1. (a) Let D_{1} and D_{2} be open connected sets in \mathbb{C} and $f: D_{1} \rightarrow D_{2}$ a holomorphic map. Show that if H is harmonic in D_{2}, then the composition $H \circ f$ is harmonic in D_{1}.
(b) Let $D \subset \mathbb{R}^{2}$ be a connected open set and $u(x, y), v(x, y)$ harmonic in D. Prove or disprove the following statements:
i. The function $w(x, y)=e^{u(x, y)}$ is harmonic in D.
ii. The function $w(x, y)=u(x, y) v(x, y)$ is harmonic in D.
iii. If v is a harmonic conjugate of u, the function $w(x, y)=u^{2}(x, y)-v^{2}(x, y)$ is harmonic in D.
2. Ahlfors page 28 problem 3: Find the most general harmonic homogeneous polynomial of degree 3 (of the form $a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$). Determine, by integration, the conjugate harmonic function and the corresponding analytic function (up to a constant).
3. Ahlfors page 28 problem 4: Show that if f is a holomorphic function with a constant absolute value $|f(z)|$, then f itself is a constant function.
4. Lang page 58 problem 4a, c, d, g, h
5. Lang page 59 problem 10.
6. Ahlfors, page 41 problem 8: For what values of z is $\sum_{n=0}^{\infty}\left(\frac{z}{1+z}\right)^{n}$ convergent? (Describe the set geometrically).
7. Lang page 26 problem 7. Hint: Show first the following identity

$$
\frac{z^{n-1}}{\left(1-z^{n}\right)\left(1-z^{n+1}\right)}=\frac{1}{(1-z)^{2}}\left[\frac{z^{n-1}+z^{n-2}+\cdots+1}{z^{n}+z^{n-1}+\cdots+1}-\frac{z^{n-2}+z^{n-3}+\cdots+1}{z^{n-1}+z^{n-2}+\cdots+1}\right]
$$

8. Ahlfors, page 47 problem 8: Express $\operatorname{arc} \tan (w)$ in terms of the logarithm.
9. Ahlfors, page 47 problem 9: Use an appropriate branch of $\log (z)$ to define the angles of a triangle with vertices z_{1}, z_{2}, z_{3}, bearing in mind that the angles should be between 0 and π. With this definition, prove that the sum of the angles is π.
10. Lang Ch. II Sec 3 page 68 problem 4.

If you have not taken point set topology (Math 671), then review point set topology in \mathbb{R}^{n} by reading

1. Lang, Ch I Section 4 pages 17-26 and
2. the Appendix "Connectedness" page 92-93 in Lang.
