1. (Hartshorne, Exercise II.2.2) Let $\left(X, \mathcal{O}_{X}\right)$ be a prescheme (in Mumford's terminology) and let $U \subset X$ be any open subset. Show that $\left(U,\left[\mathcal{O}_{X}\right]_{\mid U}\right)$ is a prescheme. We call this the induced prescheme structure on the open set U, and we refer to $\left(U,\left[\mathcal{O}_{X}\right]_{\mid U}\right)$ as an open subscheme of X. Compare with the analogous statement for varieties; given in Proposition 4 in section I. 5 of Mumford's text.
2. (Hartshorne Excercise II.2.19, modified) Let A be a commutative ring with 1. Show that the following are equivalent:
(a) $\operatorname{Spec}(A)$ is disconnected.
(b) There exist non-zero elements $e_{1}, e_{2} \in A$, such that $e_{1} e_{2}=0, e_{1}^{2}=e_{1}, e_{2}^{2}=e_{2}$, $e_{1}+e_{2}=1$. These elements are called orthogonal idempotents.
(c) A is isomorphic to the product $A_{1} \times A_{2}$ of two non-zero rings.

The above question combines with Question 3 below to yield a generalization of Homework 9 Question 1 (A here is A / I in HW9 Q1). The implication $2 \mathrm{c} \Rightarrow 2 \mathrm{a}$ was proven in class (see also Example A in section II. 1 in Mumford). Set $X:=$ $\operatorname{Spec}\left(A_{1} \times A_{2}\right)$. We furthermore showed that the ring of fractions $\left(A_{1} \times A_{2}\right)_{(1,0)}$, associated to $(1,0) \in A_{1} \times A_{2}$, is isomorphic to A_{1}, the distinguished open set $X_{(1,0)}$ is isomorphic to $\operatorname{Spec}\left(A_{1}\right)$, and X is the disjoint union $X_{(1,0)} \cup X_{(0,1)}$. Furthermore, given any open subset $U \subset X$, we have $\mathcal{O}_{X}(U) \cong\left[\mathcal{O}_{X_{(1,0)}}\left(U \cap X_{(1,0)}\right) \oplus \mathcal{O}_{X_{(0,1)}}\left(U \cap X_{(0,1)}\right)\right]$. Complete the proof of the above exercise.
Hint for the implication $2 \mathrm{a} \Rightarrow 2 \mathrm{c}: \operatorname{Set} X:=\operatorname{Spec}(A)$ and suppose that X is the disjoint union of two closed subsets X_{1} and X_{2}. Choose radical ideals I_{j}, such that $X_{j}=V\left(I_{j}\right)$. Prove that the natural homomorphism $h: A \rightarrow\left(A / I_{1}\right) \times\left(A / I_{2}\right)$ is surjective and that its kernel is the nilradical of A. Conclude that each X_{i} is a distinguished open subset $X_{i}=X_{f_{i}}$. The initial pair $\left\{f_{1}, f_{2}\right\}$ need not consist of idempotents. Then use the sheaf axioms to prove that the natural homomorphism $A \cong \mathcal{O}_{X}(X) \rightarrow \mathcal{O}_{X}\left(X_{f_{1}}\right) \oplus \mathcal{O}_{X}\left(X_{f_{2}}\right) \cong A_{f_{1}} \times A_{f_{2}}$ is an isomorphism.
3. Let A be a commutative ring with 1 , and M a maximal ideal, such that $X_{1}:=$ $V(M)$ is an open (and closed) subset of $X:=\operatorname{Spec}(A)$. Show, using Question 2, that $\mathcal{O}_{X}\left(X_{1}\right)$ is isomorphic to the local ring A_{M}. Conclude that A is isomorphic to $A_{M} \times \mathcal{O}_{X}\left(X_{2}\right)$, where $X_{2}:=X \backslash X_{1}$. Hint: See Homework 3 Question 9 .
4. Mumford, Exercise following Example H in section II. 1 on the arithmetic surface $\operatorname{Spec}(\mathbb{Z}[X])$: Let $p \in \mathbb{Z}$ be a prime number, $f, g \in \mathbb{Z}[X]$ two irreducible elements of degree >0 (i.e., each is an irreducible polynomial in $\mathbb{Q}[X]$, with integral coefficients, and the g.c.d of its coefficients is 1). Assume that $g \neq f$ and $g \neq-f$.
(a) Describe all the points of $V((p)) \cap V((f))$.
(b) Describe $Y:=\operatorname{Spec}(\mathbb{Z}[X] /(p, f))$ and its structure sheaf. Hint: Show that each point $y \in Y$ is a connected component of Y. Conclude that $\{y\}$ is a distinguished open set $Y_{e_{y}}$, using Question 2. Describe $\mathcal{O}_{Y}(\{y\})$ in terms of p and f.
(c) Describe all the points of $V((f)) \cap V((g))$. Show, in particular, that it is a finite set and that all its points are closed points.
(d) Describe $\operatorname{Spec}(\mathbb{Z}[X] /(f, g))$ and its structure sheaf using Questions 2 and 3.
5. (Hartshorne, Exercise II.2.10) Describe $\operatorname{Spec}(\mathbb{R}[x])$. How does its topological space compare to the set \mathbb{R} ? To \mathbb{C} ?.
6. (a) (Hartshorne, Exercise II.2.8) Let X be a prescheme. For any point $x \in X$, let $\mathfrak{m}_{x} \subset \mathcal{O}_{x}$ be the maximal ideal of the stalk at x and $k(x):=\mathcal{O}_{x} / m_{x}$ the residue field. Define the Zariski tangent space $T_{x} X$ to X at x to be the dual of the $k(x)$ vector space $\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$. Now assume that X is a prescheme over a field k (see Definitions 1 and 2 in section II. 3 of Mumford), and let $k[\epsilon] /\left(\epsilon^{2}\right)$ be the ring of dual numbers over k. Show that to give a k-morphism from Spec $\left[k[\epsilon] /\left(\epsilon^{2}\right)\right]$ to X is equivalent to giving a point $x \in X$, such that $k(x)=k$, and an element of $T_{x} X$.
(b) Let k be an algebraically closed field, X an affine variety over $k, C \subset X$ a one dimensional closed subvariety, P a non-singular point of C, and $t \in \mathfrak{m}_{C, P} \subset$ $\mathcal{O}_{C, P}$ a uniformizing parameter for the DVR $\mathcal{O}_{C, P}$. Construct a non-zero tangent vector in $T_{P} X$, which is tangent to C, in terms of the uniformizing parameter t.
7. (Hartshorne, Exercise 2.16) Let X be a prescheme, let $f \in \mathcal{O}_{X}(X)$, and define X_{f} to be the subset of points $x \in X$, such that the germ $f_{x} \in \mathcal{O}_{x}$ of f at x is not contained in the maximal ideal \mathfrak{m}_{x} of the local ring \mathcal{O}_{x}.
(a) Let $U=\operatorname{Spec}(B)$ be an open affine subscheme of X (see Question 1). Let $\bar{f} \in B=\mathcal{O}_{U}(U)$ be the restriction of f. Show that $U \cap X_{f}$ is equal to the distinguished open subset $U_{\bar{f}}$ of U. Conclude that X_{f} is an open subset of X.
(b) Assume that X is quasi-compact. Set $A:=\mathcal{O}_{X}(X)$ and let $a \in A$ be an element, whose restriction to X_{f} is 0 . Show that for some $n>0, f^{n} a=0$. Hint: Use an open affine cover of X.
(c) Now assume that X has a finite cover by open affines U_{i}, such that each intersection $U_{i} \cap U_{j}$ is quasi-compact. (This hypothesis is satisfied, for example, if the topological space of X is noetherian.) Let $b \in \mathcal{O}_{X_{f}}\left(X_{f}\right)$. Show that for some $n>0, f^{n} b$ is the restriction of an element of A.
(d) With the hypothesis of 7c conclude, that $\mathcal{O}_{X_{f}}\left(X_{f}\right) \cong A_{f}$.
8. (Hartshorne, Exercise 2.17, A Criterion for Affineness)
(a) Let $f: X \rightarrow Y$ be a morphism of preschemes, and suppose that Y can be covered by open subsets U_{i}, such that for each i, the induced map $f^{-1}\left(U_{i}\right) \rightarrow$ U_{i} is an isomorphism. Then f is an isomorphism.
(b) Let X be a prescheme and set $A:=\mathcal{O}_{X}(X)$. The prescheme X is an affine scheme, if and only if there is a finite set of elements $f_{1}, \ldots, f_{r} \in A$, such that the open subsets $X_{f_{i}}$ are affine, and the ideal generated by f_{1}, \ldots, f_{r} is the whole of A. Hint: Use Theorem 1 in section II. 2 of Mumford, and excercise 7 d above.
9. (Mumford, Problem after Definition 5 in section II.2) Let R be a commutative ring with a unit. Let $F \in R\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree $d>0$. Show that $\left\{P \in \mathbb{P}_{R}^{n}: F(P) \neq 0\right\}$ is a Zariski open subset of \mathbb{P}_{R}^{n}, which is isomorphic to

$$
\operatorname{Spec}\left(\frac{M_{0}}{F}, \ldots, \frac{M_{N}}{F}\right),
$$

where $M_{i}, 0 \leq i \leq N=\binom{n+d}{d}-1$ consists of all monomials $\prod_{i=0}^{n} X_{i}^{d_{i}}$ of degree d. Compare with Homework 4 Question 6.

