
Riemann Surfaces Homework Assignment 3 Fall 2004

1. Forster section 1 page 8 problems: 1.4, 1.5 (also make sure you know 1.2 from your
complex analysis class; otherwise, do it). (Problem 1.5 will be continued in the future
problem 5.4)
Correction: In problem 1.4 the matrix A should be in SL(2,Z) and not in SL(2,C)
as indicated in old printings of the book.

2. Forster section 2 page 13 problems: 2.1, 2.4 (For 2.1 see Proposition 5.10 and Lemma
5.17 in Kirwan or your favorite complex analysis book)

3. Forster section 4 page 30 problems: 4.5

4. Kirwan’s Problem 4.2 page 110 and a sharpening of Lemma 4.7 in Kirwan. Let C =
V (F (x, y, z)) be a smooth curve of degree d in P

2. Assume that p0 := [0, 1, 0] does
not belong to C. Let π : C → P1 be the projection from p0. In other words, π sends
p = [a, b, c] ∈ C to the point [a, 0, c] of intersection of the line y = 0 with the line `pp0
through p and p0. We identify P1 with the line (y = 0).

(a) Let p = [a, b, c] ∈ C be a point, such that c 6= 0 and ∂F/∂x(p) = 0. Show that π
is unramified at p. Hint: Use first Euler’s relation to conclude that ∂F/∂y(p) 6= 0.

(b) Prove that the multiplicity mp(π) of p ∈ C in the fiber of π satisfies the equality

mp(π) = Ip(C, ∂F/∂y) + 1. (1)

The number mp(π)−1 is called the ramification index of π at p. Prove the equality

∑

p∈C

[mp(π)− 1] = d(d− 1). (2)

Hint for (1): We may assume that p = [a, b, c], where c 6= 0, possibly after
interchanging x and z. Treat separately the case of part 4a. When ∂F/∂x(p) 6= 0,
use ȳ := y/z as a coordinate on C, calculate ∂x̄/∂ȳ implicitly using F (x̄, ȳ, 1) = 0,
and use the property of intersection multiplicities in problem 7 equation (5).

(c) Prove the equality mp(π) = Ip(C, `pp0). Conclude the equality

∑

p∈π−1(q)

mp(π) = d, (3)

for every point q := [a, 0, c] ∈ P1. In other words, there are d points in every fiber
of π, counted with multiplicities. We say that π has degree d.

(d) The Degree-Genus formula states, that a smooth projective curve of degree d in
P2 has genus (d− 1)(d− 2)/2 (Theorem 4.19 in Kirwan). Let C1 and C2 be two
compact complex surfaces of genus g1 and g2 and π : C1 → C2 a non-constant
holomorphic map. The Riemann-Hurwitz formula (Remark 4.23 in Kirwan or the
Theorem page 140 in Forster) states,

(2g1 − 2) = deg(π)(2g2 − 2) +
∑

p∈C1

[mp(π)− 1].

Prove the Degree-Genus formula using the Riemann-Hurwitz formula and equa-
tions (2) and (3). We will prove the Riemann-Hurwitz formula in class.
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(e) Find the ramification points and their index for the map π and the curve
F (x, y, z) = xd + yd + zd, d ≥ 1.

5. Kirwan Problem 4.5 page 110.

6. Kirwan Problem 5.18 page 142.

7. This problem sketches the proof of the property of intersection multiplicities miss-
ing in Kirwan’s book (See equation (5) below). We used this property in the proof,
that a smooth projective curve of degree d in P2 has 3d(d − 2) flexes, counted with
multiplicities. It was an essetial part of the proof of the equality

Ip(C, TpC) = 2 + Ip(F,HF ),

where C is given by F (x, y, z) = 0 and HF is the Hessian of F . (See also problem 4b.)

Motivation: Let C = V (F (x, y)) and D = V (G(x, y)) be affine curves in C2, where
F and G are non-constant polynomials in C[x, y] having no irreducible component in
common. The quotient ring C[x, y]/(F,G) is then a finite dimensional (Artinian) ring
and it decomposes as a product

∏
p∈C∩D Rp of a finite set of rings, each associated to

a point p ∈ C ∩D. We would like to prove, that the intersection multiplicity Ip(C,D)
is equal to the dimension dim(Rp). One can “eliminate” all factors except Rp by
localizing C[x, y]/(F,G) at the maximal ideal associated to p. Localization commutes
with taking quotients. Hence, we we will start with localization.

Localization: Given a prime ideal p of a commutative ring R, one defines the local-
ization R(p) of R at p by inverting elements which do not belong to p. If, for example,
R is an integral domain, then R(0) is the field K of fractions of R. For any prime ideal
p the localization R(p) is the subset of K consisting of elements, which can be written
as a quotient f/g, where g does not belong to p. R(p) is a local ring, i.e., it has a unique
maximal ideal and any non-unit element belongs to the maximal ideal.

(a) (This part is optional) Let Op(C
2) be the localization of C[x, y] at the maximal

ideal (x− a, y − b) of the point p = (a, b). Prove that the number

I ′p(C,D) := dimC[Op(C
2)/(F,G)] (4)

satisfies the affine analogue of the six axioms in Kirwan for the intersection mul-
tiplicity (just drop the requirement, that the polynomials be homogeneous). The
proof of uniqueness is the same. Conclude from Kirwan’s Existence proof the
equality I ′p(C,D) = Ip(C,D), where C and D are the closures of C and D in P2.
Hint: The verification of axioms (i), (iii), (vi) and (iv) is obvious. Use Nullstel-
lensatz and Theorem 3.9 in Kirwan’s book to prove axiom (ii). Note also that if
p = (a, b) ∈ C2, then the quotient C[x, y]/(x− a, y− b)k, by the k-th power of the
maximal ideal of p, is finite dimensional. One proves axiom (v)

Ip(F,GH) = Ip(F,G) + Ip(F,H),

for three non-constant polynomials F,G,H ∈ C[x, y], by showing that the follow-
ing sequence is exact

0 → Op(C
2)/(F,H)

ψ
→ Op(C

2)/(F,GH)
ϕ
→ Op(C

2)/(F,G) → 0,

where ϕ is the quotient homomorphism and ψ is multiplication by G.
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(b) Let C be an irreducible curve in C2 defined by the polynomial equation F (x, y) =
0. Set A(C) := C[x, y]/(F ) to be its coordinate ring (Problem 1 in Homework
assignment 1). Given a point p = (a, b) ∈ C, let mp ⊂ A(C) be the maximal ideal
(x−a, y−b)/(F ) of the point p. Denote the localization of A(C) at mp by Op(C).
Prove that if p is a smooth point of C, then Op(C) is a discrete valuation ring
(DVR) (see part (ii) of the hint below).

Hint: Use the following basic result from commutative algebra: Let R be an
integral domain which is not a field. The following are equivalent:

(i) R is Noetherian and local and the maximal ideal is principal.

(ii) R is a DVR; i.e., there is an irreducible element t ∈ R such that every non-zero
z ∈ R may be written in the form z = utn, for a unique pair (u, n), where u is a
unit in R and n is a non-negative integer.

Definition: The integer n, in part (ii) of the hint, is called the order of z and
we set ord(z) := n. Given G ∈ C[x, y] we set ordp(G|C) := ord(g), where g is the
image of G in Op(C).

(c) Prove that ordp(G|C), in the definition above, is equal to the order of vanishing of
the holomorphic function G|C at p. Hint: Show first that the latter order is equal
to d · ordp(G|C ) for some positive integer d, which is independent of G.

(d) If p ∈ C is a smooth point, where C is F (x, y) = 0, then

Ip(F,G) = ordp(G|C ). (5)

Hint: Prove that the successive quotients (tn)/(tn+1), of the ideals in Op(C)
generated by powers of the irreducible element t, are all one dimensional. Then
use the isomorphism

Op(C
2)/(F,G) → Op(C)/(g),

which expresses the fact that localization commutes with taking quotients.
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