1. Lang page 189 Problem 29: Let U be a connected open set, and let D be an open disk whose closure is contained in U. Let f be analytic on U and not constant. Assume that the absolute value $|f|$ is constant on the boundary of D. Prove that f has at least one zero in D. Hint: Consider $g(z):=f(z)-f\left(z_{0}\right)$ with $z_{0} \in D$.
2. Basic Exam January 2000 Problem 9: Prove that the equation

$$
20 \frac{z^{3}}{z^{2}+4}=e^{z}
$$

has 3 roots in the unit disk $\{|z|<1\}$.
3. Basic Exam, August 99 Problem 4: Let λ be a real number larger that 1. Show that the equation $\lambda-z-e^{-z}=0$ has exactly one solution in the half plane $\{z: \operatorname{Re}(z)>0\}$. Moreover, the solution is real.
4. Basic Exam, January 99 problem 3:
(a) Determine the number of zeroes of $z^{5}-2 z^{2}+z+1$ in the disk $\{z:|z|<10\}$.
(b) Compute the integral $\int_{\{z:|z|=10\}} \frac{3 z^{4}+1}{z^{5}-2 z^{2}+z+1} d z$.
5. Compute the following integrals:
(a) $\int_{0}^{\pi / 2} \frac{d x}{a+\sin ^{2}(x)},|a|>1$,
(b) $\int_{0}^{\infty} \frac{x^{2} d x}{x^{4}+5 x^{2}+6}$,
(c) $\int_{0}^{\infty} \frac{\cos (x)}{x^{2}+a^{2}} d x, a>0$ real,
(d) $\int_{0}^{\infty} \frac{x \sin (x)}{x^{2}+a^{2}} d x, \quad a \geq 0$, real,
(e) $\int_{0}^{\infty} \frac{x^{1 / 3}}{1+x^{2}} d x$

