
Algebraic Geometry Homework Assignment 9, Fall 2007
Due Tuesday, December 4.

The field k below is assumed algebraically closed.

1. Let X be an affine non-singular (irreducible) curve1 with coordinate ring A. Let I ⊂ A
be a non-zero ideal. Then there exists a finite set of distinct points P1, . . . , Pn, and
positive integers di, 1 ≤ i ≤ n, such that I = M d1

P1
∩· · ·∩Mdn

Pn
, where MPi

is the maximal
ideal of Pi, by the Primary Decomposition Theorem (Atiyah-Macdonald, Theorem 7.13).

(a) Prove that there exist functions gi ∈
⋂n

j=1

j 6=i

M
dj

Pj
, such that

∑n
i=1 gi = 1. Hint: Note

that
⋂n

i=1 V

(⋂n
j=1

j 6=i

MPj

)
= ∅.

(b) Prove that the natural homomorphism A/I = A/
n⋂

i=1

Mdi

Pi
→

n∏

i=1

A/Mdi

Pi
is an

isomorphism.

(c) Prove that dimk

(
A/Mdi

Pi

)
= di. Hint: Use the exactness property of locallization2

to prove that dimk

(
M t

Pi
/M t+1

Pi

)
= 1.

(d) Set ordP (I) := min{ordP (f) : f ∈ I}. Prove that dimk(A/I) =
∑

P∈X ordP (I).

(e) Let S ⊂ A be a multiplicative system. Prove that S−1A/S−1I is isomorphic to∏

{i : S∩MPi
=∅}

A/Mdi

Pi
. Hint: Show that the image of a ∈ A in A/M di

Pi
is invertible, if

a 6∈MPi
, and nilpotent if a ∈MPi

. Next use the exactness property of locallization.

2. (The degree of a morphism of curves and the length of a fiber) Let f : X → Y be a
dominant morphism of varieties. We identify K(Y ) as a subfield of K(X) via the natural
homomorphism f ∗ : K(Y ) → K(X) induced by f . The degree of f is defined to be the
degree of the field extension [K(X) : K(Y )]. When X and Y are non-singular projective
curves (one-dimensional varieties over k), you will show below that the degree is equal to
the number of points in each fiber, counted appropriately. Now both invariants are local
in Y , so the discussion reduces to the following setup (see part 2a for the reduction).
Assume that X and Y are affine, non-singular, and f : X → Y is a finite morphism.
Let A and B be the coordinate rings of X and Y respectively. Note that A is integrally
closed in K(X), since X is non-singular, and A is integral over B, since f is finite (see
Mumford, section I.7 Definition 2). Thus A is the integral closure of B in K(X). Note
also that A is a finitely generated B-module, by Hartshorne, Theorem I.3.9A.

(a) Let f̄ : CK(X) → CK(Y ) be the morphism extending f to the projective non-singular
curves defined in section I.6 of Hartshorne. Identify Y with its image in CK(Y )

via the natural embedding. Prove that f̄−1(Y ) is isomorphic to X. Conclude
that f−1(f(P )) and f̄−1(f(P )) are equal subsets of CK(X). Hint: Given a DVR
R ∈ CK(X), show that R′ := R ∩ K(Y ) is a DVR in CK(Y ), by showing that

1Parts 1a, 1b, and 1e generalize, using the same argument, to the case where X is any affine variety and V (I)
is zero dimensional. The Primery Decomposition Theorem then implies, that I is the intersection I1 ∩ · · · ∩ In

of ideals, whose radical
p

Ij is a maximal ideal MPj
.

2Let A be a ring, S ⊂ A a multiplicative system, and 0 → M1 → M2 → M3 → 0 an exact sequence of
A-modules. Then the sequence 0 → S−1M1 → S−1M2 → S−1M3 → 0 of S−1A-modules is exact as well. You
will need to use it only when M1 and M2 are ideals of A, so that S−1M1 is the ideal generated by the image of

M1 in S−1A, and S−1M3 := S
−1

M3, where S is the image of S in A/M1.
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m′ := mR ∩K(Y ) is a maximal ideal of R′, R′ \m′ consists of invertible elements
of R′, and R′ is integrally closed in K(Y ). Use Lemma I.6.4 in Hartshorne to prove
that the map f̄ sends a DVR R ∈ CK(X) to the DVR R ∩K(Y ) in CK(Y ). Recall
next that we proved in class the following generalization of Hartshorne, Lemma
I.6.5: Let S ⊂ K(X) \k be a finite non-empty subset. Then {R ∈ CK(X) : S ⊂ R}
is an open affine subset of CK(X), whose coordinate ring is the integral closure of
the k-subalgebra of K(X) generated by S.

(b) Let MQ ⊂ B be the maximal ideal of a point Q ∈ Y and consider S := B \MQ as
a multiplicative system in both B and A. By definition, OQ := S−1B. Show that
S−1A is a free OQ-module of finite rank. Hint: note that a DVR is also a PID and
use your first-year algebra.

(c) Consider now Σ := B \ {0} as a multiplicative system in both A and B. By
definition, K(Y ) := Σ−1B. Prove the equality Σ−1A = K(X). Conclude that the
rank of S−1A as an OQ-module (in part 2b) is equal to the degree [K(X) : K(Y )]
of f (Hint: see Homework 3 Question 6a).

(d) Prove that the natural homomorphism A/(MQA) → (S−1A)/[mQ(S−1A)] is an iso-
morphism, where mQ is the maximal ideal of OQ. Conclude that dimk[A/(MQA)] =
[K(X) : K(Y )]. Hint: Recall the exactness property of localization. Note: The ring
A/(MQA) is the coordinate ring of the fiber f−1(Q) as a subscheme of X (to be
defined in class shortly), and the length of the fiber is defined to be dimk[A/(MQA)].
You have thus proven that the length of the fiber is equal to the degree of f .

(e) Definition: Let P be a point in the fiber f−1(Q). The multiplicity µf (P ) of P in
the fiber of f over Q is ordP (tQ), where tQ is any uniformizing parameter of OQ. If
µf (P ) > 1, we say that P is a ramification point. Q is a branch point, if the fiber
f−1(Q) contains a ramification point.

Conclude, using Questions 1d and 2d, the equality
∑

P∈f−1(Q)

µf (P ) = [K(X) : K(Y )],

i.e., the number of points in each fiber, counted with multiplicities, is equal to the

degree of f .

Note: Assume that the field extension K(Y ) ⊂ K(X) is separable3 (automatic when
char(k) = 0 or char(k) = p and p does not divide [K(X) : K(Y )]). Then the number of
ramification points is finite. If char(k) = p, assume further that p does not divide the
multiplicity µf (P ), of any ramification point P ∈ X. One of the many characterizations
of the genus gX of a non-singular projective curve X is given by the Riemann-Hurwitz
formula: The morphism f : X → Y satisfies

(2gX − 2) = deg(f)(2gY − 2) +
∑

P∈X

(µf (P )− 1).

The ramification index µf (P ) − 1 vanishes, unless P is a ramification point, so the sum
is the number of ramification points, counted with multiplicites. The genus of P

1 is zero
and the genus of X could be determined by counting the ramification points of a non-
constant rational function f : X → P

1. In general, however, when char(k) is a prime
dividing [K(X) : K(Y )], it is possible for the morphism f to be ramified at all points of
X. See Proposition IV.2.5 in Hartshorne.

3An algebraic field extension K ⊂ L is separable, if every element α ∈ L is the root of an irreducible
polynomial F (x) ∈ K[x], such that every root of F has multiplicity 1.
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3. Let X be a non-singular projective curve and f ∈ K(X) \ k a non-constant rational
function. Prove the equality

∑
P∈X ordP (f) = 0. Hint: Interpret the number of zeroes

of f (respectively poles), counted with multiplicities, as the number of points in the fiber
over 0 (respectively ∞), of the morphism f : X → P

1.

4. (Intersection Multiplicities, Hartshorne, Problem 5.4, modified4) Let C = V (F ), D =
V (G) ⊂ A

2 be two distinct (irreducible) curves, where F,G ∈ k[X,Y ]. Given a point
P ∈ C∩D, define the intersection multiplicity (C ·D)P to be dimk

(
OA2,P/(F,G)

)
, where

OA2,P is the local ring of P in A
2.

(a) Set A := Γ(C) := k[X,Y ]/(F ) and let Ã be the integral closure of A in its quotient
field K(C). Let C̃ be the affine curve with coordinate ring Ã and ν : C̃ → C the
morphism, such that ν∗ : A ↪→ Ã is the the inclusion. C̃ is called the normalization

of C, or the resolution of singularities of C. Let P1, . . . , Pn be the points of
ν−1(P ) over P ∈ C ∩D and let g be the restriction of G to C. Prove the equality
(C ·D)P =

∑n
i=1 ordPi

(ν∗g).
Hint: Let MP ⊂ A be the maximal ideal and S := A \ MP . Regard S as a
multiplicative system in both A and Ã. Show first that (C ·D)P = dimk[AP /(g)],
where AP := S−1A is the local ring of C at P . Set ÃP := S−1Ã. Consider the

commutative diagram

0 → (g) → AP → AP /(g) → 0
α ↓ β ↓ γ ↓

0 → (ν∗g) → ÃP → ÃP /(ν
∗g) → 0.

Show that dimk[coker(α)] = dimk[coker(β)], and both are finite dimensional5 (note
that Ã is a finitely generated A-module, by Hartshorne, Theorem I.3.9A). Conclude,
using the Snake Lemma, that dimk[AP /(g)] = dimk[ÃP /(ν

∗g)]. Finally, prove the
equality dimk[ÃP /(ν

∗g)] =
∑n

i=1 ordPi
(ν∗g), using Question 1.

(b) Let µP (C) be the multiplicity of P on C in the sense of Homework 8 Problem 1.
Show that (C ·D)P ≥ µP (C) · µP (D), with strict inequality when C and D have a
common tangent direction at P . Hint: Use part 4a to reduce it to the case where
D is a line. Then exploit the symmetry of (C ·D)P .

(c) If P ∈ C, show that for all but a finite number of lines L through P , (L · C)P =
µP (C).

(d) Definition: Given two curves C, D in P
2, C 6= D, set (C ·D) :=

∑

P∈C∩D

(C ·D)P ,

where(C ·D)P is defined using a suitable affine cover6 of P
2.

If C is a curve of degree d in P
2, and if L is a line in P

2, L 6= C, show that (L·C) = d.

(e) Show that an irreducible curve C of degree d > 1 in P
2 can not have a point of

multiplicity ≥ d. When d = 3 and C is singular, conclude that it has precisely one
double point7.

4Part 4a generalizes, with the same argument, for C a curve in a smooth variety X and D a hypersurface in
X not containing C. Parts 4d and 4f generalize, with the same argument, for C a curve in A

n or P
n and D a

hypersurface not containing C. The whole problem is generalized in section I.7 of Hartshorne. Parts 4a and 4f
rely on section I.6 of Hartshorne.

5Note that the integer δP := dimk[coker(β)] is a canonical invariant of the point P , which vanishes if and
only if P is a non-singular point of C. If π : C ′ → C is the blow-up of C at P and Q ∈ π−1(P ), it can be
shown that δQ < δP . Consequently, the singularities of C can be resolved by a finite sequence of blow-ups. See
Hartshorne, Exercise IV.1.8 and Proposition V.3.8.

6We can choose homogeneous coordinates x, y, z on P
2, so that C ∩ D is contained in P

2 \ V (z) ∼= A
2.

Then the global intersection number (C, D) is the dimension of k[x, y]/(F, G), by Problem 1. The latter is the
coordinate ring of the zero-dimensional subscheme C ∩D, to be defined shortly in class.

7If char(k) 6= 2, it is not hard to further show that the singular point must be either an ordinary node or a
cusp
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(f) Let C and D be as in part 4d. Prove Bézout’s Theorem:

(C ·D) = deg(F ) · deg(G).

Hint: Everything above goes through, if D = V (G′) is reducible, G′ a homoge-
neous polynomial, such that C is not an irreducible component of D. Set f :=

G/
(∏deg(G)

i=1 Li

)
, for sufficiently general lines Li, and use Question 3.

5. (a) (The quotient of a curve by a group of automorphisms) Let X be a non-singular
projective curve over k and G a finite subgroup of automorphisms of X. Prove that
there exists a unique non-singular projective curve Y with the following property.
There exists a G-invariant morphism ϕ : X → Y of degree equal to the cardinality
|G| of G. We denote Y by X/G. Hint: Use Artin’s Theorem8 from Galois Theory.

(b) Assume that char(k) 6= 2. Let ϕ : X → Y be a morphism of degree 2 between
non-singular projective curves over k. Prove that there exists an automorphism
ι : X → X of order 2, such that ϕ ◦ ι = ι and Y is isomorphic to X/{1, ι}.

(c) Let G be a finite subgroup of PGL(2, k). Show that P
1/G is isomorphic to P

1.

(d) Let X ⊂ P
2 be the curve xd+yd+zd = 0, where d ≥ 1 and char(k) is either 0 or does

not divide d. Construct a group G of automorphisms of X, which is isomorphic to
the semi-direct product of the symmetric group on three letters and Z/dZ× Z/dZ.
Show that X/G is isomorphic to P

1. Hint: Consider first X/[Z/dZ× Z/dZ].

6. Assume char(k) 6= 2. A hyperelliptic curve X is a non-singular projective curve, which
admits a morphism ϕ : X → P

1 of degree 2.

(a) (Construction of hyperelliptic curves of genus g) Let x0, x1 be homogeneous co-
ordinates on P

1 and set x := x1/x0. Fix integers g ≥ 0 and ε ∈ {1, 2}. Let
f(x) =

∏2g+ε
i=1 (x− λi) ∈ k[x] be a polynomial of degree 2g + ε with 2g + ε distinct

roots λi. Set A := k[x, y]/(y2 − f(x)) and let K be the quotient field of A. Let
X := CK be the non-singular projective curve with function field K. Prove that X
is a hyperelliptic curve. Furthermore, the degree 2 morphism ϕ : X → P

1 may be
chosen with the set {(1, λi) : 1 ≤ i ≤ 2g+ ε} consisting of ramification points of ϕ.

(b) Let f(x) be as in part 6a, g(x) ∈ k(x) a non-zero rational function, and set L :=
k(x)[z]/(z2 − f(x)g2(x)). Show that K is isomorphic to L as k(x)-algebras.

(c) Let h ∈ k(x) be a non-constant rational function. Assume that the set B := {Q ∈
P

1 : ordQ(h) is odd} is non-empty. Show that the hyperelliptic curve X with
function field k(x)[y]/(y2 − h) admits a morphism ϕ : X → P

1 of degree 2 ramified
precisely over B. Hint: Reduce to the case of part 6a and show that the point at
infinity (0, 1) ∈ P

1 is a branch point if and only if ε = 1.

(d) Conclude, that the morphism ϕ you constructed in part 6a has precisely 2g + 2
ramification points.

(e) Set Y := V
(
y2z2g+ε−2 −

∏2g+ε
i=1 (x− λiz)

)
, where x, y, z are the homogeneous coor-

dinates on P
2. Show that there exists a birational surjective morphism ψ : X → Y ,

where X is the curve in part 6a. Show that Y has precisely one singular point if
g > 1, or if g = 1 and ε = 2.

(f) Show that when g = 1, the hyperelliptic curve in part 6a is isomorphic to a smooth
plane cubic (both when ε = 1 and when ε = 2).

8
Artin’s Theorem: (see Lang’s Algebra Text) Let K be a field and G a finite group of automorphisms

of K of order |G|. Let KG ⊂ K be the fixed subfield. Then K is a finite Galois (i.e., normal and separable)
extension of KG, [K : KG] = |G|, and Gal(K/KG) = G.
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