The field k below is assumed algebraically closed.

- 1. Two examples of presheaves, which are not sheaves. Let X be the complex plane \mathbb{C} , with its classical topology, and \mathcal{O}_X the sheaf of holomorphic functions.
 - (a) Let z be the coordinate on \mathbb{C} . Consider \mathcal{O}_X as a sheaf of vector spaces and let $\frac{\partial}{\partial z}$ be the sheaf endomorphism corresponding to differentiation

$$\begin{array}{rccc} \frac{\partial}{\partial z}: & \mathcal{O}_X(U) & \to & \mathcal{O}_X(U) \\ & f & \mapsto & \frac{\partial f}{\partial z}. \end{array}$$

Let \mathcal{D} be the image presheaf $\mathcal{D}(U) := \frac{\partial}{\partial z} (\mathcal{O}_X(U))$. Show that \mathcal{D} is a presheaf and that it satisfies the first sheaf axiom (on page 18 in Mumford's text), but fails to satisfy the second.

- (b) Let \mathcal{Q} be the co-kernel presheaf $\mathcal{Q}(U) := \mathcal{O}_X(U)/\mathcal{D}(U)$, with the restriction homomorphisms induced by those of \mathcal{O}_X . Show that \mathcal{Q} is a presheaf, but that it does not satisfy the first sheaf axiom.
- (c) Prove that $\frac{\partial}{\partial z}$ induces a surjective homomorphism on the stalks of \mathcal{O}_X .
- (d) Prove that the sheafification of \mathcal{D} is \mathcal{O}_X and the sheafification of \mathcal{Q} is the zero sheaf.
- 2. Projection from a point. Let $\pi : \mathbb{P}^n \setminus \{(1, 0, \dots, 0)\} \to \mathbb{P}^{n-1}$ be the map given by $(a_0, \dots, a_n) \mapsto (a_1, \dots, a_n)$. Prove that π is a morphism of prevarieties (see Section 5 Proposition 6 in Mumford).
- 3. Show that the global sections of $\mathcal{O}_{\mathbb{P}^n}$ are constant, $\mathcal{O}_{\mathbb{P}^n}(\mathbb{P}^n) = k$.
- 4. (a) Let φ : X → Y be a continuous map of topological spaces and F a sheaf of k-algebras on X. To each open set U on Y, define G(U) := F(φ⁻¹(U)). Show that G is a sheaf k-algebras on Y. The sheaf G is denoted by φ_{*}F, and is called the *push-forward* (or *direct image*) of F.
 - (b) Let X and Y be prevarieties and $\varphi : X \to Y$ a morphism. Show that $\varphi_* \mathcal{O}_X$ is a sheaf of \mathcal{O}_Y -algebras, i.e., that there is a homomorphism of sheaves of k-algebras $h : \mathcal{O}_Y \to \varphi_* \mathcal{O}_X$.
 - (c) Let X and Y be both the affine line \mathbb{A}^1 , and $\varphi : X \to Y$ the morphism given by $\varphi(a) = a^n$. Show that $\varphi_* \mathcal{O}_X$ is isomorphic to the direct sum $\mathcal{O}_Y \oplus \cdots \oplus \mathcal{O}_Y$ of n copies of \mathcal{O}_Y .
 - (d) Let X and Y be both \mathbb{P}^1 and $\varphi : X \to Y$ the morphism given by $\varphi(s,t) = (s^2, t^2)$. Show that the stalk $(\varphi_* \mathcal{O}_X)_y$, at each point y in Y, is a free \mathcal{O}_{Y,y^-} module of rank 2, but that $\varphi_* \mathcal{O}_X$ is not isomorphic to $\mathcal{O}_Y \oplus \mathcal{O}_Y$. Hint: For the latter statement, consider the global sections of both sheaves.
- 5. (Hartshorne, problem I.3.4) Recall the *d*-Uple embedding $\varphi : \mathbb{P}^n \to \mathbb{P}^N$, where $N = \binom{n+d}{d} 1$, defined in Problem 7 of Homework 2. Show that φ is an isomorphism onto its image.

6. (Mumford, Problem in section I.5 page 32) Let $F \in k[x_0, \ldots, x_n]$ be a homogeneous polynomial of positive degree. Prove that $\mathbb{P}_F^n := \{x \in \mathbb{P}^n : F(x) \neq 0\}$ is an affine variety. Hint: Consider the *d*-Uple embedding with $d = \deg(F)$.