Riemann Surfaces Homework Assignment 4 Fall 2004

1. Kirwan Problems 4.3 and 4.5 page 110 (From HW3, nobody signed-up last time).

2. Definitions 5.4 and 5.5 in Forster: Let p : Y — X be a covering map. A covering (or
deck or Galois) transformation of p is a fiber preserving homeomorphism f : Y — Y (ie.,
such that po f = p). The set Deck(Y/X) (or Gal(Y/X)) of all deck transformations is a
subgroup of the group of homeomorphisms from Y to itself. We say that the covering p is
Galois, if Deck(Y/X) acts transitively on each fiber of p.

Fix a point yp € Y. Observe, that every covering transformation f : Y — Y is a lift of p in
the sense of Theorem 4.17 and is hence determined uniquely by the image f(yo). In other
words, the map Deck(Y/X) — p~(p(yo)) C Y, sending f to f(yo), is always injective and
it is surjective if and only if the covering is Galois.

Forster section 5 page 38 problems:

(a) 5.4 (a continuation of Problem 1.5 (a) page 9).
Hint: Prove first the existence of a function F’ making the diagram commutative. Then
show that the derivative F’ is doubly periodic. This exercise depends on the material

from section 4. The only exception is the isomorphism Deck(C/T’ ER C/T") 2 T'/al.
The latter isomorphism follows from problem 5.2 (which is a standard theorem when
one studies covering spaces).

(b) 5.6 Hint: All you need from section 5 is the Definition above. Extend p as a branched
cover p : C — C and find all its ramification points and its branch points. Show that if
p is Galois then all the points in any given fiber of p must have the same ramification
index (consider the connected components of the inverse image under p of a punctured
disk centered at one of the branch points).

(c) 5.7 (All you need from section 5 is the above Definition.)
3. Forster section 6 page 44 problems: 6.1, 6.2

4. Let ¥ be a compact Riemann surface of genus g. (We will define the genus later in class, we
are relying now on your topology background). Recall the following
Definitions: The group of divisors Div(X) is the free abelian group generated by points of
. Specifying a divisor D € Div(X) is equivalent to specifying a function D : ¥ — Z, which
vanishes at all but finitely many points (we think of D(p) as the integer coefficient of the

point p, so that D = ZpEE D(p) - p). The latter description introduces the partial ordering

on Div(X), where Dy > Dy if Di(p) > Dy(p), for all p € X. The divisor (f) € Div(X) of a
meromorphic function f on ¥, which is not identically zero, is

(f) = Zordp(f)-p = Z ordy(f)-p — Z ordp<%>-p.
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Fix a divisor D € Div(). The vector space H°(3, Ox (D)) is the subspace of the field M(X)
of meromorphic functions on 3 given by

H(X,05(D)) = {feME): f=0 or (f)+D>0},

where the latter 0 is the zero divisor. If, for example, f € H%(X,Ox(3p — 2q)), p,q € %,
p # ¢, then f vanishes to order at least 2 at ¢ and may have a pole at p but the (absolute
value of) its order is at most 3. The degree deg(D) of a divisor is the sum > _ D(p).

The following is a corollary of two of the main Theorems in this course, the Riemann-Roch
and Serre’s Duality Theorems:
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Theorem: Let ¥ be a compact Riemann-surface of genus g and D € Div(X) a divisor of
degree d. Then H'(X, Ox(D)) is finite dimensional and

dim H*(Z,05(D)) > d+1—g.

Furthermore, equality holds above if d > 2g — 1.

(a)

Let X := C/T be a compact complex torus, where I' := spanj{w;,ws} is a lattice
spanned by two complex numbers linearly independent over R. Let pg € X be its
identity point. Calculate dim H°(X,Ox (dpo)), for all d € Z. Prove it without using
the above Theorem. Hint: 1) For d < 0: Recall, that the degree of the divisor (f) of
a meromorphic function is always 0. 2) For d > 0: Use induction and Corollary 2.8 in
Forster to prove that H°(X, Ox (dpg)) is spanned by monomials P(P’)/, where i, ] are
non-negative integers satisfying 2i+3j < d, and P € M(X) is the meromorphic function
on X corresponding to the Weierstrass P-function on C. Furthermore, we may restrict
jtobeOorl.

Conclude that sending z to P and y to P’ we get a surjective homomorphism
Clz,yl —  OX \{po}) N M(X) (1)

onto the space of meromorphic functions, which are holomorphic on X \ {pg}. Find a
basis for H°(X, Ox (dpo)), for 1 < d < 6.

The kernel of (1) is a prime ideal generated by a cubic polynomial of the form f(z,y) =
y? — [a3m3 + a1z + ap). Furthermore, ag = 4. Hint: Recall that P is even. Note: For an
elementary proof, not relying on the above Theorem, see Lemma 5.17 in Kirwan.

Let ¥ be a compact Riemann surface of genus g and D a divisor of degree d > 2g. For
every point p € ¥, HY(X, Ox(D — p)) is a subspace of H’(2, Ox(D)) of codimension 1,
hence the kernel of a linear functional, unique up to a constant factor, hence a point in
the projective space |D|* := P[H(%, Ox(D))*] associated to the dual vector space. We
get a map

ep : X — |DI". (2)

Show, that ¢p is injective, for d > 29 + 1. Hint: Use the above Theorem. Observe that
for p # ¢, H(2, Ox(D —p)) N HY(E, Os(D — q)) = H*(,0s(D — p — q)).

Let D be the divisor 2pg on the torus X in part 4a. Show that pp is a degree 2
holomorphic map onto P!. Hint: Let {eg,e1} be the basis of H°(X, Ox(2po))* dual to
the basis {1,P}. Use the basis {eg, e} to identify H(X, Ox(2pg))* with C? and |D|*
with P'. What is the composition of pp with the meromorphic function x; /xo on P!
(where (g, 21) are the homogeneous coordinates on P!)?

Let D be the divisor 3pg on the torus X. Show that ¢p maps the torus X injectively
into P? and the image ¢p(X) is contained in a cubic curve C.

Prove that the cubic curve C in part 4f is smooth and ¢p : X — C is surjective. Hint:
Use Kirwan problem 4.5 (see problem 1 above) and Forster Theorem 2.7. A more explicit
proof of smoothness is in Kirwan Lemma 5.20. We will later prove more generally, that
the image of the map ¢p in (2) is a smooth projective curve, when d > 2g + 1 (Forster
Theorem 17.22).



