Math 621

1. Ahlfors, page 136 Problem 6: If γ is a path, piecewise of type C^1 , contained in the open unit disc D, then the integral

$$\int_{\gamma} \frac{|dz|}{1 - |z|^2}$$

is called the *non-euclidean length* or *hyperbolic length* of γ . Let $f : D \to D$ be an analytic function from the disc into itself. Show that f maps every γ on a path with smaller or equal non-euclidean length. Deduce that a linear fractional transformation from D onto itself preserves non-euclidean lengths.

- 2. Ahlfors, page 136 Problem 7: (Modified) It can be shown, that the path of smallest non-euclidean length, joining the origin 0 to a point $z \in D$, is the straight line segment between them.
 - (a) Use this fact to show that the path of smallest non-euclidean length, that joins two given points in the unit disk, is the piece of the circle C which is orthogonal to the unit circle ∂D . The shortest non-euclidean length is called the *non-euclidean distance*.
 - (b) Show that the non-euclidean distance between z_1 and z_2 is

$$\frac{1}{2}\log\frac{1+\left|\frac{z_1-z_2}{1-\bar{z}_1z_2}\right|}{1-\left|\frac{z_1-z_2}{1-\bar{z}_1z_2}\right|}$$

- 3. (a) Show that single valued analytic branches of $f(z) = z^{\alpha}$, $\alpha \in \mathbb{C}$, and $f(z) = z^{z}$ can be defined in any simply connected region, which does not contain the origin.
 - (b) (Ahlfors, problem 5 page 148) Show that a single valued analytic branch of $\sqrt{1-z^2}$ can be defined in any region such that the points 1 and -1 are in the same connected component of the complement. What are the possible values of $\int \frac{dz}{\sqrt{1-z^2}}$ over a closed curve in the region?
- 4. Laurent Serries: Lang page 164: 8, 12, 13
- 5. Problem 5 from the basic exam of August 99: Consider the Laurent series

 $\tan(z) = \sum_{n=-\infty}^{\infty} a_n z^n$, which is valid in the annulus $\frac{\pi}{2} < |z| < \frac{3\pi}{2}$. Find the coefficients a_n with index $-\infty < n \le -1$. Hint: Use integration.

- 6. Isolated Singularities: Lang page 170: 1a,c,e, 4
- 7. Find the value of the integral $\int_C \frac{3z^3+2}{(z-1)(z^2+9)} dz$ for: (a) C the circle |z-2| = 2. (b) C the circle |z| = 4.

8. Suppose that $f(z) = \frac{g(z)}{h(z)}$, $g(z_0) \neq 0$ and h(z) has a zero of order 2 at z_0 . Prove that $2a'(z_0) - 2a(z_0)h'''(z_0)$

$$Res_{z_0}f = \frac{2g'(z_0)}{h''(z_0)} - \frac{2g(z_0)h'''(z_0)}{3(h''(z_0))^2}$$

9. Compute the integral of the following functions over the circle |z| = 2:

(a)
$$f(z) = \frac{1}{(z-3)(1+2z)^2(1-3z)^3}$$

(b) $f(z) = \frac{z^2}{1-e^{z/4}}$
(c) $f(z) = \frac{\cos(1/z)}{1+z^4}$