1. Lang problem 4 page 102.
2. (a) Describe the curve $C$ parametrized by $\gamma(t)=a \cos (t)+i b \sin (t), t \in[0,2 \pi]$. Compute $\int_{C} \frac{d z}{z}$.
(b) Compute $\int_{0}^{2 \pi} \frac{d t}{a^{2} \cos ^{2}(t)+b^{2} \sin ^{2}(t)}$.

Hint: Use $\cos (t)=\frac{e^{i t}+e^{-i t}}{2}$ and $\sin (t)=\frac{e^{i t}-e^{-i t}}{2 i}$ to convert to an integral of a rational function over the unit circle.
3. (a) Let $S_{R}$ denote the semi-circle

$$
S_{R}:=\left\{R e^{i \theta}: 0 \leq \theta \leq \pi\right\} .
$$

Show that $\lim _{R \rightarrow \infty} \int_{S_{R}} \frac{e^{i z}}{z} d z=0$.
(b) Let $\alpha, \beta \in \mathbb{C}$ be such that $\operatorname{Re}(\alpha) \leq 0$ and $\operatorname{Re}(\beta) \leq 0$. Show that

$$
\left|e^{\alpha}-e^{\beta}\right| \leq|\beta-\alpha| .
$$

4. Use Green's Theorem to prove a weaker version of Cauchy-Goursat's Theorem for a rectangle:

Let $f$ be a holomorphic function defined and having a continuous derivative $f^{\prime}$ in an open set $U$ containing a rectangle $R$. Then

$$
\int_{\partial R} f d z=0
$$

Recall the statement of Green's Theorem: Let $\gamma$ be an oriented piecewise smooth simple path (i.e., each connected component of $\gamma$ does not intersect itself) in the plane. Assume that $\gamma$ bounds a region $D$ (and has the induced orientation, i.e., each smooth piece of $\gamma$ is oriented so that $D$ is on the left as you move along $\gamma)$. Let $p(x, y), q(x, y)$ be two functions which are defined and have continuous partial derivatives in an open set $U \subset \mathbb{R}^{2}$ containing $D$ and $\gamma$. Then

$$
\int_{\gamma} p d x+q d y=\iint_{D}\left(\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right) d x d y
$$

5. Let $U_{1}$ and $U_{2}$ be open subsets of $\mathbb{C}$ and $f: U_{1} \rightarrow U_{2}$ a holomorphic function. (You may assume the continuity of $\left.f^{\prime}\right)$. Let $\gamma:[a, b] \rightarrow U_{1}$ be a path and set $\gamma_{2}:=f \circ \gamma_{1}$. Let $g$ be a continuous complex valued function on $U_{2}$. Prove the equality

$$
\int_{\gamma_{2}} g(z) d z=\int_{\gamma_{1}} g(f(z)) f^{\prime}(z) d z
$$

6. Ahlforse page 108 problem 5: Suppose that $f(z)$ is analytic on a closed curve $\gamma$ (i.e., $f$ is analytic in an open set containing $\gamma$ ). Show that $\int_{\gamma} \overline{f(z)} f^{\prime}(z) d z$ is purely imaginary. (You may assume the continuity of $f^{\prime}$ ).
7. Ahlforse page 108 problem 6: Assume that $f(z)$ is analytic and satisfies the equality $|f(z)-1|<1$ in a region (connected open set) $\Omega$. Show that $\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0$, for every closed curve $\gamma$ in $\Omega$. (You may assume the continuity of $f^{\prime}$ ).
8. (a) Let $D$ be an open disk in $\mathbb{C}$ and let $f$ be continuous in $D$. Suppose that $\int_{\partial R} f(z) d z=0$ for every closed rectangle $R$ contained in $D$. Prove that $f$ is holomorphic.
(b) Suppose that $f$ is continuous in all of $\mathbb{C}$ and holomorphic in $\mathbb{C} \backslash \mathbb{R}$. Prove that $f$ is holomorphic everywhere.
9. Let $U$ be an open subset of $\mathbb{C}$ and $f_{n}$ a sequence of holomorphic functions which converges, uniformly on compact subsets of $U$, to a function $f$. Prove that $f$ is holomorphic in $U$ and that $f_{n}^{\prime}$ converges, uniformly on compact subsets of $U$, to $f^{\prime}$.
