1. For which values of $\lambda \in \mathbb{C}$ is the projective cubic curve C_{λ}

$$x^{3} + y^{3} + z^{3} + 3\lambda xyz = 0$$

in \mathbb{P}^2 singular? Show that each singular curve C_{λ} in the family is a union of three lines.

2. For which values of $\lambda \in \mathbb{C}$ is the projective cubic curve C_{λ}

$$y^2 z - x(x - z)(x - \lambda z) = 0$$

in \mathbb{P}^2 singular? Show that all curves in the family are irreducible. Show that if C_{λ} is singular, than it has a single singular point p_0 , and $C_{\lambda} \setminus \{p_0\}$ is isomorphic to $\mathbb{C} \setminus \{0\}$.

- 3. Show that the projective cubic plane curve C, given by $zy^2 x^3$, is irreducible and has precisely one singular point p_0 . Show that $C \setminus \{p_0\}$ is isomorphic to \mathbb{C} .
- 4. Miranda, section II.2 page 38: B, F.
- 5. Let w_1, w_2 , be two complex numbers, which are linearly independent over \mathbb{R} , and let L be the lattice $\mathbb{Z}w_1 + \mathbb{Z}w_2$. The Weierstrass \mathcal{P} -function is

$$\mathcal{P}(z) := \frac{1}{z^2} + \sum_{w \in L, w \neq 0} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right).$$

It is shown in standard complex analysis textbooks (Lang, Ahlfors, etc ...) that \mathcal{P} is absolutely convergent uniformly on compact subsets of $\mathbb{C} \setminus L$ and \mathcal{P} is *L*-periodic, and so descends to a meromorphic function on the complex torus $X := \mathbb{C}/L$ (*L*-periodicity is obvious for the derivative \mathcal{P}'). Note, that \mathcal{P} is even $\mathcal{P}(z) = \mathcal{P}(-z)$. It is characterized as the unique *L*-periodic function, holomorphic on $\mathbb{C} \setminus L$, whose Laurent series centered at 0,

$$\sum_{n=-\infty}^{\infty} a_n z^n$$

satisfies $a_{-2} = 1$, and $a_n = 0$, for all $n \leq 0$, except a_{-2} .

(a) Show that the derivative \mathcal{P}' has a simple zero at each half period

$$\{u : u \in (\mathbb{C} \setminus L) \text{ and } 2u \in L\}$$

(corresponding to three points in X). *Hint:* Use the fact that \mathcal{P} is even and Lemma 3.14 in the text.

(b) Assume now that $w_1 = 1$, $w_2 = \tau$, and $u \in \{\frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}\}$. Let $\theta^{(u)}(z)$ be the function defined in page 34 of the text. Show that the difference $\mathcal{P}(z) - \mathcal{P}(u)$ is a constant multiple of

$$\frac{\theta^{(u)}(z)\theta^{(-u)}(z)}{[\theta^{(0)}(z)]^2}$$