1. Find the maximum value of the function $g(z)=\left|z^{3}-z\right|$ on the disk $|z| \leq 2$. Justify your answer!
2. Lang page 213 Problem 1: Let f be analytic on the unit disc D, and assume that $|f(z)|<1$ on the disc. Prove that if there exist two distinct points a, b in the disc, which are fixed under f (that is $f(a)=a$ and $f(b)=b$), then $f(z)=z$.
3. Lang, page 219 problem 8: Use Schwarz's Lemma to prove that $\operatorname{PSL}(2, \mathbb{R})$ is the group $\operatorname{Aut}(\mathbb{H})$ of holomorphic automorphisms of the upper half plane. ($P S L(2, \mathbb{R})$ is naturally identified with the group of fractional linear transformations which are associated to invertible 2×2 matrices with real coefficients and determinant 1). Hint: (a) Show that $\operatorname{PSL}(2, \mathbb{R})$ is an index 2 subgroup of $\operatorname{PGL}(2, \mathbb{R})$. (b) Use Schwarz's Lemma to show that if f belongs to $\operatorname{Aut}(\mathbb{H})$, then f is a linear fractional transformation. (c) Show that if f belongs to Aut($\mathbb{H})$, then it belongs to $\operatorname{PGL}(2, \mathbb{R})$. (d) Show that if f belongs to $\operatorname{PGL}(2, \mathbb{R})$, then f map \mathbb{H} either to \mathbb{H} or to the lower-half-plane. (f) Show that if f belongs to $P G L(2, \mathbb{R})$, then $f(\mathbb{H})=\mathbb{H}$, if and only if f belongs to $P S L(2, \mathbb{R})$ (calculate $f^{\prime}(x)$, for $x \in \mathbb{R}$).
4. Lang page 213 Problem 2: Let $f: D \rightarrow D$ be a holomorphic map from the disc into itself. Prove that, for all $a \in D$, we have

$$
\frac{\left|f^{\prime}(a)\right|}{1-|f(a)|^{2}} \leq \frac{1}{1-|a|^{2}} .
$$

Moreover, equality for some a implies that f is a linear fractional transformation. Hint: Let g be an automorphism of D such that $g(0)=a$, and let h be the automorphism which maps $f(a)$ on 0 . Let $F=h \circ f \circ g$. Compute $F^{\prime}(0)$ and apply the Schwarz Lemma.
5. Ahlfors, page 136 Problem 2: Let $f(z)$ be analytic and $\operatorname{Im}(f(z)) \geq 0$ for all z in the upper half plane \mathbb{H}. Show that for $z, z_{0} \in \mathbb{H}$,

$$
\left|\frac{f(z)-f\left(z_{0}\right)}{f(z)-\overline{f\left(z_{0}\right)}}\right| \leq \frac{\left|z-z_{0}\right|}{\left|z-\bar{z}_{0}\right|}
$$

and, writing $z=x+i y$,

$$
\frac{\left|f^{\prime}(z)\right|}{\operatorname{Im} f(z)} \leq \frac{1}{y}
$$

Moreover, equality, in either one of the two inequalities above, implies that f is a linear fractional transformation.
6. Ahlfors, page 136 Problem 6: If γ is a path, piecewise of type C^{1}, contained in the open unit disc D, then the integral

$$
\int_{\gamma} \frac{|d z|}{1-|z|^{2}}
$$

is called the non-euclidean length or hyperbolic length of γ. Let $f: D \rightarrow D$ be an analytic function from the disc into itself. Show that f maps every γ on a path with smaller or equal non-euclidean length. Deduce that a linear fractional transformation from D onto itself preserves non-euclidean lengths.
7. Ahlfors, page 136 Problem 7: (Modified) It can be shown, that the path of smallest non-euclidean length, joining the origin 0 to a point $z \in D$, is the straight line segment between them.
(a) Use this fact to show that the path of smallest non-euclidean length, that joins two given points in the unit disk, is the piece of the circle C which is orthogonal to the unit circle ∂D. The shortest non-euclidean length is called the non-euclidean distance.
(b) Show that the non-euclidean distance between z_{1} and z_{2} is

$$
\frac{1}{2} \log \frac{1+\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{1} z_{2}}\right|}{1-\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{1} z_{2}}\right|}
$$

