1. Kirwan Problems 4.3 and 4.5 page 110 (From HW3, nobody signed-up last time).
2. Definitions 5.4 and 5.5 in Forster: Let $p: Y \rightarrow X$ be a covering map. A covering (or deck or Galois) transformation of p is a fiber preserving homeomorphism $f: Y \rightarrow Y$ (i.e., such that $p \circ f=p$). The set $\operatorname{Deck}(Y / X)$ (or $\operatorname{Gal}(Y / X)$) of all deck transformations is a subgroup of the group of homeomorphisms from Y to itself. We say that the covering p is Galois, if $\operatorname{Deck}(Y / X)$ acts transitively on each fiber of p.
Fix a point $y_{0} \in Y$. Observe, that every covering transformation $f: Y \rightarrow Y$ is a lift of p in the sense of Theorem 4.17 and is hence determined uniquely by the image $f\left(y_{0}\right)$. In other words, the map $\operatorname{Deck}(Y / X) \longrightarrow p^{-1}\left(p\left(y_{0}\right)\right) \subset Y$, sending f to $f\left(y_{0}\right)$, is always injective and it is surjective if and only if the covering is Galois.
Forster section 5 page 38 problems:
(a) 5.4 (a continuation of Problem 1.5 (a) page 9).

Hint: Prove first the existence of a function F making the diagram commutative. Then show that the derivative F^{\prime} is doubly periodic. This exercise depends on the material from section 4. The only exception is the isomorphism $\operatorname{Deck}\left(\mathbb{C} / \Gamma \xrightarrow{f} \mathbb{C} / \Gamma^{\prime}\right) \cong \Gamma^{\prime} / \alpha \Gamma$. The latter isomorphism follows from problem 5.2 (which is a standard theorem when one studies covering spaces).
(b) 5.6 Hint: All you need from section 5 is the Definition above. Extend p as a branched cover $\bar{p}: \mathbb{C} \rightarrow \mathbb{C}$ and find all its ramification points and its branch points. Show that if p is Galois then all the points in any given fiber of \bar{p} must have the same ramification index (consider the connected components of the inverse image under p of a punctured disk centered at one of the branch points).
(c) 5.7 (All you need from section 5 is the above Definition.)
3. Forster section 6 page 44 problems: 6.1, 6.2
4. Let Σ be a compact Riemann surface of genus g. (We will define the genus later in class, we are relying now on your topology background). Recall the following
Definitions: The group of divisors $\operatorname{Div}(\Sigma)$ is the free abelian group generated by points of Σ. Specifying a divisor $D \in \operatorname{Div}(\Sigma)$ is equivalent to specifying a function $\tilde{D}: \Sigma \rightarrow \mathbb{Z}$, which vanishes at all but finitely many points (we think of $\tilde{D}(p)$ as the integer coefficient of the point p, so that $\left.D=\sum_{p \in \Sigma} \tilde{D}(p) \cdot p\right)$. The latter description introduces the partial ordering on $\operatorname{Div}(\Sigma)$, where $D_{1} \geq D_{2}$ if $\tilde{D}_{1}(p) \geq \tilde{D}_{2}(p)$, for all $p \in \Sigma$. The divisor $(f) \in \operatorname{Div}(\Sigma)$ of a meromorphic function f on Σ, which is not identically zero, is

$$
(f):=\sum_{p \in \Sigma} \operatorname{ord}_{p}(f) \cdot p=\sum_{p \in f^{-1}(0)} \operatorname{ord}_{p}(f) \cdot p-\sum_{p \in f^{-1}(\infty)} \operatorname{ord}_{p}\left(\frac{1}{f}\right) \cdot p
$$

Fix a divisor $D \in \operatorname{Div}(\Sigma)$. The vector space $H^{0}\left(\Sigma, \mathcal{O}_{\Sigma}(D)\right)$ is the subspace of the field $\mathcal{M}(\Sigma)$ of meromorphic functions on Σ given by

$$
H^{0}\left(\Sigma, \mathcal{O}_{\Sigma}(D)\right) \quad:=\quad\{f \in \mathcal{M}(\Sigma): f=0 \quad \text { or } \quad(f)+D \geq 0\}
$$

where the latter 0 is the zero divisor. If, for example, $f \in H^{0}\left(\Sigma, \mathcal{O}_{\Sigma}(3 p-2 q)\right), p, q \in \Sigma$, $p \neq q$, then f vanishes to order at least 2 at q and may have a pole at p but the (absolute value of) its order is at most 3 . The degree $\operatorname{deg}(D)$ of a divisor is the sum $\sum_{p \in \Sigma} \tilde{D}(p)$.
The following is a corollary of two of the main Theorems in this course, the Riemann-Roch and Serre's Duality Theorems:

Theorem: Let Σ be a compact Riemann-surface of genus g and $D \in \operatorname{Div}(\Sigma)$ a divisor of degree d. Then $H^{0}\left(\Sigma, \mathcal{O}_{\Sigma}(D)\right)$ is finite dimensional and

$$
\operatorname{dim} H^{0}\left(\Sigma, \mathcal{O}_{\Sigma}(D)\right) \quad \geq d+1-g
$$

Furthermore, equality holds above if $d \geq 2 g-1$.
(a) Let $X:=\mathbb{C} / \Gamma$ be a compact complex torus, where $\Gamma:=\operatorname{span}_{\mathbb{Z}}\left\{w_{1}, w_{2}\right\}$ is a lattice spanned by two complex numbers linearly independent over \mathbb{R}. Let $p_{0} \in X$ be its identity point. Calculate $\operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(d p_{0}\right)\right)$, for all $d \in \mathbb{Z}$. Prove it without using the above Theorem. Hint: 1) For $d<0$: Recall, that the degree of the divisor (f) of a meromorphic function is always 0 . 2) For $d \geq 0$: Use induction and Corollary 2.8 in Forster to prove that $H^{0}\left(X, \mathcal{O}_{X}\left(d p_{0}\right)\right)$ is spanned by monomials $\mathcal{P}^{i}\left(\mathcal{P}^{\prime}\right)^{j}$, where i, j are non-negative integers satisfying $2 i+3 j \leq d$, and $\mathcal{P} \in \mathcal{M}(X)$ is the meromorphic function on X corresponding to the Weierstrass \mathcal{P}-function on \mathbb{C}. Furthermore, we may restrict j to be 0 or 1 .
(b) Conclude that sending x to \mathcal{P} and y to \mathcal{P}^{\prime} we get a surjective homomorphism

$$
\begin{equation*}
\mathbb{C}[x, y] \quad \rightarrow \quad \mathcal{O}\left(X \backslash\left\{p_{0}\right\}\right) \cap \mathcal{M}(X) \tag{1}
\end{equation*}
$$

onto the space of meromorphic functions, which are holomorphic on $X \backslash\left\{p_{0}\right\}$. Find a basis for $H^{0}\left(X, \mathcal{O}_{X}\left(d p_{0}\right)\right)$, for $1 \leq d \leq 6$.
(c) The kernel of (1) is a prime ideal generated by a cubic polynomial of the form $f(x, y)=$ $y^{2}-\left[a_{3} x^{3}+a_{1} x+a_{0}\right]$. Furthermore, $a_{3}=4$. Hint: Recall that \mathcal{P} is even. Note: For an elementary proof, not relying on the above Theorem, see Lemma 5.17 in Kirwan.
(d) Let Σ be a compact Riemann surface of genus g and D a divisor of degree $d \geq 2 g$. For every point $p \in \Sigma, H^{0}\left(\Sigma, \mathcal{O}_{\Sigma}(D-p)\right)$ is a subspace of $H^{0}\left(\Sigma, \mathcal{O}_{\Sigma}(D)\right)$ of codimension 1 , hence the kernel of a linear functional, unique up to a constant factor, hence a point in the projective space $|D|^{*}:=\mathbb{P}\left[H^{0}\left(\Sigma, \mathcal{O}_{\Sigma}(D)\right)^{*}\right]$ associated to the dual vector space. We get a map

$$
\begin{equation*}
\varphi_{D}: \Sigma \quad \longrightarrow \quad|D|^{*} . \tag{2}
\end{equation*}
$$

Show, that φ_{D} is injective, for $d \geq 2 g+1$. Hint: Use the above Theorem. Observe that for $p \neq q, H^{0}\left(\Sigma, \mathcal{O}_{\Sigma}(D-p)\right) \cap H^{0}\left(\Sigma, \mathcal{O}_{\Sigma}(D-q)\right)=H^{0}\left(\Sigma, \mathcal{O}_{\Sigma}(D-p-q)\right)$.
(e) Let D be the divisor $2 p_{0}$ on the torus X in part 4a. Show that φ_{D} is a degree 2 holomorphic map onto \mathbb{P}^{1}. Hint: Let $\left\{e_{0}, e_{1}\right\}$ be the basis of $H^{0}\left(X, \mathcal{O}_{X}\left(2 p_{0}\right)\right)^{*}$ dual to the basis $\{1, \mathcal{P}\}$. Use the basis $\left\{e_{0}, e_{1}\right\}$ to identify $H^{0}\left(X, \mathcal{O}_{X}\left(2 p_{0}\right)\right)^{*}$ with \mathbb{C}^{2} and $|D|^{*}$ with \mathbb{P}^{1}. What is the composition of φ_{D} with the meromorphic function x_{1} / x_{0} on \mathbb{P}^{1} (where (x_{0}, x_{1}) are the homogeneous coordinates on \mathbb{P}^{1})?
(f) Let D be the divisor $3 p_{0}$ on the torus X. Show that φ_{D} maps the torus X injectively into \mathbb{P}^{2} and the image $\varphi_{D}(X)$ is contained in a cubic curve C.
(g) Prove that the cubic curve C in part 4 f is smooth and $\varphi_{D}: X \rightarrow C$ is surjective. Hint: Use Kirwan problem 4.5 (see problem 1 above) and Forster Theorem 2.7. A more explicit proof of smoothness is in Kirwan Lemma 5.20. We will later prove more generally, that the image of the map φ_{D} in (2) is a smooth projective curve, when $d \geq 2 g+1$ (Forster Theorem 17.22).

