Math 621 Homework Assignment 8 Spring 2013 Due: Friday, April 19

- 1. Lang page 189 Problem 29: Let U be a connected open set, and let D be an open disk whose closure is contained in U. Let f be analytic on U and not constant. Assume that the absolute value |f| is constant on the boundary of D. Prove that f has at least one zero in D. Hint: Consider $g(z) := f(z) - f(z_0)$ with $z_0 \in D$.
- 2. Basic Exam January 2000 Problem 9: Prove that the equation

$$20\frac{z^3}{z^2+4} = e^z$$

has 3 roots in the unit disk $\{|z| < 1\}$.

- 3. Basic Exam, August 99 Problem 4: Let λ be a real number larger that 1. Show that the equation $\lambda z e^{-z} = 0$ has exactly one solution in the half plane $\{z : \operatorname{Re}(z) > 0\}$. Moreover, the solution is real.
- 4. Basic Exam, January 99 problem 3:
 - (a) Determine the number of zeroes of $z^5 2z^2 + z + 1$ in the disk $\{z : |z| < 10\}$.
 - (b) Compute the integral $\int_{\{z:|z|=10\}} \frac{3z^4+1}{z^5-2z^2+z+1} dz.$
- 5. Compute the following integrals:

(a)
$$\int_{0}^{\pi/2} \frac{dx}{a + \sin^{2}(x)}, \quad |a| > 1,$$

(b) $\int_{0}^{\infty} \frac{x^{2} dx}{x^{4} + 5x^{2} + 6},$
(c) $\int_{0}^{\infty} \frac{\cos(x)}{x^{2} + a^{2}} dx, \quad a > 0 \text{ real},$
(d) $\int_{0}^{\infty} \frac{x \sin(x)}{x^{2} + a^{2}} dx, \quad a \ge 0, \text{ real},$
(e) $\int_{0}^{\infty} \frac{x^{1/3}}{1 + x^{2}} dx$