1. Let X, Y be compact Riemann surfaces, $F : X \to Y$ a non-constant holomorphic map, and $D \in \text{Div}(Y)$ a divisor. Let Q be the linear subsystem, of the complete linear system $|F^*D|$, corresponding to the linear subspace $\mathbb{P}(F^*L(D)) \subset \mathbb{P}(L(F^*D))$. Assume, that |D| is base-point-free. Show that the linear system Q is base-point-free, and the associated morphism ϕ_Q is the composition

$$\phi_Q = \phi_D \circ F.$$

- 2. Let X be the hyperelliptic curve of genus g compactifying the affine plane curve given by $v^2 = h(u)$, where h is a polynomial of degree 2g + 1 or 2g + 2 with distinct roots. Denote by $\pi : X \to \mathbb{P}^1$ the degree 2 map. Show that the holomorphic map $\phi := [1 : u : ... : u^{g-1}]$ is the composition of π and the Veronese embedding of \mathbb{P}^1 as the rational normal curve of degree g 1 in \mathbb{P}^{g-1} .
- 3. Set $D := (g-1)\infty \in \text{Div}(\mathbb{P}^1)$. Show that $K := \pi^* D$ is a canonical divisor of X.
- 4. Use the extra problem for homework 6 to show that $\dim(L(K)) = g$. Conclude, that the holomorphic map $\phi := [1 : u : ... : u^{g-1}]$ is the the morphism ϕ_K associated to the complete canonical linear system |K|.