1. Lang, Ch. 1 Section 2 page 11: 7, 10, 11, 12, 13
2. Lang, Ch. 1 Section 3 page 17 problem 4: Let $f(z)=e^{z}$. Describe the image under f of the following sets:
(a) $\{z=x+i y \mid x \leq 1$ and $0 \leq y \leq \pi\}$.
(b) $\{z=x+i y \mid 0 \leq y \leq \pi$ (no condition on x) $\}$.
3. Lang, Ch. 1 Section 4 page 26 problem 3: Show that for any complex number $z \neq 1$, we have

$$
1+z+\cdots+z^{n}=\frac{z^{n+1}-1}{z-1}
$$

If $|z|<1$, show that

$$
\lim _{n \rightarrow \infty}\left(1+z+\cdots+z^{n}\right)=\frac{1}{1-z}
$$

4. Let u, v be real valued functions defined on an open set U in \mathbb{R}^{2}. Prove that if u and v have continuous partial derivatives, then the function

$$
\begin{aligned}
f: U & \rightarrow \mathbb{R}^{2} \\
(x, y) & \mapsto(u(x, y), v(x, y))
\end{aligned}
$$

is differentiable throughout U in the sense that

$$
\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \frac{\|f(x+\Delta x, y+\Delta y)-[f(x, y)+d f(\Delta x, \Delta y)]\|}{\|(\Delta x, \Delta y)\|}=0 .
$$

Hint: Bound the quotient by a sum of two terms each depending only on u or v, define $a(t):=u(z+t \cdot \Delta z)$ and $b(t):=v(z+t \cdot \Delta z), 0 \leq t \leq 1$, and use the Mean Value Theorem for $a(t)$ and $b(t)$.
5. Let

$$
f(z)= \begin{cases}\left(\bar{z}^{2} / z\right), & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Show that the real and imaginary parts of f satisfy the Cauchy-Riemann equations at $z=0$. Is f holomorphic at $z=0$?
6. Ahlfors, Ch. 1 Section 2.1 page 15 problem 2: Prove that the points a_{1}, a_{2}, a_{3} are vertices of an equilateral triangle if and only if

$$
a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1} .
$$

7. (a) Show that if $A \neq 0$, the set of points

$$
\left\{(x, y) \in \mathbb{R}^{2}: A\left(x^{2}+y^{2}\right)+B x+C y+D=0\right.
$$

is either empty or a circle. Determine the center and the radius. What happens when $A=0$?
(b) Show that the set of points

$$
\left\{z \in \mathbb{C}:\left|\frac{z-z_{1}}{z-z_{2}}\right|=K ; K>0, K \neq 1\right\}
$$

is a circle. Determine the center and the Radius. What happens when $K=1$?
8. Let $P(z)=\sum_{n=0}^{d} a_{n} z^{n}, a_{d} \neq 0$, be a polynomial of degree d. Show that there exist positive constants k, K, and R such that

$$
k|z|^{d} \leq|P(z)| \leq K|z|^{d}, \text { for }|z|>R .
$$

9. Given a complex valued function f of one complex variable z, define

$$
\frac{\partial}{\partial z} f:=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) f, \quad \frac{\partial}{\partial \bar{z}} f:=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) f .
$$

Assume f is holomorphic.
(a) Show that $\frac{\partial}{\partial \bar{z}} f=0, \quad \frac{\partial}{\partial z} f=f^{\prime}, \quad \frac{\partial}{\partial \bar{z}}(\bar{f})=\overline{\left(\frac{\partial f}{\partial z}\right)}, \quad$ and $\frac{\partial}{\partial z} \bar{f}=0$.
(b) Show that $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}$.
(c) Use parts 9a and 9b to show that $\log |f(z)|$ is HARMONIC provided $f \neq 0$.

