
Algebraic Geometry Homework Assignment 7, Fall 2007
Due Thursday, November 15.

The field k below is assumed algebraically closed.

1. Show that if X and Y are complete varieties, then X × Y is a complete variety.

2. Let φ : V1 → V2 be a morphism from a complete variety V1 to a variety V2, X a
closed subset of V1, Y := φ(X), and f : X → Y the restriction of φ. (The set-up
is clumsy, since we have not defined yet morphisms from arbitrary closed subsets
of varieties). Assume that i) Y is irreducible, and ii) all fibers of f are irreducible
and of the same dimension d. Prove that X is irreducible.
Note: Compare with Problem 4 in Homework 5. Hint: Let X1, . . . , Xt be the
irreducible components of X. Prove first that f(Xi) = Y for some Xi. Next
prove that we may choose such Xi of dimension d + dim(Y ). Finally prove that if
f(Xi) = Y and dim(Xi) = d + dim(Y ), then X = Xi.

3. Construction of the Grasmannian variety G(r, n): Let V be an n-dimensional

vector space over k and
r

∧ V its exterior product. Recall that dim
(

r

∧ V
)

=

(

n

r

)

.

If {e1, . . . , en} is a basis for V , then
r

∧ V has the basis

{ei1 ∧ · · · ∧ eir : where i1 < · · · < ir and 1 ≤ ij ≤ n}. (1)

Let G(r, n) be the set of r dimensional subspaces of V . Consider the set theoretic
map

[•] : G(r, n) −→ P

(

r

∧ V
)

∼= P

0

@

n

r

1

A−1

sending an r-dimensional subspace W of V to the point [W ] ∈ P

(

r

∧ V
)

, corre-

sponding to the line
r

∧ W in
r

∧ V . The basis (1) introduces homogeneous coordi-

nates on P

(

r

∧ V
)

, called Plücker coordinates. The Plücker coordinates of [W ] can

be computed in terms of a basis {f1, . . . , fr} of W as the coefficients on the right
hand side of the following equation

f1 ∧ · · · ∧ fr =
∑

1≤i1<···<ir≤n

p[i1, . . . , ir]ei1 ∧ · · · ∧ eir .

Note that p[i1, . . . , ir] is an r × r minor of the matrix, whose columns are the

coordinate vectors of f1, . . . , fr in the chosen basis for V . A non-zero vector in
r

∧ V

is called decomposeable, if it is of the form f1 ∧ · · · ∧ fr, for some r independent

vectors in V . Denote by D(r, n) ⊂ P

(

r

∧ V
)

the subset of all lines spanned by

decomposable vectors. Clearly D(r, n) is equal to the image of [•].

(a) Let t ∈
r

∧ V be a non-zero vector and ϕt : V →
r+1
∧ V the linear homomor-

phism sending x ∈ V to t ∧ x. Prove that t is decomposable, if and only if
dim ker(ϕt) ≥ r. Hint: If dim ker(ϕt) ≥ r, we may choose the basis for V so
that ei ∈ ker(ϕt), for 1 ≤ i ≤ r.
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(b) Prove that the map [•] : G(r, n) → D(r, n) is bijective. We identify the two
sets from now on and denote both by G(r, n).

(c) Prove that G(r, n) is a Zariski closed subset of P

(

r

∧ V
)

.

(d) Let L0 := span{e1, . . . , er} and consider the map q : GL(n, k) → G(r, n)
given by T 7→ T (L0). Show that q is a surjective map and a morphism.
Hint: Explicitly describe the Plücker coordinates of q(T ) in terms of the first
r columns of the invertible matrix T .

(e) Prove that G(r, n) is an irreducible projective variety of dimension r(n − r).

(f) Let U[i1,...,ir] ⊂ P

(

r

∧ V
)

be the open subset where the Plücker coordinate

p[i1, . . . , ir] does not vanish. Prove that G(r, n) ∩ U[i1,...,ir ] is isomorphic to
A

r(n−r). Hint: Let A ⊂ GL(n) be the subgroup consisting of matrices of the

form

(

Ir 0
* In−r

)

, where Ir is the r×r identity matrix. Show that q restricts

as an isomorphism from A onto G(r, n) ∩ U[1,...,r].

4. (a) Let V be a (2k+ǫ)-dimensional vector space, where ǫ = 0 or 1, and t ∈
2
∧ V . A

standard fact from linear algebra states that there exists a basis {e1, . . . , e2k+ǫ}
of V , with respect to which t =

∑k

i=1 cie2i−1∧e2i. I) Prove that anti-symmetric
bilinear forms have even rank. II) Given a 2k-dimensional vector space V

and an element t ∈
2
∧ V , denote by T : V ∗ → V the anti-self-dual linear

transformation induced by t. The polynomial map P :
2
∧ V →

2k

∧ V , given by

t 7→ tk, is an element of Symk(
2
∧ V )∗⊗

2k

∧ V . More explicitly, if we choose
coordinates on V , then P is a polynomial of degree k in the coordinates

of
2
∧ V , called the Pffafian. On the other hand, det(T ) :=

2k

∧ T belongs to

Sym2k(
2
∧ V )∗ ⊗ (

2k

∧ V )⊗2, i.e., det :
2
∧ V → (

2k

∧ V )⊗2 is a polynomial of

degree 2k in the coordinates of
2
∧ V . Prove that the determinant is equal to

a universal non-zero constant times the square of the Pffafian.

(b) Show that a vector t ∈
2
∧ V is decomposable, if and only if t ∧ t = 0 ∈

4
∧ V .

(c) Prove that G(2, 4) is a quadric hypersurface in P
5 and find its homogeneous

quadratic equation in the Plücker coordinates.

(d) Let Q(x0, . . . , x5) be a quadratic polynomial with a non-degenerate symmetric
bilinear form. Prove that the quardic hypersurface V (Q) in P

5 is isomorphic
to G(2, 4). Hint: See problem 3 in Homework 3.

5. Assume now that V is n + 1 dimensional so that PV is isomorphic to P
n. Choose

homogeneous coordinates on PV , let S = k[x0, . . . , xn] be the homogeneous coordi-
nate ring of PV , and let Sd be its graded summand of degree d. Set H(d, n) := PSd.
A point in H(d, n) parametrizes a hypersurface of degree d in P

n. Let

I(r, n, d) ⊂ H(d, n) × G(r + 1, n + 1)

be the incidence subset, consisting of pairs (X, W ), such that the r-dimensional
linear subspace PW of P

n is contained in the hypersurface X. One easily checks
that I(r, n, d) is a Zariski closed subset of H(d, n) × G(r + 1, n + 1).
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(a) Show that the projection p2 : I(r, n, d) → G(r + 1, n + 1) is surjective and its
fiber over W ∈ G(r + 1, n + 1) is a linear subspace of H(d, n) of dimension
(

n + d

d

)

−

(

r + d

d

)

− 1. Hint: Identify Sd with SymdV ∗ and consider the

natural restriction homomorphism SymdV ∗ → SymdW ∗.

(b) Prove that I(r, n, d) is an irreducible variety of dimension (r + 1)(n − r) +
(

n + d

d

)

−

(

r + d

d

)

− 1. Hint: Consider Problem 2

(c) Prove that the image of the first projection p1 : I(r, n, d) → H(d, n) is a
closed subvariety of H(d, n). Hint: A one line argument!

(d) Assume that (n − r)(r + 1) <

(

r + d

d

)

. Prove that p1(I(r, n, d)) is a proper

subset of H(d, n). Conclude that for d ≥ 4, there is a dense open subset
H′(d, 3) in H(d, 3), such that for X ∈ H′(d, 3), the corresponding surface X

of degree d in P
3 does not contain any line.

(e) Show that every cubic surface in P
3 contains a line. Hint: Set n = 3, r = 1,

and d = 3 and note that dim I(1, 3, 3) = dimH(3, 3). Show first that the
(singular) cubic x0x1x2 − x3

3 contains only 3 lines.

(f) Find 27 lines on the Fermat cubic surface V (x3
0 + x3

1 + x3
2 + x3

3) ⊂ P
3.

Note: It can be proven that over the open subset of H(3, 3), where X is smooth,
the fiber p−1

1 (X) consists of 27 points; representing 27 lines on X.

6. (Hartshorne Exercise I.5.1) Locate the singular points of the following curves in
A

2 (assume that the characteristic of k is not equal to 2). a) x2 = x4 + y4, b)
xy = x6 + y6, c) x3 = y2 + x4 + y4, d) x2y + xy2 = x4 + y4. Sketch these curves
when k = R. A scketch is provided in Hartshorne.

7. (Hartshorne Exercise I.5.2) Locate the singular points and describe the singularities
of the following surfaces in A

2. a) xy2 = z2, b) x2 + y2 = z2, c) xy + x3 + y3 = 0.
A scketch is provided in Hartshorne.
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