Associated to a compact Riemann surface X and a very ample divisor $D \in \operatorname{Div}(X)$, we get a holomorphic embedding $\phi_{D}: X \rightarrow \mathbb{P} L(D)^{*}$. The following sequence of exercises indicates how one can obtain equations for $\phi_{D}(X)$ in the projective space $\mathbb{P} L(D)^{*}$. The general discussion requires knowledge of the dimension of the vector spaces $L(d D), d \geq 1$, provided by Riemann-Roch Theorem. We restrict ourselves to the genus 0 and 1 case, where we already know these dimensions.

1. Let V be an $n+1$-dimensional vector space. Show that the vector space $\operatorname{Sym}^{d}\left(V^{*}\right)$, of homogeneous polynomial functions on V of degree $d \geq 1$, has dimension $\binom{n+d}{d}$. Note, that if $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ is a basis of V, and $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is the dual basis of V^{*}, then $\operatorname{Sym}^{d}\left(V^{*}\right)$ is precisely the space of homogeneous polynomials of degree d in the x_{i} 's.
2. Let X be a compact Riemann surface, $D \in \operatorname{Div}(X)$, with a base-point-free linear system $|D|$, and $\phi_{D}: X \rightarrow|D|^{*} \cong \mathbb{P} L(D)^{*}$ the associated holomorphic map. Let d be a positive integer, and consider the multiplication map (induced by multiplication in the field $\mathcal{M}(X)$ of meromorphic functions)

$$
\begin{equation*}
\mu_{d}: \operatorname{Sym}^{d} L(D) \quad \longrightarrow \quad L(d D) \tag{1}
\end{equation*}
$$

(a) Show that a degree d homogeneous polynomial $G \in \operatorname{Sym}^{d} L(D)$ vanishes identically on the image $\phi_{D}(X) \subset \mathbb{P} L(D)^{*}$, if and only if $\mu_{d}(G)=0$. If $\mu_{d}(G) \neq 0$, show that

$$
\operatorname{div}(\mu(G))+d D=\phi_{D}^{*}(G)
$$

where the divisor $\phi_{D}^{*}(G)$ is defined in the paragraph following definition V.4.12 page 159 in the text.
(b) Let $\mathcal{P}:=\oplus_{d=0}^{\infty} \operatorname{Sym}^{d} L(D)$ be the homogeneous coordinate ring of $\mathbb{P} L(D)^{*}$ (the polynomial algebra). The homomorphisms μ_{d} fit into a graded \mathbb{C}-algebra homomorphism

$$
\mu: \mathcal{P} \quad \longrightarrow \quad \oplus_{d=0}^{\infty} L(d D)
$$

where the multiplication on the right hand side is induced by multiplication in $\mathcal{M}(X)$. Show that $\operatorname{ker}(\mu)$ is a prime ideal.

Definition: Let X be a compact Riemann surface, $D \in \operatorname{Div}(X)$ a very ample divisor (see Proposition V.4.20 page 163), and $\phi_{D}: X \rightarrow|D|^{*}$ the corresponding holomorphic embedding. The ring $\mathcal{P} / \operatorname{ker}(\mu)$ is called the homogeneous coordinate ring of $\phi_{D}(X)$. The embedding ϕ_{D} is said to be projectively normal, if the homomorphisms μ_{d} are surjective, for all $d \geq 0$.
3. Set $\infty:=[0: 1] \in \mathbb{P}^{1}, D=n \cdot \infty \in \operatorname{Div}\left(\mathbb{P}^{1}\right), n \geq 1$.
(a) Show that the homomorphism μ_{d}, given in (1), is surjective, for all $d \geq 1$. Conclude, that the rational normal curve of degree n in \mathbb{P}^{n} is projectively normal.
(b) Set $n:=3, d=2$. Show that the subspace $\operatorname{ker}\left(\mu_{2}\right)$ of $\operatorname{Sym}^{2} L(3 \infty)$, of quadrics vanishing identically on the twisted cubic curve, is three-dimensional. Compare with the basis for $\operatorname{ker}\left(\mu_{2}\right)$ given in problem V.2.F page 145.
4. Let $X:=\mathbb{C} / L$ be a compact torus, $p_{0}:=0+L \in X$ the origin, $D:=n p_{0} \in \operatorname{Div}(X)$.
(a) Show that μ_{2}, given in (1), is not surjective, if $n=2$.
(b) Show that for $n \geq 2$, a subset $\left\{f_{0}, f_{2}, f_{3}, \ldots, f_{n}\right\}$ of $L\left(n p_{0}\right)$, satisfying $\operatorname{ord}_{p_{0}}\left(f_{i}\right)=-i$, is a basis for $L\left(n p_{0}\right)$. Furthermore, such a basis exists.
(c) Assume $n \geq 3$. We know that D is very ample. Show that the homomorphism μ_{d}, given in (1), is surjective, for all $d \geq 1$. Conclude, that the elliptic normal curve of degree n in \mathbb{P}^{n-1} is projectively normal. Hint: Prove the equality of sets,

$$
\{0,2,3, \ldots, k\}+\{0,2,3, \ldots, m-1, m\}=\{0,2,3, \ldots, k+m-1, k+m\}
$$

for all integers $k \geq 2$ and $m \geq 3$. Use it to prove that the multiplication homomorphism

$$
L\left(k p_{0}\right) \otimes L\left(m p_{0}\right) \quad \longrightarrow \quad L\left((k+m) p_{0}\right)
$$

is surjective.
(d) Let $C \subset \mathbb{P}^{3}$ be the image of X via the embedding $\phi_{4 p_{0}}$. Show that the vector space $\operatorname{ker}\left(\mu_{2}\right)$ of quadrics (homogeneous polynomials $Q\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ of degree 2), vanishing identically on C, is two dimensional. Use problem 2 b to show that any non-zero quadric in $\operatorname{ker}\left(\mu_{2}\right)$ is irreducible. Let $\left\{Q_{1}, Q_{2}\right\}$ be a basis for $\operatorname{ker}\left(\mu_{2}\right)$ and assume, that the complete intersection $Q_{1} \cap Q_{2}$, of the two quadric surfaces $Q_{i}=0$, is smooth and connected. Prove that $Q_{1} \cap Q_{2}$ is equal to C. (C is always the complete intersection $Q_{1} \cap$ Q_{2}, by a version of Bezout's Theorem, so the smoothness and connectedness assumptions are not needed). Compare with problem I.3.F page 18.

