1. Lang page 132 Problem 1: Find the integrals over the unit circle C :
(a) $\int_{C} \frac{\cos (z)}{z} d z$
(b) $\int_{C} \frac{\sin (z)}{z} d z$
(c) $\int_{C} \frac{\cos \left(z^{2}\right)}{z} d z$
2. Ahlfors page 120 Problem 3: Compute $\int_{|z|=\rho} \frac{|d z|}{|z-a|^{2}}$ under the condition $|a| \neq \rho$. Hint: Make use of the equations $z \bar{z}=\rho^{2}$ and $|d z|=-i \rho \frac{d z}{z}$.
3. Show that the successive derivatives of an analytic function at a point can never satisfy $\left|f^{(n)}(z)\right|>n!n^{n}$ in two ways: (a) Using Cauchy's Estimate. (b) Using Taylor's Theorem.
4. Lang page 132 Problem 3 (modified): Let f be an entire function, k a positive integer, and let $\|f\|_{R}$ be the maximum of $|f|$ on the circle of radius R centered at the origin. Then f is a polynomial of degree $\leq k$ if and only if there exist constants C and $R_{0} \geq 0$ such that

$$
\|f\|_{R} \leq C R^{k}
$$

for all $R \geq R_{0}$. (Note: one direction was proven in HW 1 Problem 8).
5. Let $\tau \in \mathbb{C}$ be a complex number and assume that $\operatorname{Im}(\tau) \neq 0$. A function f is said to be doubly periodic with periods 1 and τ if

$$
f(z+1)=f(z) \quad \text { and } \quad f(z+\tau)=f(z), \quad \text { for all } z \in \mathbb{C} .
$$

Show that every entire function, which is doubly periodic with periods 1 and τ, is necessarily constant. (We will see that there exist non-constant, doubly periodic, meromorphic functions $f: \mathbb{C} \rightarrow \mathbb{C P}^{1}$).
6. Lang page 159 Problem 7: Let f be analytic on a closed disc \bar{D} of radius $b>0$, centered at z_{0}. Show that

$$
\frac{1}{\pi b^{2}} \iint_{D} f(x+i y) d y d x=f\left(z_{0}\right)
$$

Hint: Use polar coordinates and Cauchy's Formula.
7. Lang page 159 Problem 9 (modified): Let f be analytic and $1: 1$ on the unit disk D, and let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be the Taylor series expansion of f. Show that

$$
\operatorname{area} f(D)=\pi \sum_{n=0}^{\infty} n\left|a_{n}\right|^{2}
$$

8. (a) Ahlfors, page 130 Problem 2: Show that a function which is analytic in the whole plane and has a non-essential singularity at ∞ reduces to a polynomial. (You may use Problem 4 above).
(b) Lang, page 171 Problem 10: Show that any function, which is meromorphic on the extended complex plane, is a rational function.
9. (a) Show that the functions $\cos (z)$ and $\sin (z)$ have essential singularities at ∞.
(b) Let $f(z)=\cos \left(\frac{1+z}{1-z}\right),|z|<1$. Find the set Z_{f} of zeroes of f. Does Z_{f} have any accumulation points? Explain. (See Lang, page 21 for the definition of an accumulation point).
10. Lang, page 171 Problem 11: Define the order $\operatorname{Ord}_{p} f$ of a meromorphic function f at a point p to be $\operatorname{Ord}_{p} f:=\left\{\begin{aligned} m & \text { if } p \text { is a zero of } f \text { of order } m \\ -m & \text { if } p \text { is a pole of } f \text { of order } m\end{aligned}\right.$ Above, m could be zero, meaning that f is analytic at p and $f(p) \neq 0$.

Let f be a meromorphic function on the extended complex plane $\mathbb{C P}^{1}$ (so a rational function by problem 8a).
(a) Prove that $\sum_{p \in \mathbb{C P}^{1}} \operatorname{Ord}_{p} f=0$.

In other words, the number of points in the fiber $f^{-1}(0)$, counted with multiplicity, is equal to the number of points in $f^{-1}(\infty)$, counted with multiplicity.
(b) Prove that all fibers $f^{-1}(\lambda), \quad \lambda \in \mathbb{C P}^{1}$, of f consist of the same number of points, provided they are counted with multiplicity,
11. Ahlfors, page 130 Problem 5: Let z_{0} be an isolated singularity of an analytic function f. Prove that if $\operatorname{Re}(f)$ is bounded from above or below, then z_{0} is a removable singularity. Ahlfors' Hint: Apply a linear l.f.t. Note: Personally, I find it easier to avoid using a l.f.t (which does not seem to help rule-out the case of a pole). Instead, a short proof can be obtained using both the Casorati-Weirstrass and the Open Mapping Theorems.
12. (a) Set $f(z):=e^{\left(z^{2}\right)}$. Prove that there exists a unique entire function g, which is an anti-derivative of f satisfying $g(0)=0$.
(b) Show that $g: \mathbb{C} \rightarrow \mathbb{C}$ is a local homeomorphism, i.e., for every $\lambda \in \mathbb{C}$, there exist open neighborhoods U of λ and V of $g(\lambda)$, such that $g: U \rightarrow V$ is a homeomorphism (one to one and onto with a continuous inverse).
(c) Use Picard's Theorem stated below in order to prove that g is surjective. Hint: Note that g is an odd function.
(d) Prove that $g: \mathbb{C} \rightarrow \mathbb{C}$ is not injective. If you took Math 671 , conclude that g is not a covering map. ${ }^{1}$
Picard's Theorem (Ahlfors Theorem 5 page 307): Let g be a non-constant entire function. Then the image $g(\mathbb{C})$ of g is either the whole of \mathbb{C}, or $\mathbb{C} \backslash\{\lambda\}$, for a single complex number λ.

[^0]
[^0]: ${ }^{1}$ Let $D_{\delta}(\lambda)$ denote the open disk of radius δ centered at λ. The map g is not a covering means that there exists a point $\lambda \in \mathbb{C}$, such that for every $\delta>0$ the inverse image $g^{-1}\left(D_{\delta}(\lambda)\right)$ has a connected component U, such that $g: U \rightarrow D_{\delta}(\lambda)$ is not a homeomorphism.

