Kirwan’s book section 2.5 page 46 Problem 2.10: A hint.
Let N C P? be a subset consisting of nine distinct point satisfying the following two
conditions:

(a) N is not contained in a single line.

(b) Given P,Q € N, P # @, the line PQ through P and @ contains a third point
Re N\ {P,Q}.

Part 1: Prove, that there exists a unique such configuration N of points, up to a
projective linear transformations of P2.

Existence: The existence part is proven by checking, that the explicit set of nine
points given in the problem

S = {0,1,-1,[0,1,a],...),

where « is a primitive sixth root of unity, satisfies conditions (a) and (b). Following is an
elegant way of organizing the check. Consider the group G C PGL(3,C), of projective
linear transformations of P?, generated by the following two elements {o, 7}

o(z,y,2) = (y,2%),
T(z,y,2) = (x,azy,a4z).

Note, that both o and 7 have order 3 and they commute:
orlz,y, 2] = [0?y, a’z, 2] = [y, o?z, a*z] = Tol2, Y, 2].
Thus, G is isomorphic to Z/3Z x Z/3Z.
Claim 1 S is the G-orbit of the point P :=[0,1, —1]
S = {g(P) : geG}. (1)
Recall, that in Z/3Z x 7 /37 there are precisely four cyclic subgroups of order 3.

Claim 2 Given a point Q) € S, the four subsets of S, each consisting of three co-linear
points (on the same line) one of which is Q, are in one-to-one correspondence with the
four cyclic subgroups of G of order 3 (each “line” being the orbit of Q under one of the
four subgroups).

Do not check all 12 lines! Find a more efficient argument (checking 4 lines or less).

Remark 3 (This remark is not essential for the solution of the problem) The group G
may be considered as the two dimensional vector space over the field of three elements.
Then the 12 lines in the corresponding affine plane are: 4 lines through the origin, each
a cyclic subgroup of G. Each line through the origin has two additional cosets resulting
in 8 additional lines. The group of symmetries of the affine plane of G is the group
Aff(G) of affine automorphisms, generated by the normal subgroup of translations and
the subgroup GL(2,7Z/3Z) of linear transformations. Claims 1 and 2 identify S with
the affine plane of G. Combined with Lemma 2.22 in Kirwan’s book one concludes: The
mazimal subgroup of PGL(3,C), which leaves the subset S invariant, is isomorphic to
the group Aff(G).



Uniqueness: We need to find an element of PGL(3, C), which maps N to S. Moti-
vated by Claim 1, it is tempting to introduce a group structure on NV, depending on the
choice of some point P € N. Let us do that, except that we will not prove associativity.
The associativity will follow from the existence and uniqueness.

Claim 4 FEach line in P? intersects N along at most 3 points.

Using Claim 4, we define a commutative binary operation. (i) We define P to be the
identity P + @ = @. (ii) The sum of three co-linear points is P. (iii) Every point is of
order dividing 3; i.e., 3Q) = P. It follows, that () + @Q = —@ is the third point of N on
the line PQ. Given Q, R € N\ {P}, the third point of N on the line QR is —(Q + R).

Claim 5 Let Q,R € N\ {P}, such that P, @, and R are not co-linear. Then @) and
R generate N. In other words, any one of the other six points can be expressed as a
“word” of the form P, + (P, + (...))), where P; is either Q or R.

Uniqueness now follows from Lemma 2.22 in Kirwan’s book.

Part 2: Prove that a projective curve of degree 3 passes through all the points of S, if
and only if it is defined by a polynomial of the form

t(z® +y* + 2°) + 3hzyz, (2)

for some [t, \] € P'.

An elegant proof uses the G-action of Claim 1 on the 10-dimensional vector space
V' of homogeneous cubic polynomials in Clz,y, 2]. The subspace Vg, of polynomials
vanishing along the points of S, is G-invariant. V decomposes as a direct sum of a
2-dimensional subspace V¢ of invariant polynomials, given in equation (2), and 8 one-
dimensional subspaces V,, corresponding to the 8 non-trivial characters of G (i.e., the
non-trivial homomorphisms y : G — C* into the multiplicative group of non-zero com-
plex numbers). One easily checks, that the subspace V¢ is contained in Vs. Hence,
Vs =V¢@®W, where W must be a direct sum of some of the V. Show, that W = (0),
by showing that a non-zero polynomial in V) does not vanish along any of the points of
S. A direct check is easy but a little tedious.

Remark 6 There is a more conceptual proof of the equality W = (0), which uses
Remark 3. Consider the 8-dimensional vector space E := C%/C, consisting of maps
from G to C modulo the subspace of constant functions. Then E is a representation
of the group Aff(G) and E does not have any Aff(G)-invariant proper subspace. Now
P(V/Vs) embeds in P(E) as an Aff(G)-invariant projective linear subspace. Hence, either
V/Vs is 8-dimensional, which means that Vg is 2-dimensional and hence W = (0), or
V = Vs. The latter is clearly false, as there exist cubic curves not containing S.

Part 3: A curve defined by a polynomial of the form (2) is singular precisely for
[t, \] € {[0,1],[1, —1],[1, «], [1, @]}, in which case it is a union of three lines.
The proof is easy.

Remark 7 Problem 2.10 is related to the fact, that a smooth complex cubic curve
¥ in P? is homeomorphic to the torus S* x S'. The circle S has a natural group
structure (multiplication of complex numbers of absolute value 1). The homeomorphism
Y = S x S! endows ¥ with a group structure. This group structure can be defined
geometrically in terms of co-linear points as above (section 3.2 Theorem 3.28). The nine
points of the subset S in equation (1) are then the subgroup of points of order three on
a smooth X containing S.



