Homework 1

- 1. (Birkenhake-Lange, Ch. 1 problem 1) Let $X = V/\Lambda$ be a compact complex torus.
 - (a) Show that X admits a complex subtorus of dimension g', if and only if there exists a subgroup $\Lambda' \subset \Lambda$ of rank 2g', such that the real subspace span_{$\mathbb{R}}{\Lambda'}$ of V is a complex subspace.</sub>
 - (b) Conclude that the set of complex subtori of X, which pass through $0 \in X$, is at most countable.
 - (c) Give an example of a complex torus of dimension $g \ge 2$, which does not contain any complex subtorus of dimension g', 0 < g' < g. Hint: Consider a period matrix of the form $\Pi = \begin{pmatrix} 1 & 0 & z_1 & z_3 \\ 0 & 1 & z_2 & z_4 \end{pmatrix}$, satisfying $\det \left(Im \begin{pmatrix} z_1 & z_3 \\ z_2 & z_4 \end{pmatrix} \right) \neq 0, z_1 \notin \mathbb{Q}, z_2 \notin \mathbb{Q}(z_1), z_3 \notin \mathbb{Q}(z_1, z_2), z_4 \notin \mathbb{Q}(z_1, z_2, z_3).$
- 2. (Birkenhake-Lange, Ch. 1 problem 2) Let $X = V/\Lambda$ be a compact complex torus of dimension g.
 - (a) Show that there exists a basis $\{e_1, \ldots, e_g\}$ of V with respect to which the period matrix of X is of the form $(Z I_g)$, where I_g is the $g \times g$ identity matrix and Z is a $g \times g$ matrix with entries in \mathbb{C} and $\det(Im(Z)) \neq 0$.

(b) Prove the equality det
$$\begin{pmatrix} Z & I \\ \bar{Z} & I \end{pmatrix} = \det(2iIm(Z)).$$

- 3. (Birkenhake-Lange, Ch. 1 problem 6)
 - (a) There is a bijection between the set of complex structures on \mathbb{R}^{2g} and $GL_{2q}(\mathbb{R})/GL_q(\mathbb{C})$.
 - (b) There is a bijection between the set of isomorphism classes of compact complex tori of dimension g and the set of orbits in $GL_{2g}(\mathbb{R})/GL_g(\mathbb{C})$ under the action of the subgroup $GL_{2g}(\mathbb{Z})$ of $GL_{2g}(\mathbb{R})$.
- 4. (Birkenhake-Lange, Ch. 1 problem 9) Let X be a compact complex torus and $\mu: X \times X \to X$ the addition map. Let $p_i: X \times X \to X$ be the projection onto the *i*-th factor. Show that a C^{∞} -one-form ω on X is translation invariant, if and only if $\mu^* \omega = p_1^* \omega + p_2^* \omega$.
- 5. (Birkenhake-Lange, Ch. 1 problem 10) Let Γ be a free abelian group of finite even rank. A Hodge structure of weight 1 on Γ is a decomposition of $\Gamma \otimes_{\mathbb{Z}} \mathbb{C}$ as a direct sum $H^{1,0} \oplus H^{0,1}$ of two complex subspace satisfying $H^{0,1} = \overline{H^{1,0}}$. Show that giving a Hodge structure on Γ is equivalent to giving a complex structure on the real torus $(\Gamma \otimes_{\mathbb{Z}} \mathbb{R})/\Gamma$, i.e., an isomorphism of real compact tori $(\Gamma \otimes_{\mathbb{Z}} \mathbb{R})/\Gamma \to X$ with a compact complex torus X.

- 6. (Birkenhake-Lange, Ch. 2 problem 4, the Néron-Severi group of a complex torus) Let (Z, I_g) be the period matrix of a compact complex torus X. We have seen that the Néron-Severi group NS(X) of X is identified with the set of alternating forms on \mathbb{R}^{2g} , integer valued on \mathbb{Z}^{2g} , which induce hermetian forms on \mathbb{C}^g via the \mathbb{R} -linear isomorphism $R^{2g} \to \mathbb{C}^g$ given by $x \mapsto (Z, I_g)x$. Let E be an alternating form on \mathbb{R}^{2g} with matrix $M := \begin{pmatrix} A & B \\ -B^t & C \end{pmatrix}$ in $M_{2g}(\mathbb{R})$. Show that the following conditions are equivalent.
 - (a) E belongs to NS(X).
 - (b) $A, B, C \in M_q(\mathbb{Z})$ and

$$A - BZ + Z^t B^t + Z^t CZ = 0. (1)$$

Note that if g = 2 and $A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$, $B = \begin{pmatrix} b & d \\ e & f \end{pmatrix}$, and $C = \begin{pmatrix} 0 & c \\ -c & 0 \end{pmatrix}$, then condition (6b) reads: $a, b, c, d, e, f \in \mathbb{Z}$ and

$$a + ez_{1,1} - bz_{1,2} + fz_{2,1} - dz_{2,2} + c\det(Z) = 0.$$
 (2)

Hint: The columns of the period matrix (Z, I_g) form a basis β of \mathbb{C}^g as a 2*g*dimensional vector space over \mathbb{R} . Let $J : \mathbb{C}^g \to \mathbb{C}^g$ be multiplication by *i* and let $R := [J]_\beta$ be the matrix of *J* in the basis β . Show that condition 6a above is equivalent to *M* having integer entries and $R^tMR = M$. Note that the latter equality is equivalent to *MR* being a symmetric matrix, since $R^{-1} = -R$. Now write Z = X + iY, with $X, Y \in M_q(\mathbb{R})$, and show that

$$R = \begin{pmatrix} Y^{-1}X & Y^{-1} \\ -[Y + XY^{-1}X] & -XY^{-1} \end{pmatrix}$$

(argue as in the proof of Proposition 2.3 in Chapter 1 of Birkenhake-Lange). Finally show that the symmetry of MR is equivalent to equation (1).

Notes: (i) Set $\mathfrak{T}_g := \{Z \in M_g(\mathbb{C}) : \det(Im(Z)) \neq 0\}$. Denote by X_Z the compact complex torus with period matrix (Z, I_g) . The symmetry of MR provides real equations for the locus of Z in \mathfrak{T}_g where E belongs to $NS(X_Z)$. The equivalent equation (1) shows that this locus is a complex subvariety.

(ii) One can use Equation (2) to give an example of a two-dimensional compact complex torus with a trivial Néron-Severi group.

7. (Birkenhake-Lange, Ch. 2 problem 5) Let X be a compact complex torus of dimension g. The rank $\rho(X)$ of the Néron-Severi group of X is called the *Picard* number of X. Show that $\rho(X) \leq h^{1,1}(X) = g^2$.