The field k below is assumed algebraically closed.

1. Mumford Proposition 5 page 43: Let X and Y be varieties. Prove the equality $\operatorname{dim}(X \times Y)=\operatorname{dim}(X)+\operatorname{dim}(Y)$.
2. (a) Let Y be a closed subvariety of an affine variety X. Let R and S be the coordinate rings of X and Y. Set $N^{*}:=I(Y) / I(Y)^{2}$. Show that N^{*} is an S-module. Given a point $Q \in Y$ with maximal ideals $m_{Q} \subset R$ and $\bar{m}_{Q} \subset S$, check that we have an isomorphism $N^{*} / \bar{m}_{Q} N^{*} \cong I(Y) / m_{Q} I(Y)$ of k-vector spaces. $N^{*} / \bar{m}_{Q} N^{*}$ is called the conormal space at Q to Y in X.
(b) Show that if $I(Y)$ is generated by r elements $\left\{f_{1}, \ldots, f_{r}\right\} \subset R$, then for every point $Q \in Y$, we have the inequality $\operatorname{dim}_{k}\left[I(Y) / m_{Q} I(Y)\right] \leq r$.
Note: If $X=\mathbb{A}^{n}$, or more generally if X is smooth, and the number of generators r of $I(Y)$ is equal to $\operatorname{codim}(Y$ in $X)$, then Y is said to be a complete intersection. In that case, $I(Y) / I(Y)^{2}$ is a free S module of rank r (to be proven later in the course).
(c) Hartshorne Excercise I.1.11 (modified): Let $Y \subset \mathbb{A}^{3}$ be the image of the morphism $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}$ given by $\varphi(t)=\left(t^{3}, t^{4}, t^{5}\right)$.
i. Show that Y is a closed and irreducible subvariety of \mathbb{A}^{3} and $\operatorname{dim}(Y)=1$.
ii. Show that the ideal $I(Y)$ can not be generated by two elements. Hint: Consider the coordinate algebra $A:=k[x, y, z]$ of \mathbb{A}^{3} as a graded algebra with $\operatorname{deg}(x)=3, \operatorname{deg}(y)=4$, and $\operatorname{deg}(z)=5$. Then $\varphi^{*}: A \rightarrow k[t]$ is a graded homomorphism of graded rings. Conclude that $I(Y)$ is a graded ideal. Let $A_{\leq d}$ be the subspace of polynomials of weighted degree $\leq d$. Calculate $\operatorname{dim}\left(A_{\leq 10} \cap I(Y)\right)$ and $\operatorname{dim}\left(A_{\leq 10} \cap m_{0} I(Y)\right)$.
3. (Mumford, the last problem in section I.6) Let $Y \subset \mathbb{P}^{n}$ be defined by a homogeneous prime ideal $P \subset k\left[X_{0}, \ldots, X_{n}\right]$. Let $Y^{*} \subset \mathbb{A}^{n+1}$ be the affine cone over Y (the affine variety defined by P). Denote by $Y_{X_{i}}$ the subset of Y, where $X_{i} \neq 0$, and let $Y_{X_{i}}^{*}$ be the subset of Y^{*}, where $X_{i} \neq 0$. Show that $Y_{X_{i}}^{*}$ is isomorphic to $\left(\mathbb{A}^{1} \backslash\{0\}\right) \times Y_{X_{i}}$. Note: We used this fact in the proof of Theorem 2^{*} in section I.7.
4. Let $g l(n, k)$ be the variety of $n \times n$ matrices with entries in the field k, and let char : $g l(n, k) \rightarrow \mathbb{A}^{n}$ be the morphism, which takes a matrix A to the coefficients $\left(a_{1}, \ldots, a_{n}\right)$ of its characteristic polynomial $x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$.
(a) Prove that char is a surjective morphism, and that all its fibers are of pure dimension $n^{2}-n$. Hint: ${ }^{1}$ Use the k^{*}-action on $g l(n, k)$ and the Upper-SemiContinuity Theorem for fiber dimension, Mumford section I. 8 Corollary 3, to reduce the question to the nilpotent case.

[^0](b) Prove that all fibers of char are irreducible. Hint: Show first that each fiber is a union of finitely many $G L(n, k)$ orbits, each of which is irreducible, and precisely one of them is $\left(n^{2}-n\right)$-dimensional. You are likely to find the following standard linear algebra result helpful.
Theorem: (Jordan Decomposition Theorem) Every element $A \in g l(n, k)$ admits a unique decomposition $A=D+N$ satisfying
i. D is a diagonalizable matrix and N is a nilpotent matrix.
ii. There exists polynomials $d(x), n(x) \in k[x]$, such that $D=d(A)$ and $N=n(A)$. In particular, $D N=N D$.
5. (Springer fibers of type $\left.A_{2}\right)$ Let $X \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ be $V\left(\sum_{i=0}^{2} X_{i} Y_{i}\right)$, where X_{0}, X_{1}, $X_{2} ; Y_{0}, Y_{1}, Y_{2}$ are the bi-homogeneous coordinates on $\mathbb{P}^{2} \times \mathbb{P}^{2}$ (see problem 2 in Homework 5). X is the full flag variety $\operatorname{Flag}(1,2,3)$, if we regard a point $a:=\left(a_{0}, a_{1}, a_{2}\right)$ in the first factor as a vector, and a point $b:=\left(b_{0}, b_{1}, b_{2}\right)$ in the second factor as a linear functional, both up to a scalar factor, so that a point $(a, b) \in X$ corresponds to the flag $\operatorname{span}\{a\} \subset \operatorname{ker}(b) \subset k^{3}$. Equivalently, X is the incidence variety of pairs of a point and a line containing it. Set $\tilde{a}:=\operatorname{span}\{a\}$ and $\tilde{b}:=\operatorname{ker}(b)$. Denote by $\operatorname{sl}(3, k)$ the affine space of 3×3 traceless matrices with entries in k. Let $Y \subset s l(3, k) \times X$ be the subset
$$
Y:=\{(M, a, b): M(\tilde{a})=(0), M(\tilde{b}) \subset \tilde{a}, \text { and } \operatorname{Im}(M) \subset \tilde{b}\}
$$
and $\pi_{1}: Y \rightarrow s l(3, k)$ the first projection.
(a) Prove that Y is an irreducible algebraic subset of dimension 6. Hint: See Problems 4 and 5 in Homework 5. Note: Y is the cotangent bundle of X.
(b) Show that the image of π_{1} is the fiber $\operatorname{char}^{-1}(0)$.
(c) Show that the isomorphism class of the fiber $\pi_{1}^{-1}(A)$ depends only on the similarity class of A. Conclude that there are three types of fibers. Hint: Show that $G L(3, k)$ acts on $s l(3, k) \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ by $T(M, a, b)=\left(T M T^{-1}, T(a), b T^{-1}\right)$, and Y is $G L(3, k)$-invariant.

(d) Describe the fibers $\pi_{1}^{-1}(0)$ and $\pi_{1}^{-1}(B)$, where $B:=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Conclude, that π_{1} is a birational morphism onto $\operatorname{char}^{-1}(0)$.
(e) Set $C:=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. Show that the fiber $\pi_{1}^{-1}(C)$ is reducible, with two irreducible components, each isomorphic to \mathbb{P}^{1}. Now interpret your answer conceptually. Show more generally, that if M is a nilpotent matrix of rank 1, then the fiber $\pi_{1}^{-1}(M)$ is naturally isomorphic to the union of the two copies $\mathbb{P}\left[k^{3} / \operatorname{Im}(M)\right]$ and $\mathbb{P}[\operatorname{ker}(M)]$ of \mathbb{P}^{1} meeting at one point corresponding to the flag $\operatorname{Im}(M) \subset \operatorname{ker}(M) \subset k^{3}$.

[^0]: ${ }^{1}$ The intention is for you to prove that the fibers are of pure-dimension $n^{2}-n$ in two ways; the one hinted here, as well as again in part 4b in the course of proving irreducibility.

