Let g be a non-negative integer, $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 g+1}\right\}$ distinct complex numbers, and X_{0} the affine algebraic curve in \mathbb{C}^{2} given by $y^{2}-\prod_{i=1}^{2 g+1}\left(x-\lambda_{i}\right)=0$.
Let X be the compact hyperelliptic Riemann surface, containing X_{0}, which is a branched double cover $\pi: X \rightarrow \mathbb{P}^{1}$, whose restriction to X_{0} is equal to the restriction of the function x from \mathbb{C}^{2} to X_{0}. Then π is branched over $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 g+1}, \infty\right\}$ (Miranda, Lemma III.1.7, page 60).

1. Denote the restriction of x and y to X_{0} by x and y as well, and regard them as meromorphic functions on X. Determine the zeroes and poles, and their multiplicities, for the following meromorphic one forms: i) $\frac{d y}{x}$, ii) $\frac{d x}{y}$ (you should get that the latter is holomorphic, for $g \geq 1$). For each of the above forms show that the difference, between the number of zeroes and the number of poles, counted with multiplicities, is equal to $2 g-2$.
2. Let ω be a holomorphic 1-form on X satisfying $\iota^{*}(w)=\omega$, where ι is the Hyperelliptic involution (Miranda, Lemma III.1.9 page 61). Prove that $\omega=0$.
3. Prove that every holomorphic 1-form on X is of the form $f(x) d x / y$, where f is a polynomial of degree $\leq g-1$. Conclude that the complex vector space of global holomorphic 1 -forms on X is g-dimensional.
