1. Ahlfors, page 136 Problem 6: If γ is a path, piecewise of type C^{1}, contained in the open unit disc D, then the integral

$$
\int_{\gamma} \frac{|d z|}{1-|z|^{2}}
$$

is called the non-euclidean length or hyperbolic length of γ. Let $f: D \rightarrow D$ be an analytic function from the disc into itself. Show that f maps every γ on a path with smaller or equal non-euclidean length. Deduce that a linear fractional transformation from D onto itself preserves non-euclidean lengths.
2. Ahlfors, page 136 Problem 7: (Modified) It can be shown, that the path of smallest non-euclidean length, joining the origin 0 to a point $z \in D$, is the straight line segment between them.
(a) Use this fact to show that the path of smallest non-euclidean length, that joins two given points in the unit disk, is the piece of the circle C which is orthogonal to the unit circle ∂D. The shortest non-euclidean length is called the non-euclidean distance.
(b) Show that the non-euclidean distance between z_{1} and z_{2} is

$$
\frac{1}{2} \log \frac{1+\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{1} z_{2}}\right|}{1-\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{1} z_{2}}\right|}
$$

3. (a) Show that single valued analytic branches of $f(z)=z^{\alpha}, \alpha \in \mathbb{C}$, and $f(z)=z^{z}$ can be defined in any simply connected region, which does not contain the origin.
(b) (Ahlfors, problem 5 page 148) Show that a single vlaued analytic branch of $\sqrt{1-z^{2}}$ can be defined in any region such that the points 1 and -1 are in the same connected component of the complement. What are the possible values of $\int \frac{d z}{\sqrt{1-z^{2}}}$ over a closed curve in the region?
4. Laurent Serries: Lang page 164: 8, 12, 13
5. Problem 5 from the basic exam of August 99: Consider the Laurent series $\tan (z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$, which is valid in the annulus $\frac{\pi}{2}<|z|<\frac{3 \pi}{2}$. Find the coefficients a_{n} with index $-\infty<n \leq-1$. Hint: Use integration.
6. Isolated Singularities: Lang page 170: 1a,c,e, 4
7. Find the value of the integral $\int_{C} \frac{3 z^{3}+2}{(z-1)\left(z^{2}+9\right)} d z$ for:
(a) C the circle $|z-2|=2$.
(b) C the circle $|z|=4$.
8. Suppose that $f(z)=\frac{g(z)}{h(z)}, g\left(z_{0}\right) \neq 0$ and $h(z)$ has a zero of order 2 at z_{0}. Prove that

$$
\operatorname{Res}_{z_{0}} f=\frac{2 g^{\prime}\left(z_{0}\right)}{h^{\prime \prime}\left(z_{0}\right)}-\frac{2 g\left(z_{0}\right) h^{\prime \prime \prime}\left(z_{0}\right)}{3\left(h^{\prime \prime}\left(z_{0}\right)\right)^{2}}
$$

9. Compute the integral of the following functions over the circle $|z|=2$:
(a) $f(z)=\frac{1}{(z-3)(1+2 z)^{2}(1-3 z)^{3}}$
(b) $f(z)=\frac{z^{2}}{1-e^{z / 4}}$
(c) $f(z)=\frac{\cos (1 / z)}{1+z^{4}}$
