Let g be a non-negative integer, $\{\lambda_1, \lambda_2, \dots, \lambda_{2g+1}\}$ distinct complex numbers, and X_0 the affine algebraic curve in \mathbb{C}^2 given by $y^2 - \prod_{i=1}^{2g+1} (x - \lambda_i) = 0$.

Let X be the compact hyperelliptic Riemann surface, containing X_0 , which is a branched double cover $\pi : X \to \mathbb{P}^1$, whose restriction to X_0 is equal to the restriction of the function x from \mathbb{C}^2 to X_0 . Then π is branched over $\{\lambda_1, \lambda_2, \ldots, \lambda_{2g+1}, \infty\}$ (Miranda, Lemma III.1.7, page 60).

- 1. Denote the restriction of x and y to X_0 by x and y as well, and regard them as meromorphic functions on X. Determine the zeroes and poles, and their multiplicities, for the following meromorphic one forms: i) $\frac{dy}{x}$, ii) $\frac{dx}{y}$ (you should get that the latter is holomorphic, for $g \ge 1$). For each of the above forms show that the difference, between the number of zeroes and the number of poles, counted with multiplicities, is equal to 2g - 2.
- 2. Let ω be a holomorphic 1-form on X satisfying $\iota^*(w) = \omega$, where ι is the Hyperelliptic involution (Miranda, Lemma III.1.9 page 61). Prove that $\omega = 0$.
- 3. Prove that every holomorphic 1-form on X is of the form f(x)dx/y, where f is a polynomial of degree $\leq g 1$. Conclude that the complex vector space of global holomorphic 1-forms on X is g-dimensional.