
Algebraic Geometry Homework Assignment 8, Fall 2007
Due Tuesday, November 27.

The field k below is assumed algebraically closed.

1. (Hartshorne, Problem I.5.6, Blowing up curve singularities). Let Y = V (f) be an
affine plane curve and P = (a, b) a point of A

2. Write f = fµ + fµ+1 + . . . + fd,
where fi is a homogeneous polynomial of degree i in (x−a) and (y−b), and fµ 6= 0.
Recall that the multiplicity of P on Y is µ. If µ > 0, the tangent directions are
cut out by the linear factors of fµ. A double point is a point of multiplicity 2.
We define a node (also called an ordinary double point) to be a double point with

distinct tangent directions. Denote by ϕ : Ỹ → Y the morphism of blowing-up
P ∈ Y .

(a) Let Y be the cuspidal curve V (y2 − x3) or the nodal curve V (x6 + y6 − xy)

from Homework 7 question 6. Show that the curve Ỹ , obtained by blowing
up Y at the point O := (0, 0), is non-singular. Note: The term cusp is defined
in Exercise I.5.14 part d in Hartshorne. It is characterised also as a double
point planar singularity p ∈ Y , such that ϕ−1(P ) consists of a single point

P̃ ∈ Ỹ and Ỹ is non-singular at P̃ .

(b) Let P be a node on a plane curve Y . Show that ϕ−1(P ) consists of two

distinct non-singular points on Ỹ . We say that “blowing-up P resolves the
singularity at P”.

(c) Let P = (0, 0) be the tacnode of Y = V (x4 + y4 − x2) from Homework 7
question 6. Show that ϕ−1(P ) is a node. Using 1b we see that the tacnode
can be resolved by two succesive blowing-up.

(d) Let Y be the plane curve V (y3 − x5), which has a higher order cusp at O.
Show that O is a triple point; that blowing-up O gives rise to a double point,
and that one further blowing-up resolves the singularity.

2. (Hartshorne, Problem I.5.7) Let Y ⊂ P
2 be a non-singular plane curve of degree

> 1, defined by the equation f(x, y, z) = 0. Let X ⊂ A
3 be the affine variety

defined by f (this is the cone over Y ). Let P = (0, 0, 0) be the vertex of the cone

and ϕ : X̃ → X the blowing-up of X at P .

(a) Show that P is the only singular point of X.

(b) Show that X̃ is non-singular (cover it with open affine subsets).

(c) Show that ϕ−1(P ) is isomorphic to Y .

3. (Hartshorne, Problem I.5.8)

(a) (Euler’s Lemma) Let f be a homogeneous polynomial of degree m in the vari-

ables x0, . . . , xn. Show that
∑n

i=0 xi

(
∂f

∂xi

)
= m · f . Conclude, in particular,

that if char(k) = 0 or does not divide m, and the partials ∂f

∂xi
, 0 ≤ i ≤ n, all

vanish at a point P ∈ P
n, then P belongs to V (f).
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(b) Let Y ⊂ P
n be a projective variety of dimension r. Let f1, . . . , ft ∈ S =

k[x0, . . . , xn] be homogeneous polynomials which generate I(Y ). Let P =
(a0, . . . , an) be a point of Y . Show that P is a non-singular point of Y , if and

only if the rank of the matrix
(

∂fi

∂xj
(a0, . . . , an)

)
is n− r. Hint:

i. Show that this rank is independent of the homogeneous coordinates cho-
sen for P .

ii. Pass to an open affine Ui ⊂ P
n containing P and use the affine Jacobian

matrix.

iii. Use part 3a.

4. (a) Let f, g ∈ k[x0, x1, x2] be homogeneous polynomial of positive degree. Assume
that both f and g vanish at the point P ∈ P

2. Set h := fg. Prove that
∂h
∂xi

(P ) = 0, for 0 ≤ i ≤ 2.

(b) (Hartshorne, Problem I.5.9) Let f ∈ k[x0, x1, x2] be a homogeneous polyno-
mial, Y := V (f) ⊂ P

2 the algebraic set defined by f , and suppose that for
every P ∈ Y we have ∂f

∂xi
(P ) 6= 0, for some i. Show that f is irreducible, and

hence that Y is a non-singular variety). Hint: Use problem 8 in Homework
5.

(c) (Hartshorne, Problem I.5.5) For every degree d > 0, and for every p = 0 or
a prime number, give the equation of a non-singular curve of degree d in P
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over a field k of characteristic p.

5. (Hartshorne, Problem I.5.12 part c) Assume that char(k) 6= 2, and letQ := V (f) ⊂
P

n, where f(x0, . . . , xn) = x2
0 + · · · + x2

r, 2 ≤ r ≤ n. Recall that any irreducible
homogeneous polynomial of degree 2 is equivalent to such an f , after a suitable
linear change of variables (Homework 3 Question 3). Show that Q is non-singular,
if r = n, and the singular locus Sing(Q) is a P

n−r−1 linearly embedded in P
n, if

r < n.

6. (Hartshorne, Problem I.5.15 part b, modified) Let S := k[X, Y, Z], and denote by
H(d, 2) := PSd the parameter variety of all curves of degree d in P

2, as in Homework
7 Question 5 and Homework 5 Question 5. Note that H(d, 2) is isomorphic to P

N ,

N =

(
d+ 2

2

)
− 1. Show that the irreducible non-singular curves of degree d

correspond to the points of a non-empty Zariski open subset of H(d, 2).
Hint: Let F (X, Y,X, T0, . . . , TN) be the defining bi-homogeneous equation of the
universal curve C in P

2 × H(d, 2), as in HW5 Q5. Consider the bi-homogeneous
polynomials ∂F

∂X
, ∂F

∂Y
, ∂F

∂Z
and use the completeness of P

2 (Mumford, section I.9
Theorem 1), together with questions 3 and 4. Note: The results of questions 4
and 6 generalize for hypersurfaces in P

n, using the same argument.

7. Blowing-up points of projective varieties: We defined in class the blowing-up ϕ :
Ỹ → Y of a point P in any variety Y . Here you will show that if Y is projective
then Ỹ is projective.

(a) Let n ≥ 1, P the point (1, 0, . . . , 0) in P
n, and π : P

n \ {P} → P
n−1 the

projection, given by π(a0, . . . , an) = (a1, . . . , an), as in Homework 4 question
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2. Let x0, . . . , xn be the homogeneous coordinates of P
n and y1, . . . , yn those

of P
n−1. Prove the following statements (reduce to the affine case).

i. The closure X of the graph of π in P
n × P

n−1 is equal to V (J), where J
is the bi-homogeneous ideal generated by xiyj − xjyi, 1 ≤ i, j ≤ n.

ii. The restriction ϕ : X → P
n of the first projection restricts to an isomor-

phism X \ ϕ−1(P ) → P
n \ {P}.

iii. The second projection ψ : X → P
n−1 restricts to an isomorphism from

ϕ−1(P ) onto P
n−1.

iv. X is a closed and non-singular subvariety (irreducible) of P
n × P

n−1.

Definition: Given a subvariety Y of P
n containing the point P , let Ỹ be the

closure in X of ϕ−1(Y \ {P}). Denote by ϕ : Ỹ → Y also the restriction of

the morphism ϕ. Then Ỹ is the blowing-up of Y at P .

(b) Find bihomogeneous equations for the blow-up C̃ ⊂ P
2 × P

1 of the point

(1, 0, 0) on C := V (y2x − z2(x + z)) ⊂ P
2. Show that C̃ is a non-singular

projective curve and the second projection ψ : C̃ → P
1 is an isomorphism.

8. (a) Let X be a compact Riemann surface and f a non-zero element of its function
field K(X). Prove that ordP (f) = 0, for all but finitely many points of X.
Define the degree1 deg(f) of f as the sum

∑
{P∈X : ordP (f)>0} ordP (f) of all

positive valuations of f . Show that deg : K(X)\{0} → Z is a homomorphism
from the multiplicative group of non-zero rational functions to the integers.

(b) Automorphisms of P
1 (Hartshorne, section I.6 problem 6.6 page 47). Think

of P
1 as A

1 ∪ {∞}. Then we define a fractional linear transformation of P
1

by sending x 7→ (ax + b)/(cx + d), for a, b, c, d ∈ k, ad− bc 6= 0.

i. Show that a fractional linear transformation induces an automorphism
of P

1. We denote the group of oll these fractional linear transformations
by PGL(2).

ii. Let Aut(P1) denote the group of all automorphisms of P
1. Show that

Aut(P1) is isomorphic to Aut(k(x)), the group of all automorphisms of
k(x) as a k-algebra.

iii. Now show that every automorphism of k(x) is a fractional linear trans-
formation, and deduce that PGL(2) → Aut(P1) is an isomorphism. See
Example II.7.1.1 in Hartshorne for the generalization to the case of P

n.
Hint: Note that the homomorphism deg : k(x) \ {0} → Z is Aut(P1)-
invariant.

9. Hartshorne, section I.6 problem 6.7 page 47. Let P1, . . . , Pr, Q1, . . . , Qs be distinct
points of A

1. Show that if A
1 \ {P1, . . . , Pr} is isomorphic to A

1 \ {Q1, . . . , Qs},
then r = s. Is the converse true?

1In the next homework assignment, deg(f) will be shown to be equal to the degree of the morphism
X → P

1 induced by f .
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