The field k below is assumed algebraically closed.

- 1. (Hartshorne I.1.2, the affine twisted cubic curve revisited) Let $Y \subset \mathbb{A}^3$ be the set $\{(t, t^2, t^3) : t \in k\}$. Find generators for I(Y) and show that its affine coordinate ring k[x, y, z]/I(Y) is isomorphic to a polynomial ring in one variable over k.
- 2. (Hartshorne I.1.3) Let Y be the algebraic set in \mathbb{A}^3 defined by the two polynomials $x^2 - yz$ and xz - x. Show that Y is the union of three irreducible components and find their prime ideals.
- 3. (Hartshorne I.1.4) Identify \mathbb{A}^2 with $\mathbb{A}^1 \times \mathbb{A}^1$ in the natural way. Show that the Zariski topology on \mathbb{A}^2 is not the product topology of the Zariski topology on the two copies of \mathbb{A}^1 .
- 4. (Hartshorne I.1.6) Any non-empty open subset of an irreducible topological space is dense and irreducible. If Y is a subset of a topological space X, which is irreducible in its induced topology, then the closure \overline{Y} is also irreducible.
- 5. (Mumford, section I.2 Example B) Let $\phi : \mathbb{P}^1 \to \mathbb{P}^3$ be the parametrization of the twisted cubic curve

$$\phi(s,t) = (s^3, s^2t, st^2, t^3),$$

and $\phi^*: k[x, y, z, w] \to k[s, t]$ the pullback homomorphism, $\phi^*(x) = s^3, \phi^*(y) = s^3$ $s^2t, \phi^*(z) = st^2, \phi^*(w) = t^3$. We have seen in class, that the image $C := \phi(\mathbb{P}^1)$ is cut out by the homogeneous ideal $J := (xz - y^2, yw - z^2, xw - yz)$. Conclude that $I(C) = \sqrt{J}.$

- (a) Prove that $J = \ker(\phi^*)$. Conclude that J is a prime ideal and I(C) = J. Hint: Reduce to the following statement. Given non-negative integers (a, b)and an irreducible polynomial $f \in \ker(\phi^*)$, which is a linear combination of monomials $M = x^{e_x} y^{e_y} z^{e_z} w^{e_w}$ with $\phi^*(M) = s^a t^b$, then f belongs to J. We may assume a > b, by interchanging the roles of s and t. Treat the cases a > b and a = b separately. If a > b, prove that $xz - y^2$ divides f. Do it by a double induction, on $\deg(f)$ and the degree of f as a polynomial in y with coefficients in k[x, z, w].
- (b) Prove that the projective coordinate rings k[s,t] of \mathbb{P}^1 and k[x,y,z,w]/I(C), of the twisted cubic curve, are not isomorphic. (Contrast with the affine case in Question 1).
- 6. (Hartshorne I.2.9, projective closure of an affine variety) Let (y_1, \ldots, y_n) be affine coordinates on \mathbb{A}^n , (x_0, x_1, \ldots, x_n) homogeneous coordinates on \mathbb{P}^n , U_0 the complement of the hyperplane $x_0 = 0$, and identify \mathbb{A}^n with U_0 via the natural homeomorphism $\varphi_0: U_0 \to \mathbb{A}^n$, so that the y_i coordinate of $\varphi(x_0, x_1, \ldots, x_n)$ is x_i/x_0 . Given a polynomial $g \in k[y_1, \ldots, y_n]$ of degree d, set

$$\beta(g) = g\left(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}\right) x_0^d.$$

Let $Y \subset \mathbb{A}^n$ be an affine variety. The closure \overline{Y} of Y in \mathbb{P}^n is called its *projective closure*.

- (a) Show that $I(\overline{Y})$ is the ideal generated by $\beta(I(Y))$.
- (b) Let $Y := V(g) \subset \mathbb{A}^n$ be a hypersurface associated to a non-constant squarefree polynomial g. Show that $I(\overline{Y}) = (\beta(g))$. Hint: Show first that I(Y) = (g).
- (c) Let $Y \subset \mathbb{A}^3$ be the twisted cubic of question 1. Use your answer to question 5 in order to show that if f_1, \ldots, f_r generate I(Y), then $\beta(f_1), \ldots, \beta(f_r)$ do not necessarily generate $I(\overline{Y})$.
- 7. (Hartshorne I.2.12, *The d-Uple embedding*) For given n, d > 0, let M_0, M_1, \ldots, M_N be all the monomials of degree d in the variables x_0, \ldots, x_n . Note that $N = \binom{n+d}{n} - 1$. Let $\rho_d : \mathbb{P}^n \to \mathbb{P}^N$ be given by

$$\rho_d(a) = (M_0(a), \dots, M_n(a)),$$

where $a = (a_0, \ldots, a_n)$ is the set of homogeneous coordinates of a point. This is called the *d*-Uple embedding of \mathbb{P}^n in \mathbb{P}^N . For example, if n = 1, d = 2, then N = 2 and the image of the 2-Uple embedding of \mathbb{P}^1 is a conic in \mathbb{P}^2 . Note also that if $M_0(x_0, \ldots, x_n) = x_0^d$, then ρ_d restricts to the affine open subset $\mathbb{P}^n_{x_0}$, where $x_0 \neq 0$, as the map (m_1, \ldots, m_N) from \mathbb{A}^n to \mathbb{A}^N , where the $m_i := M_i/M_0$ run through all monomials in $x_1/x_0, \ldots, x_n/x_0$ of degree $\leq d$.

- (a) Let $\theta : k[y_0, \dots, y_N] \to k[x_0, \dots, x_n]$ be the homomorphism given by $\theta(y_i) = M_i$, and let J be the kernel of θ . Then J is a homogeneous prime ideal and so V(J) is a projective variety in \mathbb{P}^N .
- (b) Set $\mathbb{P}_{y_i}^N := \{Q \in \mathbb{P}^N : y_i(Q) \neq 0\}$. Denote y_i also by y_{M_i} , so that $\theta(y_{x_i^d}) = x_i^d$, etc... Show that V(J) is contained in $\bigcup_{i=0}^n \mathbb{P}_{y_{x_i^d}}^N$. Hint: Check that the following polynomials belong to J:

$$y_{M_i}^d - M_i(y_{x_0^d}, \dots, y_{x_n^d}), \quad 0 \le i \le N.$$
(1)

- (c) Show that the image of ρ_d is equal to V(J). Hint: Find a set S_i consisting of N-n generators for the ideal of $\rho_d(\mathbb{P}^n_{x_i})$ in $\mathbb{P}^N_{y_{x_i^d}}$. Let $J' \subset k[y_0, \ldots, y_N]$ be the homogeneous ideal generated by $\bigcup_{i=0}^n \{\beta(f) : f \in S_i\}$ and the set of N+1 polynomials given in equation (1). Prove that $\rho_d(\mathbb{P}^n) \supset V(J') \supset$ $V(J) \supset \rho_d(\mathbb{P}^n)$.
- (d) Show that ρ_d is a homeomorphism of \mathbb{P}^n onto the projective variety V(J).
- (e) Show that the twisted cubic curve of question 5 is equal to the 3-Uple embedding of P¹, for suitable choice of coordinates.