
Algebraic Geometry Homework Assignment 3, Fall 2007
Due Thursday, October 4.

The field k below is assumed algebraically closed.

(1) (Hartshorne, Exercise I.3.2, two examples, that a morphism, whose underlying
map on the topological spaces is a homeomorphism, need not be an isomorphism).
(a) (Solved in Mumford’s Example O page 22) Let ϕ : A

1 → A
2 be defined

by t 7→ (t2, t3). Show that ϕ defines a morphism and a homeomorphism
(bijective) from A

1 onto V (y2 − x3), but that ϕ is not an isomorphism.
(b) (Solved in Mumford’s Example N page 22) Let the characteristic of k be a

prime p > 0, and define a map ϕ : A
1 → A

1 by t 7→ tp. Show that the
morphism ϕ is a homeomorphism, but not an isomorphism. This is called
the Frobenius morphism.

(2) (Hartshorne, Exercise I.3.6, an example of a quasi-affine variety, which is not
affine). Show that X := A

2\{(0, 0)} is not affine. Hint: Show that Γ(X) ∼= k[x, y]
and use Proposition 1 in section 3 page 14 in Mumford’s text.

(3) The following problem was touched upon in class, in connection to Example D of
section 3 in Mumford’s text. Assume that the characteristic char(k) is different
from 2. Let f ∈ k[x0, . . . , xn] be a homogeneous polynomial of degree 2. By the
theory of symmetric bilinear forms, there is a linear change of variables, which
brings f to the form x2

0
+ · · ·+ x2

k, for some 0 ≤ k ≤ n (see Hoffman and Kunze,
Linear Algebra, for example).
(a) Show that f is irreducible, if and only if k ≥ 2.
(b) Show that after a linear change of coordinates, every plane conic (i.e., V (f) ⊂

P
2, where f is irreducible, of degree 2, and n = 2) can be realized as the image

V (xz−y2) of the 2-uple embedding φ : P
1 → P

2, given by (s, t) 7→ (s2, st, t2)
(see Homework 2 Problem 7).

(c) Construct an embedding e : PGL(2) → PGL(3), obtaining an action of
PGL(2) on P

2, with respect to which the map φ is PGL(2)-equivariant, i.e.,
such that φ(g(s, t)) = e(g)φ(s, t), for all (s, t) ∈ P

1.
(d) Let C := V (f) ⊂ P

2 be an irreducible conic and P = (a0, a1, a2) a point in

C. Let fx be the partial ∂f
∂x

. Show that the line

fx(P )x + fy(P )y + fz(P )z = 0

intersects C at the point P and at no other point, and that any other
line in P

2 through P intersects C at precisely one additional point. Hint:
PGL(2) acts (triply) transitively on P

1, so the statement reduces to the case
f(x, y, z) = xz − y2 and P = (1, 0, 0).

(4) Let R be a commutative ring with 1 and S a multiplicatively closed subset.
Here are two important properties of the ring of fractions S−1R. Either work
them out yourself, or look-up the proof in the literature (see for example Atiyah-
MacDonald, Proposition 3.11).
(a) Show that every ideal in S−1R is generated by the image of some ideal in

R, via the natural homomorphism R → S−1R.
(b) Show that the prime ideals of S−1R are in one-to-one correspondence with

prime ideals of R which do not meet S. Hint: You may use the following
special case of the exactness propery of the operation S−1. If I is an ideal
in R and S̄ is the image of S in R/I, then S−1R/S−1I ∼= S̄−1(R/I), where
S−1I is the ideal generated by the image of I.
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(5) (Hartshorne, Exercise I.3.11 modified) Let X be an affine variety, P ∈ X a
point, and mP ⊂ Γ(X) its maximal ideal. Show that there is a one-to-one
correspondence between the prime ideals of Γ(X)mp

and closed subvarieties of X
containing P . Conclude, in particular, that Γ(X)mp

has a unique maximal ideal.
(6) Let R be a commutative ring with 1.

(a) (Atiyah-MacDonald, Section 3 Exercise 2) Let S and T two multiplicatively
closed subsets of R, and let U be the image of T in S−1R. Show that
the rings (ST )−1R and U−1(S−1R) are isomorphic. Hint: This is just an
elaborate use of the universal property of the rings of fractions.

(b) Let p ⊂ R be a prime ideal, f ∈ R\p, and p̃ the prime ideal of Rf generated
by the image of p (see Problem 4b). Prove that the rings of fractions Rp

and (Rf )p̃ are naturally isomorphic.
(7) Let R be a commutative ring with 1, f ∈ R \ {0}, S := {fn : n ≥ 0}, and

Rf := S−1R.
(a) Set A := R[y]/(yf − 1), where y is an indeterminate, and let φ : R → A be

the natural homomorphism. Prove that φ(r) = 0, if and only if rfn = 0, for
some n ≥ 0.

(b) Let h : Rf → A be the natural homomorphism, which is determined by
the universal property of Rf and sends r/fn to φ(r)yn. Prove that h is an
isomorphism.

(8) Let X ⊂ A
n be an affine variety, I(X) ⊂ k[x1, . . . , xn] its ideal, and Γ(X) its

coordinate ring. In Parts 8c, 8d, and 8e below you will be filling in details left out
in the proof of Proposition 4 in section 4 page 24 in Mumford. Use problems 6b
and 7b, where R is not assumed to be an integral domain. This way your proof
will easily adapt to a proof of a more general result, for affine schemes, which
are the object of study later in the course (see Proposition 3 in section II.1 in
Mumford’s text).
(a) Show that the open sets Xf := X \ V (f), f ∈ Γ(X), form a basis for the

Zariski topology of X. They are called the basic open subsets of X.
(b) Prove that two basic open subsets Xg and Xf satisfy Xg ⊂ Xf , if and only

if g ∈
√

(f).
(c) Let f ∈ Γ(X) be a non-zero element, choose F ∈ k[x1, . . . , xn], such that

f = F + I(X), let J ⊂ k[x1, . . . , xn, y] be the ideal generated by I(X) and
yF − 1, and set XF := V (J). Prove that the affine algebraic set XF is
irreducible, and that Γ(XF ) is isomorphic to the localization Γ(X)f of Γ(X)
with respect to the multiplicatively closed subset {fn : n ≥ 1}.

(d) Let π : XF −→ X be the projection on the first n coordinates. Prove that π
is a morphism and that its image π(XF ) is the basic open subset Xf . Show
that the map π : XF → Xf is a homeomorphism.

(e) Prove that π is an isomorphism. Hint: Use Problem 6.
(9) Let R be a commutative ring with 1 and M ⊂ R a maximal ideal. Show that the

following are equivalent:
(a) M is the unique maximal ideal of R.
(b) Every element of R \ M is invertible in R.
A ring R with the above properties is called a local ring. Let I ⊂ k[x, y] be a
proper ideal. Assume that there exist positive integers n and m, such that both
xn and ym belong to I. Set R := k[x, y]/I, M := (x, y)/I, S := R\M , and RM :=
S−1R. Show that the natural homomorphism R → RM is an isomorphism.


