
Riemann Surfaces Homework Assignment 4 Fall 2004

1. Kirwan Problems 4.3 and 4.5 page 110 (From HW3, nobody signed-up last time).

2. Definitions 5.4 and 5.5 in Forster: Let p : Y → X be a covering map. A covering (or
deck or Galois) transformation of p is a fiber preserving homeomorphism f : Y → Y (i.e.,
such that p ◦ f = p). The set Deck(Y/X) (or Gal(Y/X)) of all deck transformations is a
subgroup of the group of homeomorphisms from Y to itself. We say that the covering p is
Galois, if Deck(Y/X) acts transitively on each fiber of p.

Fix a point y0 ∈ Y . Observe, that every covering transformation f : Y → Y is a lift of p in
the sense of Theorem 4.17 and is hence determined uniquely by the image f(y0). In other
words, the map Deck(Y/X) −→ p−1(p(y0)) ⊂ Y , sending f to f(y0), is always injective and
it is surjective if and only if the covering is Galois.

Forster section 5 page 38 problems:

(a) 5.4 (a continuation of Problem 1.5 (a) page 9).
Hint: Prove first the existence of a function F making the diagram commutative. Then
show that the derivative F ′ is doubly periodic. This exercise depends on the material

from section 4. The only exception is the isomorphism Deck(C/Γ
f
→ C/Γ′) ∼= Γ′/αΓ.

The latter isomorphism follows from problem 5.2 (which is a standard theorem when
one studies covering spaces).

(b) 5.6 Hint: All you need from section 5 is the Definition above. Extend p as a branched
cover p̄ : C → C and find all its ramification points and its branch points. Show that if
p is Galois then all the points in any given fiber of p̄ must have the same ramification
index (consider the connected components of the inverse image under p of a punctured
disk centered at one of the branch points).

(c) 5.7 (All you need from section 5 is the above Definition.)

3. Forster section 6 page 44 problems: 6.1, 6.2

4. Let Σ be a compact Riemann surface of genus g. (We will define the genus later in class, we
are relying now on your topology background). Recall the following
Definitions: The group of divisors Div(Σ) is the free abelian group generated by points of
Σ. Specifying a divisor D ∈ Div(Σ) is equivalent to specifying a function D̃ : Σ → Z, which
vanishes at all but finitely many points (we think of D̃(p) as the integer coefficient of the
point p, so that D =

∑

p∈Σ D̃(p) · p). The latter description introduces the partial ordering

on Div(Σ), where D1 ≥ D2 if D̃1(p) ≥ D̃2(p), for all p ∈ Σ. The divisor (f) ∈ Div(Σ) of a
meromorphic function f on Σ, which is not identically zero, is

(f) :=
∑

p∈Σ

ordp(f) · p =
∑

p∈f−1(0)

ordp(f) · p −
∑

p∈f−1(∞)

ordp

(

1

f

)

· p.

Fix a divisor D ∈ Div(Σ). The vector space H0(Σ,OΣ(D)) is the subspace of the field M(Σ)
of meromorphic functions on Σ given by

H0(Σ,OΣ(D)) := {f ∈M(Σ) : f = 0 or (f) + D ≥ 0} ,

where the latter 0 is the zero divisor. If, for example, f ∈ H 0(Σ,OΣ(3p − 2q)), p, q ∈ Σ,
p 6= q, then f vanishes to order at least 2 at q and may have a pole at p but the (absolute
value of) its order is at most 3. The degree deg(D) of a divisor is the sum

∑

p∈Σ D̃(p).

The following is a corollary of two of the main Theorems in this course, the Riemann-Roch
and Serre’s Duality Theorems:
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Theorem: Let Σ be a compact Riemann-surface of genus g and D ∈ Div(Σ) a divisor of
degree d. Then H0(Σ,OΣ(D)) is finite dimensional and

dimH0(Σ,OΣ(D)) ≥ d + 1− g.

Furthermore, equality holds above if d ≥ 2g − 1.

(a) Let X := C/Γ be a compact complex torus, where Γ := spanZ{w1, w2} is a lattice
spanned by two complex numbers linearly independent over R. Let p0 ∈ X be its
identity point. Calculate dimH0(X,OX (dp0)), for all d ∈ Z. Prove it without using
the above Theorem. Hint: 1) For d < 0: Recall, that the degree of the divisor (f) of
a meromorphic function is always 0. 2) For d ≥ 0: Use induction and Corollary 2.8 in
Forster to prove that H0(X,OX (dp0)) is spanned by monomials P i(P ′)j , where i, j are
non-negative integers satisfying 2i+3j ≤ d, and P ∈M(X) is the meromorphic function
on X corresponding to the Weierstrass P-function on C. Furthermore, we may restrict
j to be 0 or 1.

(b) Conclude that sending x to P and y to P ′ we get a surjective homomorphism

C[x, y] → O(X \ {p0}) ∩M(X) (1)

onto the space of meromorphic functions, which are holomorphic on X \ {p0}. Find a
basis for H0(X,OX (dp0)), for 1 ≤ d ≤ 6.

(c) The kernel of (1) is a prime ideal generated by a cubic polynomial of the form f(x, y) =
y2 − [a3x

3 + a1x + a0]. Furthermore, a3 = 4. Hint: Recall that P is even. Note: For an
elementary proof, not relying on the above Theorem, see Lemma 5.17 in Kirwan.

(d) Let Σ be a compact Riemann surface of genus g and D a divisor of degree d ≥ 2g. For
every point p ∈ Σ, H0(Σ,OΣ(D − p)) is a subspace of H0(Σ,OΣ(D)) of codimension 1,
hence the kernel of a linear functional, unique up to a constant factor, hence a point in
the projective space |D|∗ := P[H0(Σ,OΣ(D))∗] associated to the dual vector space. We
get a map

ϕD : Σ −→ |D|∗. (2)

Show, that ϕD is injective, for d ≥ 2g + 1. Hint: Use the above Theorem. Observe that
for p 6= q, H0(Σ,OΣ(D − p)) ∩H0(Σ,OΣ(D − q)) = H0(Σ,OΣ(D − p− q)).

(e) Let D be the divisor 2p0 on the torus X in part 4a. Show that ϕD is a degree 2
holomorphic map onto P

1. Hint: Let {e0, e1} be the basis of H0(X,OX (2p0))
∗ dual to

the basis {1,P}. Use the basis {e0, e1} to identify H0(X,OX(2p0))
∗ with C

2 and |D|∗

with P
1. What is the composition of ϕD with the meromorphic function x1/x0 on P

1

(where (x0, x1) are the homogeneous coordinates on P
1)?

(f) Let D be the divisor 3p0 on the torus X. Show that ϕD maps the torus X injectively
into P

2 and the image ϕD(X) is contained in a cubic curve C.

(g) Prove that the cubic curve C in part 4f is smooth and ϕD : X → C is surjective. Hint:

Use Kirwan problem 4.5 (see problem 1 above) and Forster Theorem 2.7. A more explicit
proof of smoothness is in Kirwan Lemma 5.20. We will later prove more generally, that
the image of the map ϕD in (2) is a smooth projective curve, when d ≥ 2g + 1 (Forster
Theorem 17.22).
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