The field k below is assumed algebraically closed.

1. Show that if X and Y are complete varieties, then $X \times Y$ is a complete variety.
2. Let $\phi: V_{1} \rightarrow V_{2}$ be a morphism from a complete variety V_{1} to a variety V_{2}, X a closed subset of $V_{1}, Y:=\phi(X)$, and $f: X \rightarrow Y$ the restriction of ϕ. (The set-up is clumsy, since we have not defined yet morphisms from arbitrary closed subsets of varieties). Assume that i) Y is irreducible, and ii) all fibers of f are irreducible and of the same dimension d. Prove that X is irreducible.
Note: Compare with Problem 4 in Homework 5. Hint: Let X_{1}, \ldots, X_{t} be the irreducible components of X. Prove first that $f\left(X_{i}\right)=Y$ for some X_{i}. Next prove that we may choose such X_{i} of dimension $d+\operatorname{dim}(Y)$. Finally prove that if $f\left(X_{i}\right)=Y$ and $\operatorname{dim}\left(X_{i}\right)=d+\operatorname{dim}(Y)$, then $X=X_{i}$.
3. Construction of the Grasmannian variety $G(r, n)$: Let V be an n-dimensional vector space over k and $\stackrel{r}{\wedge} V$ its exterior product. Recall that $\operatorname{dim}(\stackrel{r}{\wedge} V)=\binom{n}{r}$. If $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis for V, then $\stackrel{r}{\wedge} V$ has the basis

$$
\begin{equation*}
\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}: \text { where } i_{1}<\cdots<i_{r} \text { and } 1 \leq i_{j} \leq n\right\} \tag{1}
\end{equation*}
$$

Let $G(r, n)$ be the set of r dimensional subspaces of V. Consider the set theoretic map

$$
[\bullet]: G(r, n) \quad \longrightarrow \quad \mathbb{P}(\stackrel{r}{\wedge} V) \cong \mathbb{P}\binom{n}{r}-1
$$

sending an r-dimensional subspace W of V to the point $[W] \in \mathbb{P}(\stackrel{r}{\wedge} V)$, corresponding to the line $\stackrel{r}{\wedge} W$ in $\stackrel{r}{\wedge} V$. The basis (1) introduces homogeneous coordinates on $\mathbb{P}\left(\wedge^{r} V\right)$, called Plücker coordinates. The Plücker coordinates of $[W]$ can be computed in terms of a basis $\left\{f_{1}, \ldots, f_{r}\right\}$ of W as the coefficients on the right hand side of the following equation

$$
f_{1} \wedge \cdots \wedge f_{r}=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq n} p\left[i_{1}, \ldots, i_{r}\right] e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}
$$

Note that $p\left[i_{1}, \ldots, i_{r}\right]$ is an $r \times r$ minor of the matrix, whose columns are the coordinate vectors of f_{1}, \ldots, f_{r} in the chosen basis for V. A non-zero vector in $\stackrel{r}{\wedge} V$ is called decomposeable, if it is of the form $f_{1} \wedge \cdots \wedge f_{r}$, for some r independent vectors in V. Denote by $D(r, n) \subset \mathbb{P}(\stackrel{r}{\wedge} V)$ the subset of all lines spanned by decomposable vectors. Clearly $D(r, n)$ is equal to the image of $[\bullet]$.
(a) Let $t \in \stackrel{r}{\Lambda} V$ be a non-zero vector and $\varphi_{t}: V \xrightarrow{r+1} V$ the linear homomorphism sending $x \in V$ to $t \wedge x$. Prove that t is decomposable, if and only if $\operatorname{dim} \operatorname{ker}\left(\varphi_{t}\right) \geq r$. Hint: If $\operatorname{dim} \operatorname{ker}\left(\varphi_{t}\right) \geq r$, we may choose the basis for V so that $e_{i} \in \operatorname{ker}\left(\varphi_{t}\right)$, for $1 \leq i \leq r$.
(b) Prove that the map $[\bullet]: G(r, n) \rightarrow D(r, n)$ is bijective. We identify the two sets from now on and denote both by $G(r, n)$.
(c) Prove that $G(r, n)$ is a Zariski closed subset of $\mathbb{P}(\stackrel{r}{\wedge} V)$.
(d) Let $L_{0}:=\operatorname{span}\left\{e_{1}, \ldots, e_{r}\right\}$ and consider the map $q: G L(n, k) \rightarrow G(r, n)$ given by $T \mapsto T\left(L_{0}\right)$. Show that q is a surjective map and a morphism. Hint: Explicitly describe the Plücker coordinates of $q(T)$ in terms of the first r columns of the invertible matrix T.
(e) Prove that $G(r, n)$ is an irreducible projective variety of dimension $r(n-r)$.
(f) Let $U_{\left[i_{1}, \ldots, i_{r}\right]} \subset \mathbb{P}(\stackrel{r}{\wedge} V)$ be the open subset where the Plücker coordinate $p\left[i_{1}, \ldots, i_{r}\right]$ does not vanish. Prove that $G(r, n) \cap U_{\left[i_{1}, \ldots, i_{r}\right]}$ is isomorphic to $\mathbb{A}^{r(n-r)}$. Hint: Let $A \subset G L(n)$ be the subgroup consisting of matrices of the form $\left(\begin{array}{cc}I_{r} & 0 \\ * & I_{n-r}\end{array}\right)$, where I_{r} is the $r \times r$ identity matrix. Show that q restricts as an isomorphism from A onto $G(r, n) \cap U_{[1, \ldots, r]}$.
4. (a) Let V be a $(2 k+\epsilon)$-dimensional vector space, where $\epsilon=0$ or 1 , and $t \in \Lambda^{2} V$. A standard fact from linear algebra states that there exists a basis $\left\{e_{1}, \ldots, e_{2 k+\epsilon}\right\}$ of V, with respect to which $t=\sum_{i=1}^{k} c_{i} e_{2 i-1} \wedge e_{2 i}$. I) Prove that anti-symmetric bilinear forms have even rank. II) Given a $2 k$-dimensional vector space V and an element $t \in \wedge_{\Lambda}^{2} V$, denote by $T: V^{*} \rightarrow V$ the anti-self-dual linear transformation induced by t. The polynomial map $P: \wedge^{2} V \rightarrow{ }_{\wedge}^{2 k} V$, given by $t \mapsto t^{k}$, is an element of $\operatorname{Sym}^{k}(\stackrel{2}{\wedge} V)^{*} \otimes \stackrel{2 k}{\wedge} V$. More explicitly, if we choose coordinates on V, then P is a polynomial of degree k in the coordinates of ${ }_{\wedge}^{2} V$, called the Pffafian. On the other hand, $\operatorname{det}(T):=\wedge^{2 k} T$ belongs to $\operatorname{Sym}^{2 k}\left({ }^{2} \mathrm{\Lambda} V\right)^{*} \otimes\left({ }_{\wedge}^{2 k} V\right)^{\otimes 2}$, i.e., det $\left.:{ }^{2} V \rightarrow\left({ }^{2 k} V\right)\right)^{\otimes 2}$ is a polynomial of degree $2 k$ in the coordinates of ${ }^{2} V$. Prove that the determinant is equal to a universal non-zero constant times the square of the Pffafian.
(b) Show that a vector $t \in \Lambda^{2} V$ is decomposable, if and only if $t \wedge t=0 \wedge_{\Lambda}^{4} V$.
(c) Prove that $G(2,4)$ is a quadric hypersurface in \mathbb{P}^{5} and find its homogeneous quadratic equation in the Plücker coordinates.
(d) Let $Q\left(x_{0}, \ldots, x_{5}\right)$ be a quadratic polynomial with a non-degenerate symmetric bilinear form. Prove that the quardic hypersurface $V(Q)$ in \mathbb{P}^{5} is isomorphic to $G(2,4)$. Hint: See problem 3 in Homework 3.
5. Assume now that V is $n+1$ dimensional so that $\mathbb{P} V$ is isomorphic to \mathbb{P}^{n}. Choose homogeneous coordinates on $\mathbb{P} V$, let $S=k\left[x_{0}, \ldots, x_{n}\right]$ be the homogeneous coordinate ring of $\mathbb{P} V$, and let S_{d} be its graded summand of degree d. Set $\mathcal{H}(d, n):=\mathbb{P} S_{d}$. A point in $\mathcal{H}(d, n)$ parametrizes a hypersurface of degree d in \mathbb{P}^{n}. Let

$$
I(r, n, d) \subset \mathcal{H}(d, n) \times G(r+1, n+1)
$$

be the incidence subset, consisting of pairs (X, W), such that the r-dimensional linear subspace $\mathbb{P} W$ of \mathbb{P}^{n} is contained in the hypersurface X. One easily checks that $I(r, n, d)$ is a Zariski closed subset of $\mathcal{H}(d, n) \times G(r+1, n+1)$.
(a) Show that the projection $p_{2}: I(r, n, d) \rightarrow G(r+1, n+1)$ is surjective and its fiber over $W \in G(r+1, n+1)$ is a linear subspace of $\mathcal{H}(d, n)$ of dimension $\binom{n+d}{d}-\binom{r+d}{d}-1$. Hint: Identify S_{d} with $\operatorname{Sym}^{d} V^{*}$ and consider the natural restriction homomorphism $\operatorname{Sym}^{d} V^{*} \rightarrow \operatorname{Sym}^{d} W^{*}$.
(b) Prove that $I(r, n, d)$ is an irreducible variety of dimension $(r+1)(n-r)+$ $\binom{n+d}{d}-\binom{r+d}{d}-1$ Hint: Consider Problem 2
(c) Prove that the image of the first projection $p_{1}: I(r, n, d) \rightarrow \mathcal{H}(d, n)$ is a closed subvariety of $\mathcal{H}(d, n)$. Hint: A one line argument!
(d) Assume that $(n-r)(r+1)<\binom{r+d}{d}$. Prove that $p_{1}(I(r, n, d))$ is a proper subset of $\mathcal{H}(d, n)$. Conclude that for $d \geq 4$, there is a dense open subset $\mathcal{H}^{\prime}(d, 3)$ in $\mathcal{H}(d, 3)$, such that for $X \in \mathcal{H}^{\prime}(d, 3)$, the corresponding surface X of degree d in \mathbb{P}^{3} does not contain any line.
(e) Show that every cubic surface in \mathbb{P}^{3} contains a line. Hint: Set $n=3, r=1$, and $d=3$ and note that $\operatorname{dim} I(1,3,3)=\operatorname{dim} \mathcal{H}(3,3)$. Show first that the (singular) cubic $x_{0} x_{1} x_{2}-x_{3}^{3}$ contains only 3 lines.
(f) Find 27 lines on the Fermat cubic surface $V\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right) \subset \mathbb{P}^{3}$.

Note: It can be proven that over the open subset of $\mathcal{H}(3,3)$, where X is smooth, the fiber $p_{1}^{-1}(X)$ consists of 27 points; representing 27 lines on X.
6. (Hartshorne Exercise I.5.1) Locate the singular points of the following curves in \mathbb{A}^{2} (assume that the characteristic of k is not equal to 2). a) $x^{2}=x^{4}+y^{4}$, b) $x y=x^{6}+y^{6}$, c) $x^{3}=y^{2}+x^{4}+y^{4}$, d) $x^{2} y+x y^{2}=x^{4}+y^{4}$. Sketch these curves when $k=\mathbb{R}$. A scketch is provided in Hartshorne.
7. (Hartshorne Exercise I.5.2) Locate the singular points and describe the singularities of the following surfaces in \mathbb{A}^{2}. a) $x y^{2}=z^{2}$, b) $x^{2}+y^{2}=z^{2}$, c) $x y+x^{3}+y^{3}=0$. A scketch is provided in Hartshorne.

