Math 621

Homework Assignment 7 Spring 2006 Due: Wednessday, May 3

1. Let P(z) and Q(z) be polynomials and suppose that deg $Q \ge \deg P + 2$. Show that

$$\sum_{\zeta} \operatorname{Res}_{\zeta}(P/Q) = 0,$$

where the sum runs over all singularities of the rational function P/Q. Do this problem in two ways: (1) Directly, without considering the residue at ∞ . (2) As a special case of problem 3.

2. Lang Problem 37 page 190: Let f be analytic on \mathbb{C} with exception of a finite number of isolated singularities $\{z_1, \ldots z_n\}$. Define the residue at infinity

$$Res_{\infty}f(z)dz := -\frac{1}{2\pi i}\int_{|z|=R}f(z)dz$$

for $R > \max\{|z_1|, \dots |z_n|\}.$

(a) Show that $Res_{\infty}f(z)dz$ is independent of R.

(b) Show that the sum of the residues of f in the extended complex plane \mathbb{CP}^1 is equal to zero. (This result is often referred to as *The residue Theorem*.)

- 3. Lang Problem 38 page 190 (Cauchy's Residue Formula on the Riemann Sphere).
- 4. Basic Exam, September 1998 Problem 5: Compute $\int_C \frac{z^4 e^{1/z}}{1-z^4} dz$ where C denotes the circle $\{|z|=2\}$ transversed counterclockwise. *Hint: Use the residue at infinity (problem 3) to save computations.*
- 5. Basic Exam, January 2000 Problem 7: Let f be a one-to-one holomorphic map from a region D_1 onto a region D_2 . Suppose that D_1 contains the closure of the disk $\Delta := \{|z - z_0| < \rho\}$. Prove that for $w \in f(\Delta)$ the inverse function $f^{-1}(w)$ is given by

$$f^{-1}(w) = \frac{1}{2\pi i} \int_{\{|z-z_0|=\rho\}} \frac{f'(z)}{f(z) - w} \cdot z dz$$

6. Let P(z) be a polynomial of degree d and assume that the roots ζ_1, \ldots, ζ_d of P are simple. Show that for R sufficiently large:

$$\int_{\{|z|=R\}} \frac{z^k P'(z)}{P(z)} dz = \sum_{i=1}^d \zeta_i^k.$$

- 7. Lang page 189 Problem 29: Let U be a connected open set, and let D be an open disk whose closure is contained in U. Let f be analytic on U and not constant. Assume that the absolute value |f| is constant on the boundary of D. Prove that f has at least one zero in D. Hint: Consider $g(z) := f(z) - f(z_0)$ with $z_0 \in D$.
- 8. Basic Exam January 2000 Problem 9: Prove that the equation

$$20\frac{z^3}{z^2+4} = e^z$$

has 3 roots in the unit disk $\{|z| < 1\}$.

- 9. Basic Exam, August 99 Problem 4: Let λ be a real number larger that 1. Show that the equation $\lambda z e^{-z} = 0$ has exactly one solution in the half plane $\{z : \operatorname{Re}(z) > 0\}$. Moreover, the solution is real.
- 10. Basic Exam, January 99 problem 3:
 - (a) Determine the number of zeroes of $z^5 2z^2 + z + 1$ in the disk $\{z : |z| < 10\}$.

(b) Compute the integral
$$\int_{\{z:|z|<10\}} \frac{3z^4+1}{z^5-2z^2+z+1} dz$$
.

11. (Recommended Problem, you need not handed it in) Lang Page 191 Problem 40 (modified): Let $a, b \in \mathbb{C}$ with |a| and |b| < R. Let C_R be the circle of radius R.

a) Show that there is an analytic branch of $\sqrt{(z-a)(z-b)}$ defined in $\{z : |z| > R\}$ and such that $\frac{z}{\sqrt{(z-a)(z-b)}}$ is analytic with value 1 at ∞ .

b) Evaluate

$$\int_{C_R} \frac{zdz}{\sqrt{(z-a)(z-b)}}$$

c) Evaluate

$$\int_{C_R} \frac{dz}{\sqrt{(z-a)(z-b)}}$$