Algebraic Geometry Homework Assignment 3, Fall 2007
Due Thursday, October 4.
The field $k$ below is assumed algebraically closed.
(1) (Hartshorne, Exercise I.3.2, two examples, that a morphism, whose underlying map on the topological spaces is a homeomorphism, need not be an isomorphism).
(a) (Solved in Mumford's Example O page 22) Let $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$ be defined by $t \mapsto\left(t^{2}, t^{3}\right)$. Show that $\varphi$ defines a morphism and a homeomorphism (bijective) from $\mathbb{A}^{1}$ onto $V\left(y^{2}-x^{3}\right)$, but that $\varphi$ is not an isomorphism.
(b) (Solved in Mumford's Example N page 22) Let the characteristic of $k$ be a prime $p>0$, and define a map $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ by $t \mapsto t^{p}$. Show that the morphism $\varphi$ is a homeomorphism, but not an isomorphism. This is called the Frobenius morphism.
(2) (Hartshorne, Exercise I.3.6, an example of a quasi-affine variety, which is not affine). Show that $X:=\mathbb{A}^{2} \backslash\{(0,0)\}$ is not affine. Hint: Show that $\Gamma(X) \cong k[x, y]$ and use Proposition 1 in section 3 page 14 in Mumford's text.
(3) The following problem was touched upon in class, in connection to Example D of section 3 in Mumford's text. Assume that the characteristic $\operatorname{char}(k)$ is different from 2. Let $f \in k\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous polynomial of degree 2. By the theory of symmetric bilinear forms, there is a linear change of variables, which brings $f$ to the form $x_{0}^{2}+\cdots+x_{k}^{2}$, for some $0 \leq k \leq n$ (see Hoffman and Kunze, Linear Algebra, for example).
(a) Show that $f$ is irreducible, if and only if $k \geq 2$.
(b) Show that after a linear change of coordinates, every plane conic (i.e., $V(f) \subset$ $\mathbb{P}^{2}$, where $f$ is irreducible, of degree 2 , and $n=2$ ) can be realized as the image $V\left(x z-y^{2}\right)$ of the 2-uple embedding $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$, given by $(s, t) \mapsto\left(s^{2}, s t, t^{2}\right)$ (see Homework 2 Problem 7).
(c) Construct an embedding $e: P G L(2) \rightarrow P G L(3)$, obtaining an action of $P G L(2)$ on $\mathbb{P}^{2}$, with respect to which the map $\phi$ is $P G L(2)$-equivariant, i.e., such that $\phi(g(s, t))=e(g) \phi(s, t)$, for all $(s, t) \in \mathbb{P}^{1}$.
(d) Let $C:=V(f) \subset \mathbb{P}^{2}$ be an irreducible conic and $P=\left(a_{0}, a_{1}, a_{2}\right)$ a point in $C$. Let $f_{x}$ be the partial $\frac{\partial f}{\partial x}$. Show that the line

$$
f_{x}(P) x+f_{y}(P) y+f_{z}(P) z=0
$$

intersects $C$ at the point $P$ and at no other point, and that any other line in $\mathbb{P}^{2}$ through $P$ intersects $C$ at precisely one additional point. Hint: $P G L(2)$ acts (triply) transitively on $\mathbb{P}^{1}$, so the statement reduces to the case $f(x, y, z)=x z-y^{2}$ and $P=(1,0,0)$.
(4) Let $R$ be a commutative ring with 1 and $S$ a multiplicatively closed subset. Here are two important properties of the ring of fractions $S^{-1} R$. Either work them out yourself, or look-up the proof in the literature (see for example AtiyahMacDonald, Proposition 3.11).
(a) Show that every ideal in $S^{-1} R$ is generated by the image of some ideal in $R$, via the natural homomorphism $R \rightarrow S^{-1} R$.
(b) Show that the prime ideals of $S^{-1} R$ are in one-to-one correspondence with prime ideals of $R$ which do not meet $S$. Hint: You may use the following special case of the exactness propery of the operation $S^{-1}$. If $I$ is an ideal in $R$ and $\bar{S}$ is the image of $S$ in $R / I$, then $S^{-1} R / S^{-1} I \cong \dot{S}^{-1}(R / I)$, where $S^{-1} I$ is the ideal generated by the image of $I$.
(5) (Hartshorne, Exercise I.3.11 modified) Let $X$ be an affine variety, $P \in X$ a point, and $m_{P} \subset \Gamma(X)$ its maximal ideal. Show that there is a one-to-one correspondence between the prime ideals of $\Gamma(X)_{m_{p}}$ and closed subvarieties of $X$ containing $P$. Conclude, in particular, that $\Gamma(X)_{m_{p}}$ has a unique maximal ideal.
(6) Let $R$ be a commutative ring with 1 .
(a) (Atiyah-MacDonald, Section 3 Exercise 2) Let $S$ and $T$ two multiplicatively closed subsets of $R$, and let $U$ be the image of $T$ in $S^{-1} R$. Show that the rings $(S T)^{-1} R$ and $U^{-1}\left(S^{-1} R\right)$ are isomorphic. Hint: This is just an elaborate use of the universal property of the rings of fractions.
(b) Let $p \subset R$ be a prime ideal, $f \in R \backslash p$, and $\tilde{p}$ the prime ideal of $R_{f}$ generated by the image of $p$ (see Problem 4b). Prove that the rings of fractions $R_{p}$ and $\left(R_{f}\right)_{\tilde{p}}$ are naturally isomorphic.
(7) Let $R$ be a commutative ring with $1, f \in R \backslash\{0\}, S:=\left\{f^{n}: n \geq 0\right\}$, and $R_{f}:=S^{-1} R$.
(a) Set $A:=R[y] /(y f-1)$, where $y$ is an indeterminate, and let $\phi: R \rightarrow A$ be the natural homomorphism. Prove that $\phi(r)=0$, if and only if $r f^{n}=0$, for some $n \geq 0$.
(b) Let $h: R_{f} \rightarrow A$ be the natural homomorphism, which is determined by the universal property of $R_{f}$ and sends $r / f^{n}$ to $\phi(r) y^{n}$. Prove that $h$ is an isomorphism.
(8) Let $X \subset \mathbb{A}^{n}$ be an affine variety, $I(X) \subset k\left[x_{1}, \ldots, x_{n}\right]$ its ideal, and $\Gamma(X)$ its coordinate ring. In Parts 8c, 8d, and 8e below you will be filling in details left out in the proof of Proposition 4 in section 4 page 24 in Mumford. Use problems 6b and 7 b , where $R$ is not assumed to be an integral domain. This way your proof will easily adapt to a proof of a more general result, for affine schemes, which are the object of study later in the course (see Proposition 3 in section II. 1 in Mumford's text).
(a) Show that the open sets $X_{f}:=X \backslash V(f), f \in \Gamma(X)$, form a basis for the Zariski topology of $X$. They are called the basic open subsets of $X$.
(b) Prove that two basic open subsets $X_{g}$ and $X_{f}$ satisfy $X_{g} \subset X_{f}$, if and only if $g \in \sqrt{(f)}$.
(c) Let $f \in \Gamma(X)$ be a non-zero element, choose $F \in k\left[x_{1}, \ldots, x_{n}\right]$, such that $f=F+I(X)$, let $J \subset k\left[x_{1}, \ldots, x_{n}, y\right]$ be the ideal generated by $I(X)$ and $y F-1$, and set $X_{F}:=V(J)$. Prove that the affine algebraic set $X_{F}$ is irreducible, and that $\Gamma\left(X_{F}\right)$ is isomorphic to the localization $\Gamma(X)_{f}$ of $\Gamma(X)$ with respect to the multiplicatively closed subset $\left\{f^{n}: n \geq 1\right\}$.
(d) Let $\pi: X_{F} \longrightarrow X$ be the projection on the first $n$ coordinates. Prove that $\pi$ is a morphism and that its image $\pi\left(X_{F}\right)$ is the basic open subset $X_{f}$. Show that the map $\pi: X_{F} \rightarrow X_{f}$ is a homeomorphism.
(e) Prove that $\pi$ is an isomorphism. Hint: Use Problem 6.
(9) Let $R$ be a commutative ring with 1 and $M \subset R$ a maximal ideal. Show that the following are equivalent:
(a) $M$ is the unique maximal ideal of $R$.
(b) Every element of $R \backslash M$ is invertible in $R$.

A ring $R$ with the above properties is called a local ring. Let $I \subset k[x, y]$ be a proper ideal. Assume that there exist positive integers $n$ and $m$, such that both $x^{n}$ and $y^{m}$ belong to $I$. Set $R:=k[x, y] / I, M:=(x, y) / I, S:=R \backslash M$, and $R_{M}:=$ $S^{-1} R$. Show that the natural homomorphism $R \rightarrow R_{M}$ is an isomorphism.

