Algebraic Geometry Homework Assignment 8, Fall 2007 Due Tuesday, November 27.

The field k below is assumed algebraically closed.

- 1. (Hartshorne, Problem I.5.6, Blowing up curve singularities). Let Y = V(f) be an affine plane curve and P = (a, b) a point of \mathbb{A}^2 . Write $f = f_{\mu} + f_{\mu+1} + \ldots + f_d$, where f_i is a homogeneous polynomial of degree i in (x-a) and (y-b), and $f_{\mu} \neq 0$. Recall that the multiplicity of P on Y is μ . If $\mu > 0$, the tangent directions are cut out by the linear factors of f_{μ} . A double point is a point of multiplicity 2. We define a node (also called an ordinary double point) to be a double point with distinct tangent directions. Denote by $\varphi : \tilde{Y} \to Y$ the morphism of blowing-up $P \in Y$.
 - (a) Let Y be the cuspidal curve $V(y^2 x^3)$ or the nodal curve $V(x^6 + y^6 xy)$ from Homework 7 question 6. Show that the curve \tilde{Y} , obtained by blowing up Y at the point O := (0, 0), is non-singular. Note: The term *cusp* is defined in Exercise I.5.14 part d in Hartshorne. It is characterised also as a double point planar singularity $p \in Y$, such that $\varphi^{-1}(P)$ consists of a single point $\tilde{P} \in \tilde{Y}$ and \tilde{Y} is non-singular at \tilde{P} .
 - (b) Let P be a node on a plane curve Y. Show that $\varphi^{-1}(P)$ consists of two distinct non-singular points on \widetilde{Y} . We say that "blowing-up P resolves the singularity at P".
 - (c) Let P = (0,0) be the tacnode of $Y = V(x^4 + y^4 x^2)$ from Homework 7 question 6. Show that $\varphi^{-1}(P)$ is a node. Using 1b we see that the tacnode can be resolved by two succesive blowing-up.
 - (d) Let Y be the plane curve $V(y^3 x^5)$, which has a higher order cusp at O. Show that O is a triple point; that blowing-up O gives rise to a double point, and that one further blowing-up resolves the singularity.
- 2. (Hartshorne, Problem I.5.7) Let $Y \subset \mathbb{P}^2$ be a non-singular plane curve of degree > 1, defined by the equation f(x, y, z) = 0. Let $X \subset \mathbb{A}^3$ be the affine variety defined by f (this is the cone over Y). Let P = (0, 0, 0) be the vertex of the cone and $\varphi : \widetilde{X} \to X$ the blowing-up of X at P.
 - (a) Show that P is the only singular point of X.
 - (b) Show that \widetilde{X} is non-singular (cover it with open affine subsets).
 - (c) Show that $\varphi^{-1}(P)$ is isomorphic to Y.
- 3. (Hartshorne, Problem I.5.8)
 - (a) (Euler's Lemma) Let f be a homogeneous polynomial of degree m in the variables x_0, \ldots, x_n . Show that $\sum_{i=0}^n x_i \left(\frac{\partial f}{\partial x_i}\right) = m \cdot f$. Conclude, in particular, that if char(k) = 0 or does not divide m, and the partials $\frac{\partial f}{\partial x_i}$, $0 \le i \le n$, all vanish at a point $P \in \mathbb{P}^n$, then P belongs to V(f).

- (b) Let $Y \subset \mathbb{P}^n$ be a projective variety of dimension r. Let $f_1, \ldots, f_t \in S = k[x_0, \ldots, x_n]$ be homogeneous polynomials which generate I(Y). Let $P = (a_0, \ldots, a_n)$ be a point of Y. Show that P is a non-singular point of Y, if and only if the rank of the matrix $\left(\frac{\partial f_i}{\partial x_j}(a_0, \ldots, a_n)\right)$ is n r. Hint:
 - i. Show that this rank is independent of the homogeneous coordinates chosen for P.
 - ii. Pass to an open affine $U_i \subset \mathbb{P}^n$ containing P and use the affine Jacobian matrix.
 - iii. Use part 3a.
- 4. (a) Let $f, g \in k[x_0, x_1, x_2]$ be homogeneous polynomial of positive degree. Assume that both f and g vanish at the point $P \in \mathbb{P}^2$. Set h := fg. Prove that $\frac{\partial h}{\partial x_i}(P) = 0$, for $0 \le i \le 2$.
 - (b) (Hartshorne, Problem I.5.9) Let $f \in k[x_0, x_1, x_2]$ be a homogeneous polynomial, $Y := V(f) \subset \mathbb{P}^2$ the algebraic set defined by f, and suppose that for every $P \in Y$ we have $\frac{\partial f}{\partial x_i}(P) \neq 0$, for some i. Show that f is irreducible, and hence that Y is a non-singular variety). Hint: Use problem 8 in Homework 5.
 - (c) (Hartshorne, Problem I.5.5) For every degree d > 0, and for every p = 0 or a prime number, give the equation of a non-singular curve of degree d in \mathbb{P}^2 over a field k of characteristic p.
- 5. (Hartshorne, Problem I.5.12 part c) Assume that $char(k) \neq 2$, and let $Q := V(f) \subset \mathbb{P}^n$, where $f(x_0, \ldots, x_n) = x_0^2 + \cdots + x_r^2$, $2 \leq r \leq n$. Recall that any irreducible homogeneous polynomial of degree 2 is equivalent to such an f, after a suitable linear change of variables (Homework 3 Question 3). Show that Q is non-singular, if r = n, and the singular locus Sing(Q) is a \mathbb{P}^{n-r-1} linearly embedded in \mathbb{P}^n , if r < n.
- 6. (Hartshorne, Problem I.5.15 part b, modified) Let S := k[X, Y, Z], and denote by $\mathcal{H}(d, 2) := \mathbb{P}S_d$ the parameter variety of all curves of degree d in \mathbb{P}^2 , as in Homework 7 Question 5 and Homework 5 Question 5. Note that $\mathcal{H}(d, 2)$ is isomorphic to \mathbb{P}^N , $N = \begin{pmatrix} d+2\\ 2 \end{pmatrix} 1$. Show that the irreducible non-singular curves of degree d correspond to the points of a non-empty Zariski open subset of $\mathcal{H}(d, 2)$. Hint: Let $F(X, Y, X, T_0, \ldots, T_N)$ be the defining bi-homogeneous equation of the universal curve \mathcal{C} in $\mathbb{P}^2 \times \mathcal{H}(d, 2)$, as in HW5 Q5. Consider the bi-homogeneous polynomials $\frac{\partial F}{\partial X}$, $\frac{\partial F}{\partial Y}$, $\frac{\partial F}{\partial Z}$ and use the completeness of \mathbb{P}^2 (Mumford, section I.9 Theorem 1), together with questions 3 and 4. Note: The results of questions 4 and 6 generalize for hypersurfaces in \mathbb{P}^n , using the same argument.
- 7. Blowing-up points of projective varieties: We defined in class the blowing-up φ : $\widetilde{Y} \to Y$ of a point P in any variety Y. Here you will show that if Y is projective then \widetilde{Y} is projective.
 - (a) Let $n \ge 1$, P the point (1, 0, ..., 0) in \mathbb{P}^n , and $\pi : \mathbb{P}^n \setminus \{P\} \to \mathbb{P}^{n-1}$ the projection, given by $\pi(a_0, ..., a_n) = (a_1, ..., a_n)$, as in Homework 4 question

2. Let x_0, \ldots, x_n be the homogeneous coordinates of \mathbb{P}^n and y_1, \ldots, y_n those of \mathbb{P}^{n-1} . Prove the following statements (reduce to the affine case).

- i. The closure X of the graph of π in $\mathbb{P}^n \times \mathbb{P}^{n-1}$ is equal to V(J), where J is the bi-homogeneous ideal generated by $x_i y_j x_j y_i$, $1 \le i, j \le n$.
- ii. The restriction $\varphi : X \to \mathbb{P}^n$ of the first projection restricts to an isomorphism $X \setminus \varphi^{-1}(P) \to \mathbb{P}^n \setminus \{P\}.$
- iii. The second projection $\psi: X \to \mathbb{P}^{n-1}$ restricts to an isomorphism from $\varphi^{-1}(P)$ onto \mathbb{P}^{n-1} .
- iv. X is a closed and non-singular subvariety (irreducible) of $\mathbb{P}^n \times \mathbb{P}^{n-1}$.

Definition: Given a subvariety Y of \mathbb{P}^n containing the point P, let \widetilde{Y} be the closure in X of $\varphi^{-1}(Y \setminus \{P\})$. Denote by $\varphi : \widetilde{Y} \to Y$ also the restriction of the morphism φ . Then \widetilde{Y} is the blowing-up of Y at P.

- (b) Find bihomogeneous equations for the blow-up $\widetilde{C} \subset \mathbb{P}^2 \times \mathbb{P}^1$ of the point (1,0,0) on $C := V(y^2x z^2(x+z)) \subset \mathbb{P}^2$. Show that \widetilde{C} is a non-singular projective curve and the second projection $\psi : \widetilde{C} \to \mathbb{P}^1$ is an isomorphism.
- 8. (a) Let X be a compact Riemann surface and f a non-zero element of its function field K(X). Prove that $\operatorname{ord}_P(f) = 0$, for all but finitely many points of X. Define the $degree^1 \operatorname{deg}(f)$ of f as the sum $\sum_{\{P \in X : \operatorname{ord}_P(f) > 0\}} \operatorname{ord}_P(f)$ of all positive valuations of f. Show that $\operatorname{deg} : K(X) \setminus \{0\} \to \mathbb{Z}$ is a homomorphism from the multiplicative group of non-zero rational functions to the integers.
 - (b) Automorphisms of \mathbb{P}^1 (Hartshorne, section I.6 problem 6.6 page 47). Think of \mathbb{P}^1 as $\mathbb{A}^1 \cup \{\infty\}$. Then we define a fractional linear transformation of \mathbb{P}^1 by sending $x \mapsto (ax+b)/(cx+d)$, for $a, b, c, d \in k$, $ad - bc \neq 0$.
 - i. Show that a fractional linear transformation induces an automorphism of \mathbb{P}^1 . We denote the group of oll these fractional linear transformations by PGL(2).
 - ii. Let $\operatorname{Aut}(\mathbb{P}^1)$ denote the group of all automorphisms of \mathbb{P}^1 . Show that $\operatorname{Aut}(\mathbb{P}^1)$ is isomorphic to $\operatorname{Aut}(k(x))$, the group of all automorphisms of k(x) as a k-algebra.
 - iii. Now show that every automorphism of k(x) is a fractional linear transformation, and deduce that $PGL(2) \to \operatorname{Aut}(\mathbb{P}^1)$ is an isomorphism. See Example II.7.1.1 in Hartshorne for the generalization to the case of \mathbb{P}^n . Hint: Note that the homomorphism deg : $k(x) \setminus \{0\} \to \mathbb{Z}$ is $\operatorname{Aut}(\mathbb{P}^1)$ invariant.
- 9. Hartshorne, section I.6 problem 6.7 page 47. Let $P_1, \ldots, P_r, Q_1, \ldots, Q_s$ be distinct points of \mathbb{A}^1 . Show that if $\mathbb{A}^1 \setminus \{P_1, \ldots, P_r\}$ is isomorphic to $\mathbb{A}^1 \setminus \{Q_1, \ldots, Q_s\}$, then r = s. Is the converse true?

¹In the next homework assignment, deg(f) will be shown to be equal to the degree of the morphism $X \to \mathbb{P}^1$ induced by f.