1. Lang page 307 Problem 7: The holomorphic automorphism group of a simply connected open set U acts transitively on points. More precisely, let $U \subset \mathbb{C}$ be a simply connected open set, z_{1}, z_{2} two points in U. Use the Riemann-MappingTheorem (Lang, page 306) to prove that there exists a holomorphic automorphism f of U such that $f\left(z_{1}\right)=z_{2}$. Distinguish the cases when $U=\mathbb{C}$ and $U \neq \mathbb{C}$.
2. Let $\left\{w_{1}, w_{2}\right\}$ be a set of two complex numbers, linearly independent over \mathbb{R}, and $\Lambda:=\operatorname{span}_{\mathbb{Z}}\left\{w_{1}, w_{2}\right\}$ the corresponding lattice. Given a complex number z, denote by $[z]$ its congruence class modulo Λ. Denote by \mathcal{P} the Λ-periodic Weierstrass \mathcal{P}-function as well as the induced function

$$
\mathcal{P}: \mathbb{C} / \Lambda \rightarrow \mathbb{C P}^{1}
$$

The same abuse of notation will be used for the derivative \mathcal{P}^{\prime}.
(a) Prove that the function $\mathcal{P}: \mathbb{C} / \Lambda \rightarrow \mathbb{C P}^{1}$ is surjective.
(b) Prove that the derivative \mathcal{P}^{\prime} has precisely three simple zeroes at $\left[w_{1} / 2\right],\left[w_{2} / 2\right]$, and $\left[\left(w_{1}+w_{2}\right) / 2\right]$.
(c) Let g_{2} and g_{3} be the constants associated to the lattice Λ in Lang, Ch. XIV, Theorem 2.3 page 399. Let $E \subset \mathbb{C}^{2}$ be the set of pairs (x, y) of complex numbers satisfying the cubic equation

$$
\begin{equation*}
y^{2}=4 x^{3}-g_{2} x-g_{3} . \tag{1}
\end{equation*}
$$

The image of the function

$$
\left(\mathcal{P}, \mathcal{P}^{\prime}\right):(\mathbb{C} / \Lambda) \backslash\{[0]\} \quad \longrightarrow \quad \mathbb{C}^{2}
$$

is contained in E, by the above mentioned theorem (proven in class). Prove that the map

$$
\left(\mathcal{P}, \mathcal{P}^{\prime}\right):(\mathbb{C} / \Lambda) \backslash\{[0]\} \quad \longrightarrow \quad E
$$

is one-to-one and onto.
3. The elliptic modular function λ. Let $\mathbb{H}:=\{z: \operatorname{Im}(z)>0\}$ be the upper half plane. Given a point $\tau \in \mathbb{H}$, we get the lattice $\Lambda_{1, \tau}$ spanned by 1 and τ, and the Weierstarass \mathcal{P} function

$$
\mathcal{P}: \mathbb{C} / \Lambda_{1, \tau} \rightarrow \mathbb{C P}^{1}
$$

We have seen that all but four fibers of \mathcal{P} consist of two distinct points, while each point among the origin and the three points of order 2 is the unique point in its fiber. These four points $\{[0],[1 / 2] \cdot[\tau / 2],[(1+\tau) / 2]\} \subset \mathbb{C} / \Lambda_{1, \tau}$ are called ramification points of \mathcal{P} and the values

$$
\left\{\infty, e_{1}, e_{2}, e_{3}\right\}:=\{\mathcal{P}(0), \mathcal{P}(1 / 2), \mathcal{P}(\tau / 2), \mathcal{P}((1+\tau) / 2)\} \subset \mathbb{C P}^{1}
$$

are called branch points of \mathcal{P}. We get the function

$$
\begin{gathered}
\lambda: \mathbb{H} \rightarrow \mathbb{C} \backslash\{0,1\} \\
1
\end{gathered}
$$

sending τ to the cross ratio $\left(\infty, e_{1}, e_{2}, e_{3}\right):=\frac{e_{3}-e_{2}}{e_{1}-e_{2}}$ of the four branch points. Recall that linear fractional transformations, associated to matrices in $S L(2, \mathbb{R})$, act on \mathbb{H} via holomorphic bijections (Homework 6 problem 3). Let $\Gamma \subset S L(2, \mathbb{R})$ be the subgroup of 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with integer entries, satisfying

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad(\bmod 2)
$$

so that the integers a and d are odd, b and c are even, and $a d-b c=1$. Your goal is to prove that the function λ, given in Equation (2), is invariant with respect to Γ. Invariance means that

$$
\begin{equation*}
\lambda\left(\frac{a \tau+b}{c \tau+d}\right)=\lambda(\tau) \tag{3}
\end{equation*}
$$

for all $\tau \in \mathbb{H}$ and all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$.
(a) Consider more generally the lattice Λ with generators w_{1} and w_{2}. Set $e_{1}:=$ $\mathcal{P}\left(w_{1} / 2\right), e_{2}:=\mathcal{P}\left(w_{2} / 2\right)$, and $e_{3}:=\mathcal{P}\left(\left(w_{1}+w_{2}\right) / 2\right)$. Prove that the set $\left\{e_{1}, e_{2}, e_{3}\right\}$ consist of three distinct values. (Proven in class, but do it again).
(b) Set $\tau:=w_{2} / w_{1}$. Then $\operatorname{Im}(\tau) \neq 0$. Assume that τ belongs to \mathbb{H}. Prove the equality

$$
\begin{equation*}
\lambda(\tau)=\frac{e_{3}-e_{2}}{e_{1}-e_{2}} \tag{4}
\end{equation*}
$$

where λ is given in Equation (2). Caution: The set of three branch points $\left\{e_{1}, e_{2}, e_{3}\right\}$ depends on the pair $\left(w_{1}, w_{2}\right)$, so the set in part 3 a may be different from the set in Equation (2). Hint: Use the definition of the Weierstrass \mathcal{P} function in order to show that $e_{i}\left(t w_{1}, t w_{2}\right)=t^{-2} e_{i}\left(w_{1}, w_{2}\right)$, for all $t \in \mathbb{C}^{*}$. Conclude that the right hand side of (4) depends only on the ratio w_{2} / w_{1}.
(c) Show that the lattice spanned by $w_{2}^{\prime}:=a w_{2}+b w_{1}$ and $w_{1}^{\prime}=c w_{2}+d w_{1}$ is equal to the lattice Λ spanned by w_{1} and w_{2}, for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$. Furthermore, we have the following equalities of congruence classes modulo Λ :

$$
\left[w_{1}^{\prime} / 2\right]=\left[w_{1} / 2\right] \quad \text { and } \quad\left[w_{2}^{\prime} / 2\right]=\left[w_{2} / 2\right] .
$$

(d) Prove the Γ-invariance of λ stated in Equation (3).

Remark 1: The function λ thus factors through a map $\mathbb{H} / \Gamma \rightarrow \mathbb{C} \backslash\{0,1\}$. It is not hard to show that the latter map is bijective.
Remark 2: Consider the rational function $j(\lambda):=2^{8} \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}}$ of problem 11 in homework 3. The composite function $j \circ \lambda: \mathbb{H} \rightarrow \mathbb{C}$ is $S L(2, \mathbb{Z})$-invariant.
4. Let $\Lambda \subset \mathbb{C}$ be a lattice generated by two complex numbers w_{1} and w_{2}. Set $t:=\lambda\left(w_{2} / w_{1}\right)$, where λ is given in Equation (2). Prove that there is an affine change of coordinates $(\tilde{x}, \tilde{y})=\left(c_{1} x+c_{0}, b y\right)$ mapping the plane cubic given in equation (1) to the cubic

$$
\tilde{y}^{2}=\tilde{x}(\tilde{x}-1)(\tilde{x}-t) .
$$

Hint: Show first that the equality of cross ratios $\left(\infty, z_{1}, z_{2}, z_{3}\right)=\left(\infty, z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}\right)$ implies that the two triples of points are related by an affine linear transformation.

