Algebraic Geometry Homework Assignment 8, Fall 2007
Due Tuesday, November 27.

The field k below is assumed algebraically closed.

1. (Hartshorne, Problem 1.5.6, Blowing up curve singularities). Let Y = V(f) be an
affine plane curve and P = (a,b) a point of A% Write f = f, + fu41+ ... + fa,
where f; is a homogeneous polynomial of degree i in (x —a) and (y—»b), and f, # 0.
Recall that the multiplicity of P on Y is u. If p > 0, the tangent directions are
cut out by the linear factors of f,. A double point is a point of multiplicity 2.
We define a node (also called an ordinary double point) to be a double point with

distinct tangent directions. Denote by ¢ : Y — Y the morphism of blowing-up
PeY.

(a) Let Y be the cuspidal curve V(y* — 2?) or the nodal curve V (z® + ¢° — xy)
from Homework 7 question 6. Show that the curve 17, obtained by blowing
up Y at the point O := (0, 0), is non-singular. Note: The term cusp is defined
in Exercise 1.5.14 part d in Hartshorne. It is characterised also as a double
point planar singularity p € Y, such that ¢ ~!(P) consists of a single point
PeY andY is non-singular at P.

(b) Let P be a node on a plane curve Y. Show that ¢~!(P) consists of two
distinct non-singular points on Y. We say that “blowing-up P resolves the
singularity at P”.

(c) Let P = (0,0) be the tacnode of Y = V(z* + y* — 2?) from Homework 7
question 6. Show that ¢~!(P) is a node. Using 1b we see that the tacnode
can be resolved by two succesive blowing-up.

(d) Let Y be the plane curve V(y® — x°), which has a higher order cusp at O.
Show that O is a triple point; that blowing-up O gives rise to a double point,
and that one further blowing-up resolves the singularity.

2. (Hartshorne, Problem 1.5.7) Let Y C P? be a non-singular plane curve of degree
> 1, defined by the equation f(x,y,z) = 0. Let X C A? be the affine variety
defined by f (this is the cone over V). Let P = (0,0,0) be the vertex of the cone

and ¢ : X — X the blowing-up of X at P.

(a) Show that P is the only singular point of X.
(b) Show that X is non-singular (cover it with open affine subsets).
(c) Show that ¢~'(P) is isomorphic to Y.

3. (Hartshorne, Problem 1.5.8)

(a) (Euler’s Lemma) Let f be a homogeneous polynomial of degree m in the vari-

8901-
that if char(k) = 0 or does not divide m, and the partials %, 0<i<m,all
vanish at a point P € P, then P belongs to V(f).

ables w, ..., x,. Show that Y jz; (ﬁ) = m - f. Conclude, in particular,



(b) Let Y C P™ be a projective variety of dimension r. Let fi,...,f; € S =
k[xg, ..., 2, be homogeneous polynomials which generate I(Y). Let P =
(ag, . ..,a,) be apoint of Y. Show that P is a non-singular point of Y, if and

only if the rank of the matrix <§£§ (ag, . .. ,an)> is n — r. Hint:

i. Show that this rank is independent of the homogeneous coordinates cho-
sen for P.

ii. Pass to an open affine U; C P" containing P and use the affine Jacobian
matrix.

iii. Use part 3a.

4. (a) Let f, g € klxo, x1, x2] be homogeneous polynomial of positive degree. Assume
that both f and g vanish at the point P € P2. Set h := fg. Prove that

P(P) =0, for 0<i<2.

(b) (Hartshorne, Problem 1.5.9) Let f € k[xo, 1, %2] be a homogeneous polyno-
mial, Y := V(f) C P? the algebraic set defined by f, and suppose that for
every P € Y we have g—i(P) # 0, for some 7. Show that f is irreducible, and
hence that Y is a non-singular variety). Hint: Use problem 8 in Homework

d.

(c) (Hartshorne, Problem 1.5.5) For every degree d > 0, and for every p = 0 or
a prime number, give the equation of a non-singular curve of degree d in P?
over a field k of characteristic p.

5. (Hartshorne, Problem 1.5.12 part ¢) Assume that char(k) # 2, and let Q := V(f) C
P", where f(zo,...,,) = 23+ - -+ 22, 2 < r < n. Recall that any irreducible
homogeneous polynomial of degree 2 is equivalent to such an f, after a suitable
linear change of variables (Homework 3 Question 3). Show that () is non-singular,
if 1 = n, and the singular locus Sing(Q) is a P*~"~! linearly embedded in P", if
r<n.

6. (Hartshorne, Problem 1.5.15 part b, modified) Let S := k[X,Y, Z], and denote by
H(d,2) := PS, the parameter variety of all curves of degree d in P2, as in Homework
7 Question 5 and Homework 5 Question 5. Note that H(d, 2) is isomorphic to PV,
N = d_52 — 1. Show that the irreducible non-singular curves of degree d
correspond to the points of a non-empty Zariski open subset of H(d,2).
Hint: Let F(X,Y, X, Ty,...,Ty) be the defining bi-homogeneous equation of the
universal curve C in P? x H(d,2), as in HW5 Q5. Consider the bi-homogeneous
polynomials g—;, g—{;, g—g and use the completeness of P? (Mumford, section 1.9
Theorem 1), together with questions 3 and 4. Note: The results of questions 4
and 6 generalize for hypersurfaces in P", using the same argument.

7. Blowing-up points of projective varieties: We defined in class the blowing-up ¢ :
Y — Y of a point P in any variety Y. Here you will show that if ¥ is projective
then Y is projective.

(a) Let n > 1, P the point (1,0,...,0) in P*, and 7 : P*\ {P} — P"! the
projection, given by w(ag,...,a,) = (ay,...,a,), as in Homework 4 question
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2. Let xq, ..., x, be the homogeneous coordinates of P and yq,...,y, those
of P"~1. Prove the following statements (reduce to the affine case).

i. The closure X of the graph of  in P* x P"~! is equal to V(J), where J
is the bi-homogeneous ideal generated by x;y; — x;y;, 1 <14,7 < n.
ii. The restriction ¢ : X — P" of the first projection restricts to an isomor-
phism X \ o~ }(P) — P*\ {P}.
iii. The second projection ¢ : X — P"~! restricts to an isomorphism from
o 1(P) onto P71
iv. X is a closed and non-singular subvariety (irreducible) of P™ x P,

Definition: Given a subvariety Y of P" containing the point P, let Y be the
closure in X of o~ }(Y \ {P}). Denote by ¢ : Y — Y also the restriction of

the morphism ¢. Then Y is the blowing-up of YV at P.

(b) Find bihomogeneous equations for the blow-up C C P? x P! of the point
(1,0,0) on C' := V(y?z — 2*(x + z)) C P2 Show that C is a non-singular
projective curve and the second projection 1 : C' — P! is an isomorphism.

8. (a) Let X be a compact Riemann surface and f a non-zero element of its function
field K(X). Prove that ordp(f) = 0, for all but finitely many points of X.
Define the degree! deg(f) of f as the sum Do (Pex - ordp(f)>0y Ordp(f) of all
positive valuations of f. Show that deg : K (X)\{0} — Z is a homomorphism
from the multiplicative group of non-zero rational functions to the integers.

(b) Automorphisms of P! (Hartshorne, section 1.6 problem 6.6 page 47). Think
of P! as A' U {oo}. Then we define a fractional linear transformation of P!
by sending = — (ax + b)/(cx 4+ d), for a,b,c,d € k, ad — bc # 0.

i. Show that a fractional linear transformation induces an automorphism
of P!. We denote the group of oll these fractional linear transformations
by PGL(2).

ii. Let Aut(P!) denote the group of all automorphisms of P'. Show that
Aut(P') is isomorphic to Aut(k(z)), the group of all automorphisms of
k(x) as a k-algebra.

iii. Now show that every automorphism of k(z) is a fractional linear trans-
formation, and deduce that PGL(2) — Aut(P!) is an isomorphism. See
Example I1.7.1.1 in Hartshorne for the generalization to the case of P".
Hint: Note that the homomorphism deg : k(z) \ {0} — Z is Aut(P')-

invariant.

9. Hartshorne, section 1.6 problem 6.7 page 47. Let Py,..., P., Q1,...,Q; be distinct
points of Al. Show that if A\ {Py,..., P} is isomorphic to A\ {Q1,...,Q.},
then r = s. Is the converse true?

n the next homework assignment, deg(f) will be shown to be equal to the degree of the morphism
X — P! induced by f.
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