Math 621 Homework Assignment 4

Spring 2006

Due: Monday, March 27

1. Use Green's Theorem to prove a weaker version of Cauchy-Goursat's Theorem for a rectangle:

Let f be a holomorphic function defined and having a continuous derivative f^{\prime} in an open set U containing a rectangle R. Then

$$
\int_{\partial R} f d z=0 .
$$

Recall the statement of Green's Theorem: Let γ be an oriented piecewise smooth simple path (i.e., each connected component of γ does not intersect itself) in the plane. Assume that γ bounds a region D (and has the induced orientation, i.e., each smooth piece of γ is oriented so that D is on the left as you move along $\gamma)$. Let $p(x, y), q(x, y)$ be two functions which are defined and have continuous partial derivatives in an open set $U \subset \mathbb{R}^{2}$ containing D and γ. Then

$$
\int_{\gamma} p d x+q d y=\iint_{D}\left(\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right) d x d y
$$

2. (a) Let D be an open disk in \mathbb{C} and let f be continuous in D. Suppose that $\int_{\partial R} f(z) d z=0$ for every closed rectangle R contained in D. Prove that f is holomorphic.
(b) Suppose that f is continuous in all of \mathbb{C} and holomorphic in $\mathbb{C} \backslash \mathbb{R}$. Prove that f is holomorphic everywhere.
3. Let U be an open subset of \mathbb{C} and f_{n} a sequence of holomorphic functions which converges, uniformly on compact subsets of U, to a function f. Prove that f is holomorphic in U and that f_{n}^{\prime} converges, uniformly on compact subsets of U, to f^{\prime}.
4. Lang page 132 Problem 1: Find the integrals over the unit circle C :
(a) $\int_{C} \frac{\cos (z)}{z} d z$
(b) $\int_{C} \frac{\sin (z)}{z} d z$
(c) $\int_{C} \frac{\cos \left(z^{2}\right)}{z} d z$
5. Ahlfors page 120 Problem 3: Compute $\int_{|z|=\rho} \frac{|d z|}{|z-a|^{2}}$ under the condition $|a| \neq \rho$. Hint: Make use of the equations $z \bar{z}=\rho^{2}$ and $|d z|=-i \rho \frac{d z}{z}$.
6. Show that the successive derivatives of an analytic function at a point can never satisfy $\left|f^{(n)}(z)\right|>n!n^{n}$ in two ways: (a) Using Cauchy's Estimate. (b) Using Taylor's Theorem.
7. Lang page 132 Problem 3 (modified): Let f be an entire function, k a positive integer, and let $\|f\|_{R}$ be the maximum of $|f|$ on the circle of radius R centered at the origin. Then f is a polynomial of degree $\leq k$ if and only if there exist constants C and $R_{0} \geq 0$ such that

$$
\|f\|_{R} \leq C R^{k},
$$

for all $R \geq R_{0}$. (Note: one direction was proven in HW 1 Problem 8).
8. Lang page 159 Problem 7: Let f be analytic on a closed disc \bar{D} of radius $b>0$, centered at z_{0}. Show that

$$
\frac{1}{\pi b^{2}} \iint_{D} f(x+i y) d y d x=f\left(z_{0}\right) .
$$

Hint: Use polar coordinates and Cauchy's Formula.
9. Lang page 159 Problem 9 (modified): Let f be analytic and $1: 1$ on the unit disk D, and let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be the Taylor series expansion of f. Show that

$$
\operatorname{area} f(D)=\pi \sum_{n=0}^{\infty} n\left|a_{n}\right|^{2}
$$

