Let $F_{i}\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be homogeneous polynomials, $1 \leq i \leq n-1$, with $\operatorname{deg}\left(F_{i}\right)=d_{i} \geq 1$. Assume that their complete intersection X, given by $F_{1}=F_{2}=\ldots=F_{n-1}=0$, is a smooth connected projective curve, so that X is a Riemann surface holomorphically embedded in \mathbb{P}^{n}. You may assume the following generalization of Proposition V.2.12 page 143 in the text:

Theorem: (A special case of Bezout's Theorem) The degree of X in \mathbb{P}^{n}, in the sense of Definition V.2.11 page 142 in the text, is the product

$$
\operatorname{deg}(X)=\prod_{i=1}^{n-1} d_{i}
$$

1. Assume, without loss of generality, that X is disjoint from the linear subspace $x_{0}=x_{n}=0$, and let

$$
\pi: X \longrightarrow \mathbb{P}^{1}
$$

be the holomorphic map given by $\left[x_{0}: x_{1}: \cdots: x_{n}\right] \mapsto\left[x_{0}: x_{n}\right]$. Assume, without loss of generality, that π is not a constant map. Prove the following generalization of Lemma V.2.14 page 143 in the text.

Lemma: The ramification divisor R_{π} of π is equal to $\operatorname{div}(\operatorname{det}(A))$, where A is the $(n-1) \times$ $(n-1)$ polynomial matrix, whose (i, j) entry is $\frac{\partial F_{i}}{\partial x_{j}}, 1 \leq i, j \leq n-1$.
Hint: Fix $p \in X$. We need to prove the equality

$$
R_{\pi}(p)=\operatorname{div}(\operatorname{det}(A))(p) .
$$

Localize to one of the two affine chart $x_{0}=1$ or $x_{n}=1$ (say $x_{0}=1$). Use first the Implicit Function Theorem to prove the equality of the supports of the two divisors. Assume next that p belongs to the support of R_{π}. Choose $0<i<n$, so that $y_{i}:=x_{i} / x_{0}$ is a local coordinate around p. Say $i=1$. Use the Implicit Function Theorem to express the derivatives $\frac{\partial y_{j}}{\partial y_{1}}$ as solutions of a system of linear equations with the partials of the equations $F\left(1, y_{1}, \ldots, y_{n}\right)$ as coefficients. Now use Cramer's Rule to relate $\operatorname{ord}_{p}\left(\frac{\partial y_{n}}{\partial y_{1}}\right)$ to $\operatorname{div}(\operatorname{det}(A))(p)$.
2. Use Bezout's Theorem to prove that the genus g of X is given by the formula

$$
2 g-2=\left[\left(\sum_{i=1}^{n-1} d_{i}\right)-n-1\right] \prod_{i=1}^{n-1} d_{i} .
$$

3. Use the above to answer again Problem I.3.F page 18.
