
Riemann Surfaces Homework Assignment 8 Fall 2004
Optional problems on line bundles.

The significance of Forster’s Problem 16.4 page 131 is explained in problems 1 and 2
below.

Definition:

1. Let X be a topological space. A rank n complex vector bundle over X is a topo-
logical space E with a continuous map π : E → X, such that each fiber π−1(x),
x ∈ X, is provided with the structure of a complex vector space, and π : E → X

is locally trivial in the following sense:

(a) For each x ∈ X, there is an open neighborhood U of x and a homeomorphism

hU : π−1(U) −→ U × C
n

satisfying π = p ◦ hU , where p : U × C
n → U is the projection.

(b) The restriction of hU to every fiber is an isomorphism of complex vector
spaces.

2. A complex vector bundle π : E → X, over a Riemann surface X, is endowed with
a holomorphic structure by specifying an open covering U = (Ui)i∈I of X, and
trivialization maps hi : π−1(Ui) → Ui ×Cn, satisfying the following condition. For
every i and j, the natural homeomorphism (see diagram (1))

hi ◦ h−1

j : (Ui ∩ Uj)× C
n −→ (Ui ∩ Uj)× C

n

is given by (p, v) 7→ (p, gij(p) · v), where

gij : Ui ∩ Uj −→ GL(n, C)

is a holomorphic map. (The map gij is a matrix of complex valued functions, and
it is holomorphic, if the entries of the matrix are holomorphic functions).

π−1(Ui)
hi−→ Ui × Cn

∪
∪ (Ui ∩ Uj)× C

n

hi| ↗

π−1(Ui ∩ Uj) ↑ hi ◦ h−1

j

hj| ↘

∩ (Ui ∩ Uj)× Cn

∩

π−1(Uj)
hj

−→ Uj × Cn

(1)

Two such data {(Ui, hi) : i ∈ I} and {(Uj, hj) : j ∈ J} are said to be compatible
or equivalent, if their common refinement {(Uk, hk) : k ∈ I ∪ J} satisfies the above
condition as well. A holomorphic structure on a complex vector bundle is an equivalence
class of such data.
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1. (a) Let X be a compact Riemann surface. Jacobi’s Theorem (Section 21 in
Forster) implies that the connecting homomorphism in problem 16.4

Div(X) → H1(X,O∗)

is surjective. Use this fact, together with problem 16.4, to conclude that
H1(X,O∗) is isomorphic to the divisor class group, the quotient of Div(X)
by the group of principal divisors.

(b) Let X = P1 and the divisor D be n · ∞, where ∞ is the point of P1.
Calculate the image of D ∈ Div(P1) under the connecting homomorphism
δ : Div(P1) → H1(P1,O×) in problem 16.4. Represent δ(D) in terms of a
cocycle in H1(U ,O×), where the open covering U consists of the two open
subsets U0 := P

1 \ {∞} and U∞ := P
1 \ {0}.

(c) Let π : L → X be a holomorphic line bundle over a compact Riemann surface
X and s a meromorphic section of L. Define the order Ordp(s) of s at a point
p ∈ X as follows. Choose a triviallization hU : π−1(U) → U × C, over some
open neighborhhod U of p. Then h◦s is the graph of a meromorphic function
f on U . Set Ordp(s) := Ordp(f). Prove that the sheaf of holomorphic sections

of L is isomorphic to OX(D), where D :=
∑

p∈X

Ordp(s) · p.

(d) Show that the sheaf of holomorphic sections of the line bundle, corresponding
to δ(n ·∞) in part 1b, is OP1(−n ·∞). Note: The standard map from Div(X)
to H1(X,O×) is −δ. More precisely, the standard map is the connecting
homomorphism for the short exact sequence, as in problem 16.4, but with β

in 16.4 replaced by −β. This will ensure, that the class of δ(D) represents
the line bundle, whose sheaf of sections is OX(D) (see Problem 2).

2. Let X be a Riemann surface. Prove that there is a group isomorphism between i)
The cohomology group H1(X,O∗) and ii) The Picard group Pic(X) of isomorphism
classes of holomorphic line bundles on X (with the tensor product operation). You
may want to follow the following steps.

(a) Let U = (Ui)i∈I be an open covering of X. Define a natural map L, from the
group of cocycles Z1(U ,O∗), to the set Pic(X) of isomorphism classes of line
bundles. The map L sends a cocycle (gij) to the line bundle obtained (as a
manifold), from the disjoint union of the open sets {Ui × C : i ∈ I}, by
gluing Ui × C to Uj × C via gij

Uj × C Ui × C

∪ ∪

(Ui ∩ Uj)× C
gij

−→ (Ui ∩ Uj)× C

(p, λ) 7→ (p, gij(p) · λ).

Interpret the Z1(U ,O∗) group operation as a tensor product of line bundles
(explain why it deserves that name). Note: one can define independently
a tensor product operation on the set Pic(X), but it takes some writing to
prove that it is well defined on the level of isomorphism classes. You will get
the operation for free once you construct below a one-to-one correspondence
between Pic(X) and H1(X,O∗).
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(b) Prove that the map L : Z1(U ,O∗) → Pic(X) factors through H1(U ,O∗). In
other words, given a 1-cocycle (gij) and a 0-cochain (fi), the line bundles

L(gij) and L(gij ·
fj

fi
)) are isomorphic. Hint: As a worm-up, show that the

holomorphic line bundle, associated to a 1-coboundary, is trivial. Show first
that such a line-bundle has a global non-vanishing section. Observation: Let
(gij) be a cocycle in Z1(U ,O∗). A collection of local functions si : Ui → C

glues to a global section of the line-bundle L(gij), if and only if gijsj = si on
Ui ∩ Uj, for all i, j ∈ I.

(c) Conclude that there is a well defined injective map ` : H1(X,O∗) ↪→ Pic(X).
Hint: You can either use the definition of H1(X,O∗) as a direct limit, or use
Leray’s Theorem, after you prove the vanishing of H1(U,O∗), when U is a
disk. For the latter vanishing, use the exponential sequence

0 → Z −→ OU
e2πi(•)

−→ O∗

U → 0

and the vanishing of H i(U, Z), for i > 0.

(d) Prove that the induced map ` : H1(X,O∗) → Pic(X) is surjective. (In other
words, every holomorphic line bundle is isomorphic to one coming from a
cocycle in Z1(U ,O∗), for some open covering U).
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