The field k below is assumed algebraically closed.

1. Let $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ be the morphism given by $f(x, y)=(x y, y)$. Describe the image of f. Show that f fails to satisfy each of properties 1 and 2 in Proposition 2 of section I. 7 in Mumford (it is not closed, and it has an infinite fiber).
2. (Fulton's Algebraic curves problem 4.28 modified) Set $A:=k\left[X_{0}, \ldots, X_{n}, Y_{0}, \ldots, Y_{m}\right]$. A polynomial $F \in A$ is called bi-homogeneous of bi-degree (p, q), if F is homogeneous of degree p (resp. q) when considered as a polynomial in X_{0}, \ldots, X_{n} (resp. in the $Y_{i}{ }^{\prime}$ s). Given a set S of bi-homogeneous polynomials, set

$$
V(S):=\left\{(x, y) \in \mathbb{P}^{n} \times \mathbb{P}^{m}: F(x, y)=0, \text { for all } F \in S\right\}
$$

(a) Show that a subset Z of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is closed, in the Zariski topology of the product variety defined in Mumford section 6, if and only if $Z=V(S)$, for some set S of bi-homogeneous polynomials.
(b) Let $A_{++} \subset A$ be the ideal generated by all the products $X_{i} Y_{j}, 0 \leq i \leq n$, $0 \leq j \leq m$. Prove the bi-homogeneous Nullstellensatz: There is a one-toone order reversing correspondence between radical bi-homogeneous ideals not containing A_{++}, and non-empty closed subsets of $\mathbb{P}^{n} \times \mathbb{P}^{m}$. Hint: Immitate the proof that affine Nallstellensatz implies projective Nallstellensatz (Theorem 3 in section I. 2 of Mumford's text). Note that the subset $V_{\text {affine }}\left(A_{++}\right)$of \mathbb{A}^{n+m+2} is the union $\mathbb{A}^{n+1} \times\{0\} \cup\{0\} \times \mathbb{A}^{m+1}$. Use the linear algebra fact, that an ideal of A is bi-homogeneous, if and only if it is $\left(k^{*} \times k^{*}\right)$-invariant.
(c) Assume that $V(S) \neq \emptyset$. Show that $V(S)$ is irreducible, if and only if the bi-homogeneous ideal, generated by S, is a prime ideal in A.
(d) Let $\varphi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ be the Segre embedding,

$$
\varphi\left[\left(x_{0}, x_{1}\right),\left(y_{0}, y_{1}\right)\right]=\left(x_{0} y_{0}, x_{0} y_{1}, x_{1} y_{0}, x_{1} y_{1}\right)
$$

Let the homogeneous coordinates on \mathbb{P}^{3} be X, Y, Z, W, so that the image of φ is $V(X W-Y Z)$.
i. Find a bi-homogeneous polynomial $F\left(X_{0}, X_{1}, Y_{0}, Y_{1}\right)$, such that $\varphi(V(F))=$ $V\left(X W-Y Z, X^{2}+Y^{2}+Z^{2}+W^{2}\right)$. Show that $V(F)$ is the union of four irreducible components, each isomorphic to \mathbb{P}^{1}.
ii. Let $\rho: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ be the twisted cubic, $\rho(s, t)=\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right)$. Find a bi-homogeneous polynomial $G\left(X_{0}, X_{1}, Y_{0}, Y_{1}\right)$, such that $\varphi^{-1}\left(\rho\left(\mathbb{P}^{1}\right)\right)=$ $V(G)$. Compare with problem 5 of Homework 2.
3. Let $Z \subset \mathbb{P}^{n} \times \mathbb{P}^{m}$ be a closed subvariety, $I(Z)$ its bi-homogeneous prime ideal, $\Gamma_{b}(Z):=A / I(Z)$, and $K_{b}(Z)$ its quotient field. Set $K^{\prime}(Z)$ to be $\{0\}$ union
$\left\{h \in K_{b}(Z) ; h=\frac{F}{G}, F, G\right.$ are bi-homogeneous of the same bi-degree in $\left.\Gamma_{b}(Z)\right\}$.
Show that $K^{\prime}(Z)$ is isomorphic to the function field $K(Z)$ of Z. Describe the local ring \mathcal{O}_{z}, at a point $z \in Z$, in terms of $\Gamma_{b}(Z)$.
4. Let X and Y be varieties, C a closed subset of X , and $f: C \rightarrow Y$ a continuous surjective map (this is the case, for example, if f is the restriction of a morphism from X to Y). Assume that i) every fiber of f is an irreducible subset of C, and ii) For every $y \in Y$ there exists a Zariski open subset U of Y, containing y, such that $f^{-1}(U)$ is homeomorphic to $U \times f^{-1}(y)$. Prove that C is irreducible.
Note: The latter condition states that $f: C \rightarrow Y$ is (topologically) a locally trivial fibration.
5. (Fulton's Algebraic curves problem 6.28) Let $d \geq 1, N=\frac{(d+1)(d+2)}{2}-1$, and let M_{0}, \ldots, M_{N} be the monomials of degree d in X, Y, Z (in some order). Let T_{0}, \ldots, T_{N} be homogeneous coordinates for \mathbb{P}^{N}. Set

$$
\mathcal{C}:=V\left(\sum_{i=0}^{N} M_{i}(X, Y, Z) T_{i}\right) \subset \mathbb{P}^{2} \times \mathbb{P}^{N}
$$

and let $\pi: \mathcal{C} \rightarrow \mathbb{P}^{N}$ be the restriction of the projection map.
(a) Show that \mathcal{C} is an irreducible closed subvariety of $\mathbb{P}^{2} \times \mathbb{P}^{N}$, and π is a morphism. Hint: Prove the irreducibility in two ways i) Using Problem 2c. ii) Consider the fibers of the other projection $p: \mathcal{C} \rightarrow \mathbb{P}^{2}$ and use Problem 4.
(b) For each $t=\left(t_{0}, \ldots, t_{N}\right) \in \mathbb{P}^{N}$, set $F_{t}:=\sum_{i=0}^{N} t_{i} M_{i}(X, Y, Z) \in k[X, Y, Z]$, and $C_{t}:=V\left(F_{t}\right) \subset \mathbb{P}^{2}$. Show that $\pi^{-1}(t)=C_{t} \times\{t\}$.

Note: The data of the projective variety \mathcal{C}, together with the morphism $\pi: \mathcal{C} \rightarrow$ \mathbb{P}^{N}, is called the universal family of curves of degree d. If the polynomial F_{t} is square free, so that $\left(F_{t}\right)$ is a radical ideal, then $\operatorname{deg}\left(C_{t}\right)$ is defined to be $\operatorname{deg}\left(F_{t}\right)$, which is d. If one of the irreducible factors of F_{t} appears with multiplicity $\mu>1$, then the algebraic set C_{t} will have degree $<d$, but we will define later a natural scheme structure on the fiber $\pi^{-1}(t)$, which encodes these multiplicities.
6. (a) Let $f: X \rightarrow Y$ be a morphism of varieties, V an open subset of Y and U an open subset of X, which is mapped into V. Prove that U and V are varieties, and f resticts to a morphism from U to V. Hint: Use Proposition 6 section I. 5 in Mumford's text. Note: Consider the special case, where Y is affine and $X=U$. The coordinate ring $\Gamma(Y)$ is a subring of $\Gamma(V)$. Part 6 a says that it suffices to chech that $f^{*} \Gamma(Y)$ is contained in $\Gamma(X)$, in order to conclude that $f^{*} \Gamma(V)$ is contained in $\Gamma(X)$.
(b) (Fulton's Algebraic curves problem 6.29) Let G be a variety, and suppose G is also a group, i.e., there are functions $\varphi: G \times G \rightarrow G$ (multiplication) and $\psi: G \rightarrow G$ (inverse) satisfying the group axioms. If φ and ψ are morphisms, G is said to be an algebraic group. Show that each of the following is an algebraic group.
i. $\mathbb{A}^{1}=k$, with the usual addition on k; this group is often denoted by G_{a}.
ii. $\mathbb{A}^{1} \backslash\{0\}$ with the usual multiplication on k; this is denoted by G_{m}.
iii. $G L_{n}(k)$, the group of invertable $n \times n$ matrices, which is an affine open subset of $\mathbb{A}^{n^{2}}(k)$.

Remark: Example F in section I. 3 of Mumford's text, which is revisited at the end of section I. 5 , describe an automorphism of order 2 of a projective cubic plane curve. This is the inversion for an algebraic group structure.
7. (a) Let X and Y be affine varieties over an algebraically closed field k with coordinate rings R and S, and $\varphi: X \rightarrow Y$ a morphism. Let $Z:=\overline{\varphi(X)}$ be the closure of the image of φ in Y. Show that φ factors through an isomorphism of X onto Z, if and only if the k-algebra homomorphism $\varphi^{*}: S \rightarrow R$ is surjective.
(b) Formulate and prove a necessary and sufficient criterion for a morphism φ : $X \rightarrow Y$ of prevarieties to factor through an isomorphism onto $Z:=\overline{\varphi(X)}$. In this case, we say that φ is a closed immersion. See Proposition 5 section I. 5 in Mumford's text for the prevariety structure of Z.
(c) Mumford, Problem in section 6 (a converse to Proposition 6 in section I.6): Let X be a prevariety, $\left\{U_{i}\right\}$ an affine open covering of X. Let R_{i} be the coordinate ring of U_{i}. Assume that $U_{i} \cap U_{j}$ is an affine subset of X with coordinate ring $R_{i} \cdot R_{j}$ (the minimal k-subalgebra of the function field $K(X)$ containing R_{i} and R_{j}). Prove that X is a variety.
8. (Hartshorne, Exercise I.3.7) Let $X \subset \mathbb{P}^{n}$ be a projective variety. We will prove that $\mathcal{O}_{X}(X)=k$ (all global regular functions on X are constant, an immediate corollary of the completeness of X, defined and proven in section I. 9 in Mumford). Use this fact, together with Problem 6 of Homework 4, to solve the following:
(a) If an affine variety is isomorphic to a projective variety, then it consists of only one point.
(b) Show that any two curves in \mathbb{P}^{2} have a non-empty intersection.
(c) More generally, show that if $X \subset \mathbb{P}^{n}$ is a projective variety of dimension ≥ 1, and if $Y=V(F)$ is a hypersurface (where F is a homogeneous polynomial of positive degree), then $X \cap Y \neq \emptyset$.

