1. (a) Ahlfors, page 130 Problem 2: Show that a function which is analytic in the whole plane and has a non-essential singularity at ∞ reduces to a polynomial. (You may use Problem 7 in Homework assignment 4).
(b) Lang, page 171 Problem 10: Show that any function, which is meromorphic on the extended complex plane, is a rational function.
2. (a) Show that the functions $\cos (z)$ and $\sin (z)$ have essential singularities at ∞.
(b) Let $f(z)=\cos \left(\frac{1+z}{1-z}\right),|z|<1$. Find the set Z_{f} of zeroes of f. Does Z_{f} have any accumulation points? Explain. (See Lang, page 21 for the definition of an accumulation point).
3. Lang, page 171 Problem 11: Define the order $\operatorname{Ord}_{p} f$ of a meromorphic function f at a point p to be $\operatorname{Ord}_{p} f:=\left\{\begin{aligned} m & \text { if } p \text { is a zero of } f \text { of order } m \\ -m & \text { if } p \text { is a pole of } f \text { of order } m\end{aligned}\right.$ Above, m could be zero, meaning that f is analytic at p and $f(p) \neq 0$.

Let f be a meromorphic function on the extended complex plane $\mathbb{C} P^{1}$ (so a rational function by problem 1a).
(a) Prove that $\sum_{p \in \mathbb{C P}^{1}} \operatorname{Ord}_{p} f=0$.

In other words, the number of points in the fiber $f^{-1}(0)$, counted with multiplicity, is equal to the number of points in $f^{-1}(\infty)$, counted with multiplicity.
(b) Prove that all fibers $f^{-1}(\lambda), \quad \lambda \in \mathbb{C P}^{1}$, of f consist of the same number of points, provided they are counted with multiplicity,
4. Ahlfors, page 130 Problem 5: Let z_{0} be an isolated singularity of an analytic function f. Prove that if $\operatorname{Re}(f)$ is bounded from above or below, then z_{0} is a removable singularity. Ahlfors' Hint: Apply a linear l.f.t. Note: Personally, I find it easier to avoid using a l.f.t (which does not seem to help rule-out the case of a pole). Instead, a short proof can be obtained using both the Casorati-Weirstrass and the Open Mapping Theorems.
5. Let $\tau \in \mathbb{C}$ be a complex number and assume that $\operatorname{Im}(\tau) \neq 0$. A function f is said to be doubly periodic with periods 1 and τ if

$$
f(z+1)=f(z) \quad \text { and } \quad f(z+\tau)=f(z), \quad \text { for all } z \in \mathbb{C}
$$

Show that every entire function, which is doubly periodic with periods 1 and τ, is necessarily constant. (We will see that there exist non-constant, doubly periodic, meromorphic functions $f: \mathbb{C} \rightarrow \mathbb{C P}^{1}$).
6. Jan 96 Basic Exam, Problem 5: Find the maximum value of the function $g(z)=$ $\left|z^{3}-z\right|$ on the disk $|z| \leq 2$. Justify your answer!
7. Lang page 213 Problem 1: Let f be analytic on the unit disc D, and assume that $|f(z)|<1$ on the disc. Prove that if there exist two distinct points a, b in the disc, which are fixed under f (that is $f(a)=a$ and $f(b)=b$), then $f(z)=z$.
8. Lang, page 219 problem 8: Use Schwarz's Lemma to prove that $\operatorname{PSL}(2, \mathbb{R})$ is the group $\operatorname{Aut}(\mathbb{H})$ of holomorphic automorphisms of the upper half plane. $(\operatorname{PSL}(2, \mathbb{R})$ is naturally identified with the group of fractional linear transformations which are associated to invertible 2×2 matrices with real coefficients and determinant 1). Hint: (a) Show that $\operatorname{PSL}(2, \mathbb{R})$ is an index 2 subgroup of $\operatorname{PGL}(2, \mathbb{R})$. (b) Use Schwarz's Lemma to show that if f belongs to $\operatorname{Aut}(\mathbb{H})$, then f is a linear fractional transformation. (c) Show that if f belongs to Aut($\mathbb{H})$, then it belongs to $P G L(2, \mathbb{R})$. (d) Show that if f belongs to $P G L(2, \mathbb{R})$, then f map \mathbb{H} either to \mathbb{H} or to the lower-half-plane. (f) Show that if f belongs to $\operatorname{PGL}(2, \mathbb{R})$, then $f(\mathbb{H})=\mathbb{H}$, if and only if f belongs to $P S L(2, \mathbb{R})$ (calculate $f^{\prime}(x)$, for $x \in \mathbb{R}$).
9. Lang page 213 Problem 2: Let $f: D \rightarrow D$ be a holomorphic map from the disc into itself. Prove that, for all $a \in D$, we have

$$
\frac{\left|f^{\prime}(a)\right|}{1-|f(a)|^{2}} \leq \frac{1}{1-|a|^{2}}
$$

Moreover, equality for some a implies that f is a linear fractional transformation. Hint: Let g be an automorphism of D such that $g(0)=a$, and let h be the automorphism which maps $f(a)$ on 0 . Let $F=h \circ f \circ g$. Compute $F^{\prime}(0)$ and apply the Schwarz Lemma.
10. Ahlfors, page 136 Problem 2: Let $f(z)$ be analytic and $\operatorname{Im}(f(z)) \geq 0$ for all z in the upper half plane \mathbb{H}. Show that for $z, z_{0} \in \mathbb{H}$,

$$
\left|\frac{f(z)-f\left(z_{0}\right)}{f(z)-\overline{f\left(z_{0}\right)}}\right| \leq \frac{\left|z-z_{0}\right|}{\left|z-\bar{z}_{0}\right|}
$$

and, writing $z=x+i y$,

$$
\frac{\left|f^{\prime}(z)\right|}{\operatorname{Im} f(z)} \leq \frac{1}{y}
$$

Moreover, equality, in either one of the two inequalities above, implies that f is a linear fractional transformation.

