Due Tuesday, September 11.

1. Prove that the set $C:=\left\{\left(t, t^{2}, t^{3}\right): t \in k\right\}$ is an algebraic subset of \mathbb{A}^{3}.
2. Let $I_{1}=\left(x^{2}+y, x\right)$ and $I_{2}=\left(y^{2} x^{2}+x^{2}+y^{3}+y+x y, y x^{2}+y^{2}+x\right)$. Show the equality of the algebraic subsets $V\left(I_{1}\right)=V\left(I_{2}\right)$ in $\mathbb{A}^{2}(\mathbb{Q})$, over the fields \mathbb{Q} of rational numbers.
3. Let k be an algebraically closed field, X an algebraic subset of $\mathbb{A}^{n}(k)$, and P a point of $\mathbb{A}^{n}(k)$, which is not in X. Show that there is a polynomial F in $k\left[x_{1}, \ldots, x_{n}\right]$, such that $F(Q)=0$, for all $Q \in X$, but $F(P)=1$.
4. (a) If I_{1} and I_{2} are ideals of some commutative ring R, show that $\sqrt{I_{1} I_{2}}=\sqrt{I_{1} \cap I_{2}}$.
(b) If I_{1} and I_{2} are radical ideals, show that $I_{1} \cap I_{2}$ is a radical ideal.
5. Let k be algebraically closed, and $X \subset \mathbb{A}^{3}(k)$ the union of the x_{1}-axis and the point $(1,1,1)$. Find generators for $I(X)$.
6. Let k be a field of characteristic $\neq 2$. Prove that there are three points $a, b, c \in \mathbb{A}^{2}(k)$, such that

$$
\sqrt{\left(x^{2}-2 x y^{4}+y^{6}, y^{3}-y\right)}=\mathfrak{m}_{a} \cap \mathfrak{m}_{b} \cap \mathfrak{m}_{c}
$$

where \mathfrak{m}_{a} is the maximal ideal of the point a, etc...
Hint: Interpret both sides geometrically.
7. Let k be an algebraically closed field and $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ an ideal. Prove that $V(I)$ is a single point, if and only if \sqrt{I} is a maximal ideal.
8. Let k be an algebraically closed field.
(a) Show that the polynomial $y^{2}-x(x-1)(x-\lambda)$ is irreducible, for every $\lambda \in k$.
Hint: Use Eisenstein's Criterion, or otherwise.
(b) Show also that the polynomial $y^{2}-x^{3}$ is irreducible.

9. Definitions

i Let $X \subset \mathbb{A}^{n}(k)$ be an affine algebraic subset. The affine coordinate ring of X is the ring $R:=k\left[x_{1}, \ldots, x_{n}\right] / I(X)$.
ii Let A be an integral domain and K its fraction field. Recall that the integral closure of A is the subring \bar{A} of K, consisting of all elements of K, which are integral over $A . A$ is said to be integrally closed, if $A=\bar{A}$.
(a) Let k be an algebraically closed field, R the coordinate ring of the affine cubic plane curve $V\left(Y^{2}-X^{3}\right)$, and K the fraction field of R. Prove that R is not integrally closed, i.e., find an element of K, which is integral over R, but does not belong to R.
Notational suggestion: Denote the images of X and Y in R by x, y.
(b) Repeat part 9a, but with the nodal cubic curve $V\left(Y^{2}-X^{2}(X-1)\right)$.

Note: We will later see, that an affine algebraic curve is smooth and connected (to be defined), if and only if its coordinate ring is integrally closed.

