Due: Friday, April 12

1. (a) Show that single valued analytic branches of $f(z)=z^{\alpha}, \alpha \in \mathbb{C}$, and $f(z)=z^{z}$ can be defined in any simply connected region, which does not contain the origin.
(b) (Ahlfors, problem 5 page 148, modified) Let $U \subset \mathbb{C}$ be a connected open subset, such that the points 1 and -1 are in the same connected component of the complement.
i. Show that a single valued analytic branch of $\sqrt{1-z^{2}}$ can be defined in U. Hint: Consider first a branch of $\sqrt{\frac{z+1}{z-1}}$.
ii. Let $\gamma:[0,1] \rightarrow U$ be a piecewise smooth path. Choose $\alpha \in \mathbb{C}$, such that $\sin (\alpha)=\gamma(0)$. This is always possible, since $\sin : \mathbb{C} \rightarrow \mathbb{C}$ is surjective. Use the local inverse mapping theorem to prove the equality

$$
\sin \left(\alpha+\int_{\gamma} \frac{d z}{\sqrt{1-z^{2}}}\right)=\gamma(1)
$$

for one of the two branches of $\sqrt{1-z^{2}}$. Conclude that when γ is closed, the integral $\int_{\gamma} \frac{d z}{\sqrt{1-z^{2}}}$, for either branch of $\sqrt{1-z^{2}}$, is the difference between two values of $\arcsin (\gamma(0))$.
iii. Let γ be a closed curve in U. Prove that $\int_{\gamma} \frac{d z}{\sqrt{1-z^{2}}}=2 k \pi$, for some integer k. Caution: If $\sin \left(w_{1}\right)=\sin \left(w_{2}\right)$, then $w_{2}=w_{1}+2 k \pi$, OR $w_{2}=-w_{1}+(2 k+1) \pi, k \in \mathbb{Z}$. Hint: Set $Z:=\mathbb{C} \backslash\left\{\frac{\pi}{2}+k \pi: k \in \mathbb{Z}\right\}$, $Y:=\mathbb{C} \backslash\{0, i,-i\}$, and $X:=\mathbb{C} \backslash\{1,-1\}$. The function $\sin : Z \rightarrow X$ factors as the composition $\sin (w)=q\left(e^{i w}\right)$, where the function $q: Y \rightarrow X$ is given by $q(\zeta)=\frac{\zeta-\frac{1}{\zeta}}{2 i}$. Let $g(z):=\sqrt{1-z^{2}}$ be one of the two branches constructed in part 1(b)i. Set $h(z)=g(z)+i z$. Then $h: U \rightarrow Y$ is a section of q, i.e., $q(h(z))=z$. Prove first the equality

$$
\int_{\gamma} \frac{d z}{\sqrt{1-z^{2}}}= \pm i \int_{h(\gamma)} \frac{d \zeta}{\zeta} .
$$

2. Laurent Serries: Lang page 164: 8, 12, 13
3. Consider the Laurent series
$\tan (z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$, which is valid in the annulus $\frac{\pi}{2}<|z|<\frac{3 \pi}{2}$. Find the coefficients a_{n} with index $-\infty<n \leq-1$. Hint: Use integration.
4. Isolated Singularities: Lang page 170: 1a,c,e, 4
5. Find the value of the integral $\int_{C} \frac{3 z^{3}+2}{(z-1)\left(z^{2}+9\right)} d z$ for:
(a) C the circle $|z-2|=2$.
(b) C the circle $|z|=4$.
6. Suppose that $f(z)=\frac{g(z)}{h(z)}, g\left(z_{0}\right) \neq 0$ and $h(z)$ has a zero of order 2 at z_{0}. Prove that

$$
\operatorname{Res}_{z_{0}} f=\frac{2 g^{\prime}\left(z_{0}\right)}{h^{\prime \prime}\left(z_{0}\right)}-\frac{2 g\left(z_{0}\right) h^{\prime \prime \prime}\left(z_{0}\right)}{3\left(h^{\prime \prime}\left(z_{0}\right)\right)^{2}}
$$

7. Compute the integral of the following functions over the circle $|z|=2$:
(a) $f(z)=\frac{1}{(z-3)(1+2 z)^{2}(1-3 z)^{3}}$
(b) $f(z)=\frac{z^{2}}{1-e^{z / 4}}$
(c) $f(z)=\frac{\cos (1 / z)}{1+z^{4}}$
8. Let $P(z)$ and $Q(z)$ be polynomials and suppose that $\operatorname{deg} Q \geq \operatorname{deg} P+2$. Show that

$$
\sum_{\zeta} \operatorname{Res}_{\zeta}(P / Q)=0
$$

where the sum runs over all singularities of the rational function P / Q. Do this problem in two ways: (1) Directly, without considering the residue at ∞. (2) As a special case of problem 10 .
9. Lang Problem 37 page 190: Let f be analytic on \mathbb{C} with exception of a finite number of isolated singularities $\left\{z_{1}, \ldots z_{n}\right\}$. Define the residue at infinity

$$
\operatorname{Res}_{\infty} f(z) d z:=-\frac{1}{2 \pi i} \int_{|z|=R} f(z) d z
$$

for $R>\max \left\{\left|z_{1}\right|, \ldots\left|z_{n}\right|\right\}$.
(a) Show that $\operatorname{Res}_{\infty} f(z) d z$ is independent of R.
(b) Show that the sum of the residues of f in the extended complex plane $\mathbb{C P}^{1}$ is equal to zero. (This result is often refered to as The residue Theorem.)
10. Lang Problem 38 page 190 (Cauchy's Residue Formula on the Riemann Sphere).
11. Basic Exam, September 1998 Problem 5: Compute $\int_{C} \frac{z^{4} e^{1 / z}}{1-z^{4}} d z$ where C denotes the circle $\{|z|=2\}$ transversed counterclockwise. Hint: Use the residue at infinity (problem 10) to save computations.
12. Basic Exam, January 2000 Problem 7: Let f be a one-to-one holomorphic map from a region D_{1} onto a region D_{2}. Suppose that D_{1} contains the closure of the disk $\Delta:=\left\{\left|z-z_{0}\right|<\rho\right\}$. Prove that for $w \in f(\Delta)$ the inverse function $f^{-1}(w)$ is given by

$$
f^{-1}(w)=\frac{1}{2 \pi i} \int_{\left\{\left|z-z_{0}\right|=\rho\right\}} \frac{f^{\prime}(z)}{f(z)-w} \cdot z d z
$$

13. Let $P(z)$ be a polynomial of degree d and assume that the roots $\zeta_{1}, \ldots, \zeta_{d}$ of P are simple. Show that for R sufficiently large:

$$
\int_{\{|z|=R\}} \frac{z^{k} P^{\prime}(z)}{P(z)} d z=\sum_{i=1}^{d} \zeta_{i}^{k}
$$

