The field k below is assumed algebraically closed.

1. (Hartshorne, Problem I.5.6, Blowing up curve singularities). Let $Y=V(f)$ be an affine plane curve and $P=(a, b)$ a point of \mathbb{A}^{2}. Write $f=f_{\mu}+f_{\mu+1}+\ldots+f_{d}$, where f_{i} is a homogeneous polynomial of degree i in $(x-a)$ and $(y-b)$, and $f_{\mu} \neq 0$. Recall that the multiplicity of P on Y is μ. If $\mu>0$, the tangent directions are cut out by the linear factors of f_{μ}. A double point is a point of multiplicity 2 . We define a node (also called an ordinary double point) to be a double point with distinct tangent directions. Denote by $\varphi: \widetilde{Y} \rightarrow Y$ the morphism of blowing-up $P \in Y$.
(a) Let Y be the cuspidal curve $V\left(y^{2}-x^{3}\right)$ or the nodal curve $V\left(x^{6}+y^{6}-x y\right)$ from Homework 7 question 6. Show that the curve \widetilde{Y}, obtained by blowing up Y at the point $O:=(0,0)$, is non-singular. Note: The term cusp is defined in Exercise I.5.14 part d in Hartshorne. It is characterised also as a double point planar singularity $p \in Y$, such that $\varphi^{-1}(P)$ consists of a single point $\widetilde{P} \in \widetilde{Y}$ and \widetilde{Y} is non-singular at \widetilde{P}.
(b) Let P be a node on a plane curve Y. Show that $\varphi^{-1}(P)$ consists of two distinct non-singular points on \widetilde{Y}. We say that "blowing-up P resolves the singularity at P ".
(c) Let $P=(0,0)$ be the tacnode of $Y=V\left(x^{4}+y^{4}-x^{2}\right)$ from Homework 7 question 6. Show that $\varphi^{-1}(P)$ is a node. Using 1 b we see that the tacnode can be resolved by two succesive blowing-up.
(d) Let Y be the plane curve $V\left(y^{3}-x^{5}\right)$, which has a higher order cusp at O. Show that O is a triple point; that blowing-up O gives rise to a double point, and that one further blowing-up resolves the singularity.
2. (Hartshorne, Problem I.5.7) Let $Y \subset \mathbb{P}^{2}$ be a non-singular plane curve of degree >1, defined by the equation $f(x, y, z)=0$. Let $X \subset \mathbb{A}^{3}$ be the affine variety defined by f (this is the cone over Y). Let $P=(0,0,0)$ be the vertex of the cone and $\varphi: \widetilde{X} \rightarrow X$ the blowing-up of X at P.
(a) Show that P is the only singular point of X.
(b) Show that \tilde{X} is non-singular (cover it with open affine subsets).
(c) Show that $\varphi^{-1}(P)$ is isomorphic to Y.
3. (Hartshorne, Problem I.5.8)
(a) (Euler's Lemma) Let f be a homogeneous polynomial of degree m in the variables x_{0}, \ldots, x_{n}. Show that $\sum_{i=0}^{n} x_{i}\left(\frac{\partial f}{\partial x_{i}}\right)=m \cdot f$. Conclude, in particular, that if $\operatorname{char}(k)=0$ or does not divide m, and the partials $\frac{\partial f}{\partial x_{i}}, 0 \leq i \leq n$, all vanish at a point $P \in \mathbb{P}^{n}$, then P belongs to $V(f)$.
(b) Let $Y \subset \mathbb{P}^{n}$ be a projective variety of dimension r. Let $f_{1}, \ldots, f_{t} \in S=$ $k\left[x_{0}, \ldots, x_{n}\right]$ be homogeneous polynomials which generate $I(Y)$. Let $P=$ $\left(a_{0}, \ldots, a_{n}\right)$ be a point of Y. Show that P is a non-singular point of Y, if and only if the rank of the matrix $\left(\frac{\partial f_{i}}{\partial x_{j}}\left(a_{0}, \ldots, a_{n}\right)\right)$ is $n-r$. Hint:
i. Show that this rank is independent of the homogeneous coordinates chosen for P.
ii. Pass to an open affine $U_{i} \subset \mathbb{P}^{n}$ containing P and use the affine Jacobian matrix.
iii. Use part 3a.
4. (a) Let $f, g \in k\left[x_{0}, x_{1}, x_{2}\right]$ be homogeneous polynomial of positive degree. Assume that both f and g vanish at the point $P \in \mathbb{P}^{2}$. Set $h:=f g$. Prove that $\frac{\partial h}{\partial x_{i}}(P)=0$, for $0 \leq i \leq 2$.
(b) (Hartshorne, Problem I.5.9) Let $f \in k\left[x_{0}, x_{1}, x_{2}\right]$ be a homogeneous polynomial, $Y:=V(f) \subset \mathbb{P}^{2}$ the algebraic set defined by f, and suppose that for every $P \in Y$ we have $\frac{\partial f}{\partial x_{i}}(P) \neq 0$, for some i. Show that f is irreducible, and hence that Y is a non-singular variety). Hint: Use problem 8 in Homework 5.
(c) (Hartshorne, Problem I.5.5) For every degree $d>0$, and for every $p=0$ or a prime number, give the equation of a non-singular curve of degree d in \mathbb{P}^{2} over a field k of characteristic p.
5. (Hartshorne, Problem I.5.12 part c) Assume that $\operatorname{char}(k) \neq 2$, and let $Q:=V(f) \subset$ \mathbb{P}^{n}, where $f\left(x_{0}, \ldots, x_{n}\right)=x_{0}^{2}+\cdots+x_{r}^{2}, 2 \leq r \leq n$. Recall that any irreducible homogeneous polynomial of degree 2 is equivalent to such an f, after a suitable linear change of variables (Homework 3 Question 3). Show that Q is non-singular, if $r=n$, and the singular locus $\operatorname{Sing}(Q)$ is a \mathbb{P}^{n-r-1} linearly embedded in \mathbb{P}^{n}, if $r<n$.
6. (Hartshorne, Problem I.5.15 part b, modified) Let $S:=k[X, Y, Z]$, and denote by $\mathcal{H}(d, 2):=\mathbb{P} S_{d}$ the parameter variety of all curves of degree d in \mathbb{P}^{2}, as in Homework 7 Question 5 and Homework 5 Question 5. Note that $\mathcal{H}(d, 2)$ is isomorphic to \mathbb{P}^{N}, $N=\binom{d+2}{2}-1$. Show that the irreducible non-singular curves of degree d correspond to the points of a non-empty Zariski open subset of $\mathcal{H}(d, 2)$.
Hint: Let $F\left(X, Y, X, T_{0}, \ldots, T_{N}\right)$ be the defining bi-homogeneous equation of the universal curve \mathcal{C} in $\mathbb{P}^{2} \times \mathcal{H}(d, 2)$, as in HW5 Q5. Consider the bi-homogeneous polynomials $\frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y}, \frac{\partial F}{\partial Z}$ and use the completeness of \mathbb{P}^{2} (Mumford, section I. 9 Theorem 1), together with questions 3 and 4. Note: The results of questions 4 and 6 generalize for hypersurfaces in \mathbb{P}^{n}, using the same argument.
7. Blowing-up points of projective varieties: We defined in class the blowing-up φ : $\widetilde{Y} \rightarrow Y$ of a point P in any variety Y. Here you will show that if Y is projective then \widetilde{Y} is projective.
(a) Let $n \geq 1, P$ the point $(1,0, \ldots, 0)$ in \mathbb{P}^{n}, and $\pi: \mathbb{P}^{n} \backslash\{P\} \rightarrow \mathbb{P}^{n-1}$ the projection, given by $\pi\left(a_{0}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{n}\right)$, as in Homework 4 question
8. Let x_{0}, \ldots, x_{n} be the homogeneous coordinates of \mathbb{P}^{n} and y_{1}, \ldots, y_{n} those of \mathbb{P}^{n-1}. Prove the following statements (reduce to the affine case).
i. The closure X of the graph of π in $\mathbb{P}^{n} \times \mathbb{P}^{n-1}$ is equal to $V(J)$, where J is the bi-homogeneous ideal generated by $x_{i} y_{j}-x_{j} y_{i}, 1 \leq i, j \leq n$.
ii. The restriction $\varphi: X \rightarrow \mathbb{P}^{n}$ of the first projection restricts to an isomorphism $X \backslash \varphi^{-1}(P) \rightarrow \mathbb{P}^{n} \backslash\{P\}$.
iii. The second projection $\psi: X \rightarrow \mathbb{P}^{n-1}$ restricts to an isomorphism from $\varphi^{-1}(P)$ onto \mathbb{P}^{n-1}.
iv. X is a closed and non-singular subvariety (irreducible) of $\mathbb{P}^{n} \times \mathbb{P}^{n-1}$.

Definition: Given a subvariety Y of \mathbb{P}^{n} containing the point P, let \widetilde{Y} be the closure in X of $\varphi^{-1}(Y \backslash\{P\})$. Denote by $\varphi: \widetilde{Y} \rightarrow Y$ also the restriction of the morphism φ. Then \widetilde{Y} is the blowing-up of Y at P.
(b) Find bihomogeneous equations for the blow-up $\widetilde{C} \subset \mathbb{P}^{2} \times \mathbb{P}^{1}$ of the point $(1,0,0)$ on $C:=V\left(y^{2} x-z^{2}(x+z)\right) \subset \mathbb{P}^{2}$. Show that \widetilde{C} is a non-singular projective curve and the second projection $\psi: \widetilde{C} \rightarrow \mathbb{P}^{1}$ is an isomorphism.
8. (a) Let X be a compact Riemann surface and f a non-zero element of its function field $K(X)$. Prove that $\operatorname{ord}_{P}(f)=0$, for all but finitely many points of X. Define the degree ${ }^{1} \operatorname{deg}(f)$ of f as the sum $\sum_{\left\{P \in X: \operatorname{ord}_{P}(f)>0\right\}} \operatorname{ord}_{P}(f)$ of all positive valuations of f. Show that deg : $K(X) \backslash\{0\} \rightarrow \mathbb{Z}$ is a homomorphism from the multiplicative group of non-zero rational functions to the integers.
(b) Automorphisms of \mathbb{P}^{1} (Hartshorne, section I. 6 problem 6.6 page 47). Think of \mathbb{P}^{1} as $\mathbb{A}^{1} \cup\{\infty\}$. Then we define a fractional linear transformation of \mathbb{P}^{1} by sending $x \mapsto(a x+b) /(c x+d)$, for $a, b, c, d \in k, a d-b c \neq 0$.
i. Show that a fractional linear transformation induces an automorphism of \mathbb{P}^{1}. We denote the group of oll these fractional linear transformations by $P G L(2)$.
ii. Let $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ denote the group of all automorphisms of \mathbb{P}^{1}. Show that $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ is isomorphic to $\operatorname{Aut}(k(x))$, the group of all automorphisms of $k(x)$ as a k-algebra.
iii. Now show that every automorphism of $k(x)$ is a fractional linear transformation, and deduce that $P G L(2) \rightarrow \operatorname{Aut}\left(\mathbb{P}^{1}\right)$ is an isomorphism. See Example II.7.1.1 in Hartshorne for the generalization to the case of \mathbb{P}^{n}. Hint: Note that the homomorphism $\operatorname{deg}: k(x) \backslash\{0\} \rightarrow \mathbb{Z}$ is $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ invariant.
9. Hartshorne, section I. 6 problem 6.7 page 47. Let $P_{1}, \ldots, P_{r}, Q_{1}, \ldots, Q_{s}$ be distinct points of \mathbb{A}^{1}. Show that if $\mathbb{A}^{1} \backslash\left\{P_{1}, \ldots, P_{r}\right\}$ is isomorphic to $\mathbb{A}^{1} \backslash\left\{Q_{1}, \ldots, Q_{s}\right\}$, then $r=s$. Is the converse true?

[^0]
[^0]: ${ }^{1}$ In the next homework assignment, $\operatorname{deg}(f)$ will be shown to be equal to the degree of the morphism $X \rightarrow \mathbb{P}^{1}$ induced by f.

