)$ of the Néron-Severi group of X is called the Picard number of X. Show that $\rho(X) \leq h^{1,1}(X)=g^{2}$.

