Riemann Surfaces Homework Assignment 8 Fall 2004 Optional problems on line bundles.

The significance of Forster's Problem 16.4 page 131 is explained in problems 1 and 2 below.

Definition:

- 1. Let X be a topological space. A rank n complex vector bundle over X is a topological space E with a continuous map $\pi : E \to X$, such that each fiber $\pi^{-1}(x)$, $x \in X$, is provided with the structure of a complex vector space, and $\pi : E \to X$ is locally trivial in the following sense:
 - (a) For each $x \in X$, there is an open neighborhood U of x and a homeomorphism

$$h_U : \pi^{-1}(U) \longrightarrow U \times \mathbb{C}^n$$

satisfying $\pi = p \circ h_U$, where $p: U \times \mathbb{C}^n \to U$ is the projection.

- (b) The restriction of h_U to every fiber is an isomorphism of complex vector spaces.
- 2. A complex vector bundle $\pi : E \to X$, over a Riemann surface X, is endowed with a holomorphic structure by specifying an open covering $\mathcal{U} = (U_i)_{i \in I}$ of X, and trivialization maps $h_i : \pi^{-1}(U_i) \to U_i \times \mathbb{C}^n$, satisfying the following condition. For every *i* and *j*, the natural homeomorphism (see diagram (1))

$$h_i \circ h_j^{-1} : (U_i \cap U_j) \times \mathbb{C}^n \longrightarrow (U_i \cap U_j) \times \mathbb{C}^n$$

is given by $(p, v) \mapsto (p, g_{ij}(p) \cdot v)$, where

$$g_{ij} : U_i \cap U_j \longrightarrow GL(n, \mathbb{C})$$

is a holomorphic map. (The map g_{ij} is a matrix of complex valued functions, and it is holomorphic, if the entries of the matrix are holomorphic functions).

Two such data $\{(U_i, h_i) : i \in I\}$ and $\{(U_j, h_j) : j \in J\}$ are said to be *compatible* or *equivalent*, if their common refinement $\{(U_k, h_k) : k \in I \cup J\}$ satisfies the above condition as well. A *holomorphic structure* on a complex vector bundle is an equivalence class of such data.

1. (a) Let X be a compact Riemann surface. Jacobi's Theorem (Section 21 in Forster) implies that the connecting homomorphism in problem 16.4

$$Div(X) \to H^1(X, \mathcal{O}^*)$$

is surjective. Use this fact, together with problem 16.4, to conclude that $H^1(X, \mathcal{O}^*)$ is isomorphic to the *divisor class group*, the quotient of Div(X) by the group of principal divisors.

- (b) Let $X = \mathbb{P}^1$ and the divisor D be $n \cdot \infty$, where ∞ is the point of \mathbb{P}^1 . Calculate the image of $D \in Div(\mathbb{P}^1)$ under the connecting homomorphism $\delta : Div(\mathbb{P}^1) \to H^1(\mathbb{P}^1, \mathcal{O}^{\times})$ in problem 16.4. Represent $\delta(D)$ in terms of a cocycle in $H^1(\mathcal{U}, \mathcal{O}^{\times})$, where the open covering \mathcal{U} consists of the two open subsets $U_0 := \mathbb{P}^1 \setminus \{\infty\}$ and $U_\infty := \mathbb{P}^1 \setminus \{0\}$.
- (c) Let $\pi : L \to X$ be a holomorphic line bundle over a compact Riemann surface X and s a meromorphic section of L. Define the order $\operatorname{Ord}_p(s)$ of s at a point $p \in X$ as follows. Choose a triviallization $h_U : \pi^{-1}(U) \to U \times \mathbb{C}$, over some open neighborhhod U of p. Then $h \circ s$ is the graph of a meromorphic function f on U. Set $\operatorname{Ord}_p(s) := \operatorname{Ord}_p(f)$. Prove that the sheaf of holomorphic sections of L is isomorphic to $\mathcal{O}_X(D)$, where $D := \sum_{p \in X} \operatorname{Ord}_p(s) \cdot p$.
- (d) Show that the sheaf of holomorphic sections of the line bundle, corresponding to δ(n · ∞) in part 1b, is O_{P1}(-n · ∞). Note: The standard map from Div(X) to H¹(X, O[×]) is -δ. More precisely, the standard map is the connecting homomorphism for the short exact sequence, as in problem 16.4, but with β in 16.4 replaced by -β. This will ensure, that the class of δ(D) represents the line bundle, whose sheaf of sections is O_X(D) (see Problem 2).
- 2. Let X be a Riemann surface. Prove that there is a group isomorphism between i) The cohomology group $H^1(X, \mathcal{O}^*)$ and ii) The Picard group Pic(X) of isomorphism classes of holomorphic line bundles on X (with the tensor product operation). You may want to follow the following steps.
 - (a) Let $\mathcal{U} = (U_i)_{i \in I}$ be an open covering of X. Define a natural map \mathcal{L} , from the group of cocycles $Z^1(\mathcal{U}, \mathcal{O}^*)$, to the set $\operatorname{Pic}(X)$ of isomorphism classes of line bundles. The map \mathcal{L} sends a cocycle (g_{ij}) to the line bundle obtained (as a manifold), from the disjoint union of the open sets $\{U_i \times \mathbb{C} : i \in I\}$, by gluing $U_i \times \mathbb{C}$ to $U_j \times \mathbb{C}$ via g_{ij}

$$\begin{array}{cccc} U_j \times \mathbb{C} & & U_i \times \mathbb{C} \\ \cup & & \cup \\ (U_i \cap U_j) \times \mathbb{C} & \xrightarrow{g_{ij}} & (U_i \cap U_j) \times \mathbb{C} \\ (p, \lambda) & \mapsto & (p, g_{ij}(p) \cdot \lambda). \end{array}$$

Interpret the $Z^1(\mathcal{U}, \mathcal{O}^*)$ group operation as a tensor product of line bundles (explain why it deserves that name). Note: one can define independently a tensor product operation on the set $\operatorname{Pic}(X)$, but it takes some writing to prove that it is well defined on the level of isomorphism classes. You will get the operation for free once you construct below a one-to-one correspondence between $\operatorname{Pic}(X)$ and $H^1(X, \mathcal{O}^*)$.

- (b) Prove that the map $\mathcal{L} : Z^1(\mathcal{U}, \mathcal{O}^*) \to \operatorname{Pic}(X)$ factors through $H^1(\mathcal{U}, \mathcal{O}^*)$. In other words, given a 1-cocycle (g_{ij}) and a 0-cochain (f_i) , the line bundles $\mathcal{L}(g_{ij})$ and $\mathcal{L}(g_{ij} \cdot \frac{f_j}{f_i})$ are isomorphic. Hint: As a worm-up, show that the holomorphic line bundle, associated to a 1-coboundary, is trivial. Show first that such a line-bundle has a global non-vanishing section. Observation: Let (g_{ij}) be a cocycle in $Z^1(\mathcal{U}, \mathcal{O}^*)$. A collection of local functions $s_i : U_i \to \mathbb{C}$ glues to a global section of the line-bundle $\mathcal{L}(g_{ij})$, if and only if $g_{ij}s_j = s_i$ on $U_i \cap U_j$, for all $i, j \in I$.
- (c) Conclude that there is a well defined injective map $\ell : H^1(X, \mathcal{O}^*) \hookrightarrow \operatorname{Pic}(X)$. *Hint:* You can either use the definition of $H^1(X, \mathcal{O}^*)$ as a direct limit, or use Leray's Theorem, after you prove the vanishing of $H^1(U, \mathcal{O}^*)$, when U is a disk. For the latter vanishing, use the exponential sequence

$$0 \to \mathbb{Z} \longrightarrow \mathcal{O}_U \stackrel{e^{2\pi i(\bullet)}}{\longrightarrow} \mathcal{O}_U^* \to 0$$

and the vanishing of $H^{i}(U, \mathbb{Z})$, for i > 0.

(d) Prove that the induced map $\ell : H^1(X, \mathcal{O}^*) \to \operatorname{Pic}(X)$ is surjective. (In other words, every holomorphic line bundle is isomorphic to one coming from a cocycle in $Z^1(\mathcal{U}, \mathcal{O}^*)$, for some open covering \mathcal{U}).