
Riemann Surfaces Homework Assignment 5 Fall 2004

1. Forster section 9 page 69 problems: 9.1, 9.3.

2. Let τ be a complex number with Re(τ) > 0, Γ := spanZ{1, τ} the lattice in C, and Y :=
C/Γ the corresponding torus. Show that there are precisely three pairwise-non-equivalent
connected unramified double covers pi : Xi → Y , i = 1, 2, 3. Show furtheremore that Xi

is a compact torus and find a basis for its lattice. Note: Two covering maps pi and pj are
equivalent, if there exists a biholomorphic map f : Xi → Xj satisfying pj ◦ f = pi. Hint: Use
Theorem 4.6 in Forster to reduce the discussion to a topological one, forgetting about the
complex structure. Prove that if pi : Xi → Y , i = 1, 2, are equivalent coverings, qi ∈ Xi, and
p1(q1) = p2(q2), then p1∗(π1(X1, q1)) = p2∗(π1(X2, q2)). Then consider index two subgroups
of the fundamental group of Y , the identification of Γ with π1(Y, 0), and Theorem 5.9 and
exercise 5.2 in Forster.

3. (Double covers of P
1 are determined uniquely by their branch points). Let X and Y be two

compact Riemann surfaces and π : X → Y a proper holomorphic map of degree 2. Let A ⊂ X
be the set of ramification points and B := π(A) ⊂ Y the set of branch points of π. Recall
that π restricts to X \ A as a covering of Y \ B, which is Galois by Exercise 5.7 page 39 in
Forster. Let σ be the Deck transformation interchanging the points in the unramified fibers
of π. Then σ extends to a holomorphic map σ : X → X, fixing all the ramification points, by
Forster Theorem 8.5. Denote by σ∗ : M(X) →M(X) the pullback homomorphism sending
a meromorphic function f on X to f ◦ σ. Define π∗ : M(Y ) →M(X) similarly.

(a) Show that if a meromorphic function f ∈M(X) is sent to itself by the Galois involution,
i.e., σ∗(f) = f , then ordp(f) is even for all p ∈ A. Similarly, if σ∗(f) = −f , then ordp(f)
is odd at all the ramification points.

(b) Show that σ∗(f) = f , if and only if f = π∗(g) for some g ∈M(Y ).

(c) Choose a point p ∈ X and let D be the divisor p + σ(p) ∈ Div(X). Recall that
H0(X,OX (nD)) is the subspace of M(X) consisting of functions f , which are holo-
morphic on X \ {p, σ(p)} and satisfying ordp(f) + n ≥ 0 and ordσ(p)(f) + n ≥ 0, if
p 6= σ(p), and ordp(f) + 2n ≥ 0, if p = σ(p). Show that H0(X,OX (nD)) is σ∗ invariant
and denote the +1 and −1 eigenspaces by H0(X,OX (nD))+ and H0(X,OX (nD))−.
Prove the equality: H0(X,OX (nD))+ = π∗H0(X,OY (nπ(p)).
Use the theorem in Homework 4 Problem 4, about the dimension of H 0(X,OX (nD)), to
show that H0(X,OX(nD))− is non-trivial, for all n > max{0, 2gY −2+b}, where gY is the
genus of Y and b is the number of branch points. Hint: Use also the Riemann-Hurwitz
formula (Homework 3 Problem 4).

(d) Prove that M(X) is equal to (π∗M(Y ))[f ] for some f ∈ M(X) satisfying σ∗(f) = −f .
Conclude that M(X) is the field extension obtained from M(Y ) by adjoining a root f of
the polynomial T 2 − h ∈ M(Y )[T ], where T is a transcendental variable. Furthermore,
ordy(h) is even for y ∈ Y \ B and odd for y ∈ B. Observe that the map (π, f) : X −→
Y × P

1 is injective away from the zeroes and poles of f .

(e) Assume now that Y = P
1. Show that h in part 3d can be chosen to have zeroes

and poles of order 1. Conclude that given two holomorphic branched double covers
πi : Xi → P

1, having the same branch locus B, there exists a biholomorphic map
ϕ : X1 → X2 satisfying π2 ◦ ϕ = π1. (You may use Forster Exercise 8.2 to shorten your
argument).

4. Let X be a compact Riemann surface and ω a non-zero meromorphic 1-form on X. Define
ordp(ω), for p ∈ X, as follows. If z is a local coordinate on an open subset U of X containing
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p, and f is the meromorphic function on U satisfying ω = fdz, then set ordp(ω) := ordp(f).
Clearly, ordp(ω) is independent of the choice of z. Denote by (ω) the divisor

(ω) :=
∑

p∈X

ordp(ω) · p.

(a) Show that if ω1 and ω2 are two non-zero meromorphic 1-forms, then the divisors (ω1)
and (ω2) are linearly equivalent. Conclude, that deg(ω1) = deg(ω2). Recall:
Definition: Two divisors D1 and D2 are linearly equivalent, if there exists a meromor-

phic function f , such that D2 −D1 = (f), where (f) is the divisor of f .

(b) Definition: Let ΩX be the sheaf of holomorphic 1-froms on X. The common degree, of

all the divisors of meromorphic 1-forms on X, is denoted by deg(ΩX).
Prove that deg(ΩP1) = −2 and for a compact torus X show that deg(ΩX) = 0. (Do it
here directly, but see also problem 5).

5. The degree of the sheaf of holomorphic 1-forms in terms of the genus:
Let π : X → Y be an n-sheeted branched covering of a compact Riemann surface Y ,
x1, x2, . . . , xk the ramification points of π, and mi the multiplicity of xi in the fiber of π.
Assume, that there exists a non-constant meromorphic function f on Y (this is always true
and follows from the Theorem in Problem 4 of Homework 4, which will be proven later).

(a) Use the meromorphic 1-form df and its pullback π∗df to prove the equality:

deg(ΩX) = n · deg(ΩY ) +

k∑

i=1

(mi − 1), (1)

where deg(ΩY ) is defined in Problem 4.

(b) Let C ⊂ P
2 be a smooth projective plane curve of degree d. Prove that deg(ΩC) =

d(d − 3). (Do not use the Riemann-Hurwitz formula). Hint: Use parts b and c of
problem 4 in Homework 3 and formula (1) above.

(c) Let π be a non-constant meromorphic function on a compact Riemann surface X. Use the
Riemann-Hurwitz formula (problem 4 in Homework 3) to prove the equality deg(ΩX) =
2gX − 2, where gX is the genus of X.

6. (a) Let g be a non-negative integer, {λ1, λ2, . . . , λ2g+1} distinct complex numbers, and X0

the affine algebraic curve in C
2 given by y2 −

2g+1∏

i=1

(x− λi) = 0.

Modify the construction in class to obtain a compact Riemann surface X, containing
X0, and a branched double cover π : X → P1, whose restriction to X0 is equal to the
restriction of the function x from C

2 to X0. Hint: You will be forced to let ∞ ∈ P
1 be

a branch point of π.

(b) Denote the restriction of x and y to X by x and y as well. Determine the zeroes and
poles, and their multiplicities, for the following meromorphic one forms: i) dy

x
, ii) dx

y

(you should get that the last one is holomorphic). For each of the above forms show
that the difference, between the number of zeroes and the number of poles, counted with
multiplicities, is equal to 2g − 2.

(c) Let ω be a holomorphic 1-form on X satisfying σ∗(w) = ω, where σ ∈ Deck(X/P
1) is

the Galois involution. Prove that ω = 0. Hint: See problem 3b.

(d) Prove that every holomorphic 1-form on X is of the form f(x)dx/y, where f is a polyno-
mial of degree ≤ g−1. Conclude that the vector space H 0(X,ΩX ) of global holomorphic
1-forms on X is g-dimensional.

(e) Calculate the residues for each of the 1-forms in part 6b.
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