The field k below is assumed algebraically closed.

1. Two examples of presheaves, which are not sheaves. Let X be the complex plane \mathbb{C}, with its classical topology, and \mathcal{O}_{X} the sheaf of holomorphic functions.
(a) Let z be the coordinate on \mathbb{C}. Consider \mathcal{O}_{X} as a sheaf of vector spaces and let $\frac{\partial}{\partial z}$ be the sheaf endomorphism corresponding to differentiation

$$
\begin{aligned}
& \frac{\partial}{\partial z}: \mathcal{O}_{X}(U) \rightarrow \mathcal{O}_{X}(U) \\
& f \mapsto \\
& \frac{\partial f}{\partial z} .
\end{aligned}
$$

Let \mathcal{D} be the image presheaf $\mathcal{D}(U):=\frac{\partial}{\partial z}\left(\mathcal{O}_{X}(U)\right)$. Show that \mathcal{D} is a presheaf and that it satisfies the first sheaf axiom (on page 18 in Mumford's text), but fails to satisfy the second.
(b) Let \mathcal{Q} be the co-kernel presheaf $\mathcal{Q}(U):=\mathcal{O}_{X}(U) / \mathcal{D}(U)$, with the restriction homomorphisms induced by those of \mathcal{O}_{X}. Show that \mathcal{Q} is a presheaf, but that it does not satisfy the first sheaf axiom.
(c) Prove that $\frac{\partial}{\partial z}$ induces a surjective homomorphism on the stalks of \mathcal{O}_{X}.
(d) Prove that the sheafification of \mathcal{D} is \mathcal{O}_{X} and the sheafification of \mathcal{Q} is the zero sheaf.
2. Projection from a point. Let $\pi: \mathbb{P}^{n} \backslash\{(1,0, \ldots, 0)\} \rightarrow \mathbb{P}^{n-1}$ be the map given by $\left(a_{0}, \ldots, a_{n}\right) \mapsto\left(a_{1}, \ldots, a_{n}\right)$. Prove that π is a morphism of prevarieties (see Section 5 Proposition 6 in Mumford).
3. Show that the global sections of $\mathcal{O}_{\mathbb{P}^{n}}$ are constant, $\mathcal{O}_{\mathbb{P}^{n}}\left(\mathbb{P}^{n}\right)=k$.
4. (a) Let $\varphi: X \rightarrow Y$ be a continuous map of topological spaces and \mathcal{F} a sheaf of k-algebras on X. To each open set U on Y, define $\mathcal{G}(U):=\mathcal{F}\left(\varphi^{-1}(U)\right)$. Show that \mathcal{G} is a sheaf k-algebras on Y. The sheaf \mathcal{G} is denoted by $\varphi_{*} \mathcal{F}$, and is called the push-forward (or direct image) of \mathcal{F}.
(b) Let X and Y be prevarieties and $\varphi: X \rightarrow Y$ a morphism. Show that $\varphi_{*} \mathcal{O}_{X}$ is a sheaf of \mathcal{O}_{Y}-algebras, i.e., that there is a homomorphism of sheaves of k-algebras $h: \mathcal{O}_{Y} \rightarrow \varphi_{*} \mathcal{O}_{X}$.
(c) Let X and Y be both the affine line \mathbb{A}^{1}, and $\varphi: X \rightarrow Y$ the morphism given by $\varphi(a)=a^{n}$. Show that $\varphi_{*} \mathcal{O}_{X}$ is isomorphic to the direct sum $\mathcal{O}_{Y} \oplus \cdots \oplus \mathcal{O}_{Y}$ of n copies of \mathcal{O}_{Y}.
(d) Let X and Y be both \mathbb{P}^{1} and $\varphi: X \rightarrow Y$ the morphism given by $\varphi(s, t)=$ $\left(s^{2}, t^{2}\right)$. Show that the $\operatorname{stalk}\left(\varphi_{*} \mathcal{O}_{X}\right)_{y}$, at each point y in Y, is a free $\mathcal{O}_{Y, y^{-}}$ module of rank 2, but that $\varphi_{*} \mathcal{O}_{X}$ is not isomorphic to $\mathcal{O}_{Y} \oplus \mathcal{O}_{Y}$. Hint: For the latter statement, consider the global sections of both sheaves.
5. (Hartshorne, problem I.3.4) Recall the d-Uple embedding $\varphi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$, where $N=\binom{n+d}{d}-1$, defined in Problem 7 of Homework 2. Show that φ is an isomorphism onto its image.
6. (Mumford, Problem in section I.5 page 32) Let $F \in k\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous polynomial of positive degree. Prove that $\mathbb{P}_{F}^{n}:=\left\{x \in \mathbb{P}^{n}: F(x) \neq 0\right\}$ is an affine variety. Hint: Consider the d-Uple embedding with $d=\operatorname{deg}(F)$.

