- 1. Kirwan section 3.3 page 78: Do problems 3.1, 3.2, 3.3, 3.6.
- 2. (a) Prove that an irreducible cubic curve in \mathbb{P}^2 has at most one singular point (see problem 3.2).
 - (b) Do Problem 3.9 from Kirwan's section 3.3 page 78.
 - (c) Find the singular points of the cubic curves listed in Problem 3.9. (the third case in the list should be $y^2z x(x-z)(x-\lambda z)$, for some $\lambda \notin \{0,1\}$. Conclude that an irreducible cubic curve in \mathbb{P}^2 is either smooth, has one ordinary double point (a *node*), or one *cusp* (the case $y^2z = x^3$).
- 3. Kirwan section 3.3 page 78 problem 3.15. This problem will be due only after we cover the material from section 3.2. (Consult also Problem 2.10 from Homework Assignment 1 and the hint given for its solution).
- 4. Let $U_0 \subset \mathbb{P}^n$ be the Zariski open subset, where $x_0 \neq 0$, and $\varphi_0 : U_0 \to \mathbb{C}^n$ the map given by

$$(a_0, a_1, \ldots, a_n) \mapsto (a_1/a_0, \ldots, a_n/a_0).$$

We have proven in class that φ_0 is a homeomorphism with respect to the classical topologies of \mathbb{P}^n and \mathbb{C}^n . Prove that φ_0 is a homeomorphism with respect to the Zariski topologies as well (where the closed subsets are the algebraic subsets).

Hint: Use the maps α and β below to establish a bijection between the closed subsets of U_0 (with respect to the topology induced by the Zariski topology of \mathbb{P}^n) and of \mathbb{C}^n . Let $S := \mathbb{C}[x_0, x_1, \ldots, x_n], S_d \subset S$ the subset of homogeneous polynomials of degree d, and

$$S^h := \cup_{d > 0} S_d$$

the subset of all homogeneous polynomials. Let $\alpha: S^h \to \mathbb{C}[y_1, \dots, y_n]$ be the map given by

$$f(x_0,\ldots,x_n) \mapsto f(1,y_1,\ldots,y_n).$$

Let $\beta: \mathbb{C}[y_1,\ldots,y_n] \to S^h$ be the map defined by

$$g(y_1, \ldots, y_n) \mapsto x_0^{\deg(g)} g(x_1/x_0, \ldots, x_n/x_0).$$
 (1)

- 5. (Based on Hartshorne, Exercise I.2.9) Projective closure of an affine variety. Identify \mathbb{C}^n with the Zariski open subset $U_0 \subset \mathbb{P}^n$ via the homeomorphism φ_0 in Problem 4. Given an affine variety $Y \subset \mathbb{C}^n$, we can speak of \overline{Y} , the closure of Y in \mathbb{P}^n with respect to the Zariski topology of the latter. \overline{Y} is called the projective closure of Y.
 - (a) Show that $I(\overline{Y})$ is the ideal generated by $\beta(I(Y))$, where β is the map given in equation (1).
 - (b) Let $Y \subset \mathbb{C}^n$ be a hypersurface and $f(y_1, \ldots, y_n)$ a generator for I(Y). Show that $\beta(f)$ generates $I(\overline{Y})$.
 - (c) Let $Y \subset \mathbb{C}^3$ be the twisted cubic (Problem 2 in Homework Assignment 1). You have shown, that I(Y) is the ideal $(y-x^2,z-x^3)$ in $\mathbb{C}[x,y,z]$. Show that the degree 2 summand of the homogeneous ideal $I(\overline{Y}) \subset \mathbb{C}[w,x,y,z]$ is

- three dimensional and find three quadrics spanning it. Use this example to show that if f_1, \ldots, f_r generate I(Y), then $\beta(f_1), \ldots, \beta(f_r)$ do not necessarily generate $I(\overline{Y})$.
- (d) Use the three quardics from part 5c to show, that the projective closure of the twisted cubic curve is an embedding of \mathbb{P}^1 as a smooth curve in \mathbb{P}^3 . Note: This is a special case of the d-Uple embedding of P^n in P^N , where $N:=\binom{n+d}{d}-1$ (Hartshorne, Exercise I.2.12).
- 6. (Hartshorne, Exercise I.2.15) The Quadric Surface in \mathbb{P}^3 . Consider the surface Q (i.e., a variety of complex dimension 2) given by the equation xy zw = 0.
 - (a) Show the Q is equal to the Segre Embedding of $\mathbb{P}^1 \times \mathbb{P}^1$ in \mathbb{P}^3 , for suitable choice of coordinates (see problem 7 below).
 - (b) Show that Q contains two families of lines (a *line* is a linear variety of dimension 1) $\{L_t\}$, $\{M_t\}$, each parametrized by $t \in \mathbb{P}^1$, with the properties that if $L_t \neq L_u$, then L_t and L_u are disjoint, the analogous property for the M_t 's, and for all t, u, L_t meets M_u precisely at one point.
 - (c) Show that Q contains other curves besides these lines. Deduce that the Zariski topology on Q is not homeomorphic via ψ to the product topology on \mathbb{P}^1 (where each \mathbb{P}^1 has its Zariski topology).
- 7. (Hartshorne, Exercise I.2.14) The Segre Embedding. This problem is **optional**, but make sure to know the statement of this important construction. Let $\psi : \mathbb{P}^r \times \mathbb{P}^s \to \mathbb{P}^N$ be the map defined by sending the ordered pair $(a_0, \ldots, a_r) \times (b_0, \ldots, b_s)$ to $(\ldots, a_i b_j, \ldots)$, in lexicographic order, where N := rs + r + s. Note that ψ is well defined and injective. It is called the Segre Embedding. Show that the image of ψ is a subvariety of \mathbb{P}^N .

Hint: Let the homogeneous coordinates of \mathbb{P}^N be $\{z_{ij} : i = 0, \ldots, r, j = 0, \ldots, s\}$, and let \mathfrak{a} be the kernel of the homomorphism $\mathbb{C}[\{z_{ij}\}] \to \mathbb{C}[x_0, \ldots, x_r, y_0, \ldots, y_s]$ which sends z_{ij} to $x_i y_j$. Then show that the image of ψ is $V(\mathfrak{a})$.