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We recover, expand, and unify quantum (and classical) large deviation results for lattice
Gibbs states. The main new ingredient in this paper is a control on the overlap of
spectral projections for non-commutative observables. Our proof of large deviations is
based on Ruelle–Lanford functions [20, 34] which establishes the existence of a rate
function directly by subadditivity arguments, as done in the classical case in [23, 32],
instead of relying on Gärtner–Ellis theorem, and cluster expansion or transfer operators
as done in the quantum case in [21, 13, 27, 22, 16, 28]. We assume that the Gibbs states
are asymptotically decoupled [23, 32], which controls the dependence of observables
localized at different spatial locations. In the companion paper [29], we discuss the
characterization of rate functions in terms of relative entropies.
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1. Introduction

Consider a spin system on the lattice Z
d in thermal equilibrium described by a

state ω. For a region Λ ⊂ Z
d, let KΛ be a macroscopic observable, for example

the total energy or the total magnetization in the region Λ. One expects, as a
rule, that such observables have a distribution which is very sharply concentrated
around the equilibrium mean value and that the fluctuations of such observables are
exponentially small in the volume |Λ| of the domain, except at a first order phase
transition where coexisting phases can induce macroscopically large fluctuations.
This property is expressed by a large deviation principle: For a Borel set A ⊂ R
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let IA(KΛ/|Λ|) denote the spectral projection onto the eigenspace of KΛ/|Λ| corre-
sponding to eigenvalues of KΛ/|Λ| in the set A. A large deviation principle holds if
there exists a rate function s(x) such that

ω(IA(KΛ/|Λ|)) � exp
(
|Λ| sup

x∈A
s(x)

)
.

In classical mechanics systems this problem is mathematically very well-
understood and very general large deviations theorems have been proved both for
systems on a lattice or in the continuum see [20, 34, 30, 12, 6, 10, 14, 15, 23, 32, 33].
For quantum mechanical systems, the problem of large deviations has, in compar-
ison, received little attention and is only partially understood. The difficulty lies,
partly, in the non-commutativity of quantum mechanical observables but also at a
deeper level, in the lack of control on the boundary effects in quantum mechanics.
Known bulk/boundary estimates are sufficient to prove the existence of thermody-
namic functions such as entropy and free energy, see e.g., [35, 19, 5, 36] but they are,
so far, not sufficient to prove general large deviation results, especially at low tem-
peratures for spatial dimension more than one. A number of quantum large devia-
tion results have been proved in the past few years [31, 21, 13, 22, 27, 16, 17, 7, 28, 8],
(see also [4] for an information-theoretic interpretation of relative entropy). Com-
mon to all these papers is that the large deviation results are obtained by an appli-
cation of Gärtner–Ellis theorem, in particular the smoothness of the logarithmic
moment generating functions (i.e. a suitable free energy functional) is necessary
and is proved by cluster expansion or using a transfer operator.

For classical Gibbs states there are several different proofs of the large deviation
principle and we follow here the approach by Lewis, Pfister and Sullivan [23, 32].
In this approach, the state ω of the infinite system is assumed to be asymptotically
decoupled (see Sec. 3.2 for a formal and more general definition): Given a finite region
V ⊂ Z

d there exists a function c(V ) such that if A is a nonnegative observable
supported in the region V and B is a nonnegative observable supported in the
complement Z

d\V one has

e−c(V )ω(A)ω(B) ≤ ω(AB) ≤ ω(A)ω(B)ec(V ),

with

lim
V↗Zd

c(V )
|V | = 0.

In the classical case, this property is a fairly easy consequence of the DLR equa-
tion for Gibbs states. Using this property and subadditivity arguments one proves
then directly the existence of a rate function s(x) for the observable of interest.
This general approach to large deviation (summarized in Sec. 2) was pioneered by
Lanford and Ruelle papers [20, 34] and we follow here the terminology of [23, 32].

To use this strategy for quantum systems we face two obstacles. The first one
is that it is not known whether a Gibbs-KMS state for a quantum spin system is
asymptotically decoupled in general. This property is only known to hold in spatial
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dimension one (proved by Araki in [1]) and at high temperatures in arbitrary dimen-
sion (see, e.g., [2]). We believe that it is an important open problem to determine
whether this property holds for general quantum spin systems or not but there is
no new result in this direction in this paper. The second obstacle lies in the gen-
eralization of the subadditivity argument of [23, 32] to general non-commutative
observables. The new ingredient needed here is a control on the overlap of spectral
projections for KΛ and the spectral projections for KΛ1 +KΛ2 with Λ = Λ1 ∪ Λ2,
which differs from KΛ by a boundary term. This new estimate is proved in Sec. 4.4,
see Proposition 4.10.

Using this approach we are able to recover, unify, and extend slightly the known
large deviation results for quantum (and classical) spin systems. In addition the
proofs given here are quite short and self-contained.

This paper is organized as follows. In Sec. 2, we give a brief exposition of the
road to large deviation via proving the existence of the Ruelle–Lanford function
which is an Boltzmann entropy-like functional. In Sec. 3, we recall the elements
of the quantum spin system formalism needed in the paper and we introduce the
asymptotic decoupling condition for states of quantum systems which is central
in our analysis. In Sec. 4, we prove large deviation theorems for three different
cases: (a) Commuting observables, (b) Classical observables, (c) General finite-
range observables in dimension 1. The discussion of the rate functions and their
characterization in terms of relative entropies is in the companion paper [29].

2. Ruelle–Lanford Functions

Let X be a complete metric space, let {µn} be a sequence of Borel probability
measures on X , and let {vn} an increasing sequence of positive numbers with
limn→∞ vn = +∞. We say that µn satisfies a large deviation principle (LDP) on
the scale vn if there exists a function I :X → [0,∞], lower semicontinuous and with
compact level sets, such that for any closed set C

lim sup
n→∞

1
vn

logµn(C) ≤ − inf
x∈C

I(x), (2.1)

and for any open set O

− inf
x∈O

I(x) ≤ lim inf
n→∞

1
vn

logµn(O). (2.2)

The function I is called the rate function for the LDP.
In statistical mechanics applications the measures µn are often distributions

of sums of R- or R
d- valued weakly dependent random variables. One standard

approach to prove an LDP is to combine the exponential Markov inequality for
the upper bound (2.1) and a change of measure and ergodicity argument for the
lower bound (2.2) (see, e.g., the proofs of Cramer and Gärtner–Ellis theorem in [9]).
In the presence of phase transitions, i.e. lack of ergodicity with respect to spatial
translation, additional arguments are needed to provide a lower bound. For example,



March 23, 2011 10:41 WSPC/S0129-055X 148-RMP
J070-S0129055X11004291

214 Y. Ogata & L. Rey-Bellet

in [12], the lower bound for the LDP for classical lattice Gibbs states is obtained by
using the Shannon–McMillan theorem and an approximation argument by ergodic
states.

Another route to LDP’s using subadditivity arguments, much in the spirit of
statistical mechanics, was pioneered in a remarkable paper by Lanford [20], itself
based on earlier work by Ruelle [35]. We follow closely here the presentation in [23],
see also [32].

For Borel sets B let us define the set functions

m(B) = lim sup
n→∞

1
vn

logµn(B), m(B) = lim inf
n→∞

1
vn

logµn(B). (2.3)

One has the elementary properties

(1) For any Borel set B, we have −∞ ≤ m(B) ≤ m(B) ≤ 0.
(2) If B1 ⊂ B2, then m(B1) ≤ m(B2) and m(B1) ≤ m(B2).
(3) For all B1, B2, we have m(B1 ∪B2) = max{m(B1),m(B2)}.
Property (3) is an key property in large deviations and is usually refereed to as the
principle of the largest term: large deviations occur in the least unlikely way of all
possible ways.

Let Bε(x) denote the ball of radius ε centered at x and let us define

s(x) = inf
ε
m(Bε(x)), s(x) = inf

ε
m(Bε(x)). (2.4)

Definition 2.1. The pair (µn, vn) has a Ruelle–Lanford function (RL-function)
s(x) if

s(x) = s(x),

for all x ∈ X . In this case we set s(x) = s(x) = s(x).

The next proposition is standard and shows that the existence of RL-function
(almost) implies the existence of a LDP.

Proposition 2.2. The Ruelle–Lanford function s(x) is upper semicontinuous and

m(O) ≥ sup
x∈O

s(x), O open , (2.5)

m(K) ≤ sup
x∈K

s(x), K compact . (2.6)

Proof (Sketch). The upper semicontinuity follows from the definition. The lower
bound is immediate: For any x ∈ O and ε sufficiently small we have m(O) ≥
m(Bε(x)) and thus m(O) ≥ s(x) = s(x) for all x ∈ O.

To prove the upper bound, given ε > 0 we cover the compact setK by N = N(ε)
balls Bε(xl) with centers in xl ∈ K. Using Properties (2) and (3) we have

m(K) ≤ m

(
N⋃
l=1

Bε(xl)

)
≤ max

l
m(Bε(xl)) ≤ sup

x∈K
m(Bε(x)).

Since ε is arbitrary the upper bound follows.
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The statement in Proposition 2.2 is usually referred to as a weak large devia-
tion principle since the upper bound holds only for compact sets. In the problems
discussed in this paper, the probability measures µn are supported uniformly on
compact sets and the previous lemma yields immediately a large deviation principle
with rate function −s(x). More generally one obtains a large deviation principle by
combining Proposition 2.2 with a proof that the sequence of probability measures
µn is exponentially tight (see, e.g., [9, Sec. 1.2]).

To identify the rate function we use a standard large deviation result.

Proposition 2.3 (Laplace–Varadhan’s Lemma). Suppose that µn satisfies a
large deviation principle on the scale vn with rate function I(x). Let f be any
continuous function and suppose that for some γ > 1 we have the moment condition
lim supn→∞

1
vn

logµn(eγvnf(x)) <∞. Then

lim
n→∞

1
vn

logµn(evnf(x)) = sup
x

(f(x) − I(x)).

If X = R
n and f(x) = α · x, we obtain

e(α) ≡ lim
n→∞

1
vn

logµn(evnα·x) = sup
x

(α · x+ s(x)),

i.e. the moment generating function of µn is the Legendre transform of −s(x). If, in
addition, we know, a priori, that the rate function s(x) is concave then by convex
duality we obtain that

s(x) = inf
α

(e(α) − α · x),
that is, the rate function is the Legendre transform of the logarithmic moment gen-
erating function. Note that in our examples the moment condition will be trivially
satisfied.

3. Quantum Lattice Systems

3.1. Interactions and states

We introduce some notations and briefly recall the mathematical framework for
quantum spin systems, [19, 36, 5, 3].

C∗-algebras. Let A be a finite-dimensional C∗-algebra. For any finite subset Λ ⊂
Z
d, let OΛ =

⊗
x∈Λ Ox where Ox is isomorphic to A. If Λ ⊂ Λ′, there is a natural

embedding OΛ into OΛ′ and the algebras {OΛ}Λ⊂Zd,finite form a partially ordered
family of matrix algebras. The algebra of observables for the infinite system is given
by the C∗-inductive limit O of

⋃
Λ⊂Zd,finite OΛ.

States. Let ω be a state on O, i.e. ω is a positive, normalized linear functional
on O. Let {τx}x∈Zd denote the group of spatial translations. A state ω is called
translation invariant if ω(τxA) = ω(A) for all x ∈ Z

d and all A ∈ O. The action
of Z

d on O is asymptotically abelian [5] and thus the set of translation invariant
states is a simplex. We say that a state is ergodic if it is an extremal point of this
simplex.
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Classical subalgebras and states. A standard probabilistic setting is recovered
by considering commutative (sub)algebras. Let A(cl) be an abelian subalgebra of A
with N = dimA(cl). For finite subsets Λ of Z

d let O(cl)
Λ =

⊗
x∈Λ O(cl)

x with O(cl)
x

is isomorphic to A(cl). We denote by O(cl) the inductive limit of
⋃

Λ⊂Zd,finite O(cl)
Λ .

The commutative algebra O(cl) can be identified with C(L) where L = {1, . . . , N}Z
d

with product topology is called a classical C∗-algebra. The restriction of any state ω
on O gives a normalized linear functional ω(cl) on O(cl). By Riesz Markov Theorem
there exists a probability measure dω(cl) such that for any A ∈ O(cl)

ω(A) = ω(cl)(A) =
∫
L
A(l)dω(l).

Interactions and Hamiltonians. An interaction Ψ = {ψX}X⊂Zd,finite is a map
from the the finite subsets of Z

d to selfadjoint elements ψX in OX . We will assume
throughout this paper that Ψ is translation invariant, i.e. τx(ψX) = ψX+x for any
X ⊂ Z

d and any x ∈ Z
d. An interaction Ψ is classical if there exists a classical

C∗-subalgebra O(cl) such that ψX ∈ O(cl) for all X ⊂ Z
d.

We equip translation invariant interactions Ψ with the norm

‖Ψ‖ ≡
∑
X�0

|X |−1‖ψX‖,

where |X | is the cardinality of the set X and denote by B the corresponding Banach
space. To any interaction Ψ ∈ B we associate Hamiltonians (or macroscopic observ-
ables) KΛ = KΛ(Ψ): For Λ ⊂ Z

d finite we define

KΛ =
∑
X⊂Λ

ψX .

Furthermore, to any Ψ ∈ B, we associate an observable in O by

AΨ =
∑
X�0

1
|X |ψX .

When we consider Gibbs state, two kinds of interactions Ψ and Φ will be considered.
The interaction Ψ corresponds to the observables while Φ defines the Gibbs state.
We denote by KΛ the local Hamiltonian associated with Ψ and by HΛ associated
with Φ.

Large deviations. For n ∈ N let Λ(n) = {z ∈ Z
d; 0 ≤ zi ≤ n− 1} denote the cube

with |Λ(n)| = nd lattice points and left hand corner at the origin. If ω is an ergodic
state then the von Neumann ergodic theorem implies that

lim
n→∞

1
|Λ(n)|KΛ(n) = ω(AΨ)

strongly in the GNS representation and it is natural to investigate the large devia-
tion properties, on the scale vn = |Λ(n)|, of the sequence of Borel measures on R

µn(A) ≡ ω(IA(|Λ(n)|−1KΛ(n))),
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whereA is a Borel set and IA(H) denotes the spectral projection onto the eigenspace
of H spanned by the eigenvalues contained in the set A. We interpret the µn(A) as
the probability that the observables |Λ(n)|−1KΛ(n) takes value in A if the system
is in the state ω.

3.2. Asymptotically decoupled states

The states we consider in this paper obey a property of weak dependence between
disjoint regions of the lattice. We follow here the terminology used in [32] for the
classical case.

Let C(m) be an arbitrary cube of side length m and let us denote by Cr(m)
the cube of side length m+ 2r centered at the same point of Z

d as C(m).

Definition 3.1. A state ω on O is asymptotically decoupled with parameters
g and c if

(1) There exist a function g : N → N with limm→∞ g(m)/m = 0 and a function
c : N → [0,∞) with limm→∞ c(m)/|C(m)| = 0.

(2) For any cube C(m), m ∈ N, any nonegative A ∈ OC(m), any nonnegative
B ∈ OCg(m)(m)c we have

e−c(m)ω(A)ω(B) ≤ ω(AB) ≤ ec(m)ω(A)ω(B).

Examples of asymptotically decoupled states are

(a) Product states. Any product state ω0 is asymptotically decoupled with
parameters c = g = 0.

(b) Classical Gibbs states. Let O(cl) be a classical C∗-algebra and let Φ be a
classical translation invariant interaction such that ‖Φ‖0 ≡∑X�0 ‖φx‖ is finite.
A Gibbs state for the interaction Φ is a probability measure ω(Φ) which satisfies
the DLR equation (see, e.g., [35, 36]). Using the DLR equation one proves easily
(see, e.g., [23, Sec. 9]) that for any positive A ∈ OC(m) we have

e−c(m)ω(Φ)(A) ≤ tr(Ae−HΛ)
tr(e−HΛ)

≤ ec(m)ω(Φ)(A), (3.1)

with c(m) = ‖WC(m)‖ where WC(m) is the boundary interaction WC(m) =∑
X∩C(m) 
=∅
X∩C(m)c 
=∅

φX . This implies easily that ω(Φ) is asymptotically decoupled if

‖Φ‖0 <∞.
(c) Quantum KMS states. Let Φ be a translation invariant interaction. A KMS

state for the interaction Φ is a state which satisfies the KMS condition or
equivalently the Gibbs condition which is a quantum analog of the DLR equa-
tion (see, e.g., [5, 36, 3] for an up-to-date presentation). It is not known if KMS-
Gibbs states are asymptotically decoupled, in general. Let us assume however
that [1, 2] either
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(i) d = 1 and Φ finite range (i.e. for some R > 0 diamX > R implies φX = 0),
or

(ii) d arbitrary and ‖Φ‖λ ≡∑X�0 e
λ|X|‖φX‖ is sufficiently small,

then one can show that for a Gibbs-KMS state ω(Φ) and A ∈ OC(m) we have the
bound (3.1) where c(m) = C(Φ)

∑
X∩C(m) 
=∅
X∩C(m)c 
=∅

‖φX‖. Contrary to the classical

case the bound is highly nontrivial to prove and relies on the Gibbs condition,
Araki perturbation theory, and control of imaginary-time dynamics. This bound
implies that ω(Φ) is asymptotically decoupled.

(d) Markov measures. Let ω be a stationary Markov chain on a finite state space
with transition matrix Q and invariant probability q. Then ω is asymptotically
decoupled if and only if Q is irreducible and aperiodic (i.e. mixing). If m is the
smallest integer such that Qm has strictly positive entries then the parameters
are

g(m) = m− 1, c(n) = sup
σ1,σ2

∣∣∣∣log
Qm(σ1, σ2)
q(σ2)

∣∣∣∣.
(e) Finitely correlated states. These states are a non-commutative generaliza-

tion of Markov measures and are asymptotically decoupled if and only if they
are mixing which occur under suitable conditions similar to the aperiodicity
condition for Markov measures. See [18, 11, 28] for details.

4. Quantum Large Deviations Theorems

We prove several large deviations theorems for quantum states (in order of increas-
ing difficulty) by showing the existence of concave RL-functions. This unifies, sim-
plifies and extend a number of quantum large deviation results which have been
proved with different techniques (Gärtner–Ellis Theorem via transfer operators,
cluster expansions, etc.). Our proof have the advantage of being fairly short, self-
contained, to apply in some situations where the rate function is not smooth.

4.1. Preliminaries

In this section we prove an energy estimate used throughout the paper and explain
the strategy (after [23]) used to prove the existence of a concave Ruelle–Lanford
function.

The first fact is a very slight variation on standard bulk/boundary energy esti-
mate, see, e.g., [36, 5, 32]. Given integers n and m and a function g(m) such that
limm→∞ g(m)/m = 0 we choose k to be largest even integer such that

n = k(m+ 2g(m)) + r, 0 ≤ r < 2(m+ 2g(m)),

(having k even will be convenient in the sequel). We next decompose the cube
Λ(k(m + 2g(m)) into kd pairwise disjoint and contiguous cubes C̃j , each of which
are each translates of Λ(m + 2g(m)) and then further divide each cube C̃j into a
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cube Cj which is centered at the same point as C̃j and is a translate of Λ(m) and a
“corridor” C̃j \Cj of width g(m). We shall need estimates on the difference between
the Hamiltonian KΛ(n) and the “decoupled” Hamiltonian for the collection of cubes
Cj , i.e.

∑kd

j=1KCj .

Lemma 4.1. Let Ψ be an interaction with ‖Ψ‖ ≡ ∑
X�0 |X |−1‖ψx‖ < ∞. Then

there exists a function F (m) = F (m,Ψ) with limm→∞ F (m) = 0, such that

lim sup
n→∞

1
|Λ(n)|

∥∥∥∥∥∥KΛ(n) −
kd∑
j=1

KCj

∥∥∥∥∥∥ ≤ F (m). (4.1)

We will also use an immediate consequence of Lemma 4.1.

Corollary 4.2. Let Ψ be an interaction with ‖Ψ‖ <∞. Then there exists a function
F (m) = F (m,Ψ) with limm→∞ F (m) = 0, such that

lim sup
n→∞

∥∥∥∥∥∥
1

|Λ(n)|KΛ(n) − 1
|Λ(km)|

kd∑
j=1

KCj

∥∥∥∥∥∥ ≤ F (m). (4.2)

Proof of Lemma 4.1. To simplify notation we set l = m + 2g(m) in the proof.
If D = {x ∈ Z

d; ai ≤ xi < ai + l} is a cube of side length l and r ∈ N such that
r < l/2 we denote Dr = {x ∈ Z

d; ai + r ≤ xi < ai + l − r} the cube of side length
l − 2r centered at the same point as D.

Let us consider two cubes D ⊂ D′ ⊂ Z
d. We have

‖KD′ −KD‖ ≤
∑
X⊂D′
X 
⊂D

‖ψX‖ ≤
∑
x∈D′

∑
X�x
X 
⊂D

1
|X |‖ψX‖

≤
∑

x∈D′\Dr

∑
X�x

1
|X |‖ψX‖ +

∑
x∈Dr

∑
X�x
X 
⊂D

1
|X |‖ψX‖

≤ |D′\Dr|‖Ψ‖ + |Dr|
∑
X�0

diam(X)>r

1
|X | ‖ψX‖. (4.3)

Using (4.3), we have for any r,

lim sup
n→∞

1
|Λ(n)| ‖KΛ(n) −KΛ(kl)‖

≤ lim
n→∞


 |Λ(n)\Λr(kl)|

|Λ(n)| ‖Ψ‖ +
|Λr(kl)|
|Λ(n)|

∑
X�0

diam(X)>r

1
|X |‖ψX‖




=
∑
X�0

diam(X)>r

1
|X |‖ψX‖.
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Since r is arbitrary, we have

lim sup
n→∞

1
|Λ(n)| ‖KΛ(n) −KΛ(kl)‖ = 0. (4.4)

Using (4.3) again, we have

lim sup
n→∞

1
|Λ(n)|

∥∥∥∥∥∥
kd∑
j=1

(KC̃j
−KCj )

∥∥∥∥∥∥

≤ lim
n→∞

kd|Λ(l)|
|Λ(n)|


 |Λ(l)\Λr(m)|

|Λ(l)| ‖Ψ‖ +
|Λr(m)|
|Λ(l)|

∑
X�0

diam(X)>r

1
|X |‖ψX‖


.

If r = h(m) with limm→∞ h(m) = ∞ and limm→∞ h(m)/m = 0, we get

lim sup
n→∞

1
|Λ(n)|

∥∥∥∥∥∥
kd∑
j=1

(KC̃j
−KCj)

∥∥∥∥∥∥ = o(m). (4.5)

Finally∥∥∥∥∥∥KΛ(kl) −
kd∑
j=1

KC̃j

∥∥∥∥∥∥ ≤
∑

X⊂Λ(kl)

X 
⊂someC̃j

‖ψX‖ =
∑

X⊂Λ(kl)

X 
⊂someC̃j

kd∑
j=1

|X ∩ C̃j |
|X | ‖ψX‖

≤ |Λ(kl)| 1
kd

kd∑
j=1

1
|C̃j |

∑
X 
⊂C̃j

|X ∩ C̃j |
|X | ‖ψX‖ = |Λ(kl)|d(Ψ, l)

(4.6)

with

d(Ψ, l) =
1

|Λ(l)|
∑

X 
⊂Λ(l)

|X ∩ Λ(l)|
|X | ‖ψX‖ =

∑
x∈Λ(l)

∑
X�x

X 
⊂Λ(l)

1
|X ||Λ(l)|‖ψX‖

≤ |Λr(l)|
|Λ(l)|

∑
X�0

diam(X)>r

1
|X |‖ψX‖ +

|Λ(l)| − |Λr(l)|
|Λ(l)| ‖Ψ‖. (4.7)

Since l = m+ 2g(m) if we pick r = h(m) as above we get

lim sup
n→∞

1
|Λ(n)|

∥∥∥∥∥∥KΛ(kl) −
kd∑
j=1

KC̃j

∥∥∥∥∥∥ = o(m). (4.8)

Combining the bounds (4.4), (4.5) and (4.8) concludes the proof of Lemma 4.1.

Proof of Corollary 4.2. An easy estimate shows that the difference between
‖|Λ(n)|−1KΛ(n) − |Λ(km)|−1

∑kd

j=1KCj‖ and |Λ(n)|−1‖KΛ(n) − ∑kd

j=1KCj‖ is
O(g(m)/m)‖Ψ‖.
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The second fact is a general remark on the strategy to prove the existence of a
concave RL function [23].

Remark 4.3. Let x, x1, x2 such that 1
2 (x1 + x2) = x and let 0 < ε′ < ε. To prove

the existence of a concave RL-function it is enough to prove that

m(Bε(x)) ≥ m(Bε′(x1)) +m(Bε′(x2))
2

. (4.9)

Indeed if we set x1 = x2 = x in (4.9), then we obtain

s(x) ≥ s(x),

and therefore the Ruelle–Lanford function s(x) exists. Using then (4.9) again, we
obtain that

s(x) ≥ s(x1) + s(x2)
2

.

Since s(x) is upper-semicontinuous, this implies that s(x) is concave.

4.2. Tracial state and conserved quantities

In this section, we prove a quantum large deviation theorem in the simplest possible
case. We bypass a number of issue associated to taking thermodynamic limits for
the states by considering first the finite volume Gibbs states

ωΛ(n)(A) =
tr(Ae−HΛ(n))
tr(e−HΛ(n))

.

In addition, we assume that the Hamiltonian and that the macroscopic observ-
ables KΛ is a conserved quantity, i.e. the commutators [KΛ, HΛ] vanish for all Λ.
Note that, although very restrictive, this condition is, in general, satisfied for ther-
modynamic quantities such as magnetization, density, energy, etc. The following
theorem provides a (weak) justification that macroscopic conserved quantities are
exponentially concentrated in equilibrium.

An important special case is the case where HΛ = 0, that is one consider the
tracial state tr. In this case any observable KΛ can be chosen arbitrarily and the
rate function s(x) is the microcanonical entropy whose existence is of course well
known. The large deviation statement for the tracial state can be found, e.g., in [36];
the only novelty here, maybe, is a very simple proof.

Theorem 4.4. Let Φ and Ψ be interaction with ‖Φ‖ < ∞ and ‖Ψ‖ < ∞. Sup-
pose that the commutators [KΛ(n), HΛ(n)] commute for all n. Then the probability
measures

µn(A) =
tr(IA(|Λ(n)|−1KΛ(n))e−HΛ(n))

tr(e−HΛ(n))
,
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satisfies a large deviation principle on the scale |Λ(n)| with a concave rate function
s(x). We have

sup
x

(αx + s(x)) = P (α), s(x) = inf
α

(P (α) − αx),

where P (α) = limn→∞ |Λ(n)|−1 log tr(e−HΛ(n)+αKΛ(n)) is the translated free energy.

Proof. Let us choose x, x1, x2 and ε, ε′ as in Remark 4.3. Given n > m let k be
the even integer such that n = km+ r with 0 ≤ r < 2m−1 (having k even is useful
later). Divide the cube Λ(km) into kd disjoint contiguous cube Cj , j = 1, . . . , kd

each of which is a translate of the cube Λ(m).
Let us denote by λ

(n)
j the eigenvalues of HΛ(n) and by µ

(n)
j the eigenvalues of

KΛ(n). Since HΛ(n) and KΛ(n) commute we have

µn(Bε(x)) =

∑
j;

µ
(n)
j

|Λ(n)|∈Bε(x)

e−λ
(n)
j

∑
j

e−λ
(n)
j

. (4.10)

By Corollary 4.2, we can choose M and N = Nm so that for m > M and n > N

we have ∥∥∥∥∥∥|Λ(n)|−1KΛ(n) − |Λ(km)|−1
kd∑
j=1

KCj

∥∥∥∥∥∥ ≤ (ε− ε′).

Let µ(m) be an eigenvalue of KΛ(m) with µ(m)/|Λ(m)| ∈ Bε′(x1) and let µ̂(m) be an
eigenvalue of KΛ(m) with µ̂(m)/|Λ(m)| ∈ Bε′(x2). Let us assign µ(m) to each cube
Cj with j = 1, . . . , k

d

2 and µ̂(m) to the each cube Cj with j = kd

2 + 1, . . . , kd. Then
µ̃(km) ≡ kd

2 (µ(m) + µ̂(m)) is an eigenvalue of
∑
j KCj such that µ̃(km)/|Λ(km)| ∈

Bε′(x). For m > M and n ≥ N = Nm, by Weyl’s perturbation theorem, for
any choice of µ(m) and µ̂(m) there exists an eigenvalue µ(n) of KΛ(n) such that
µ(n)/|Λ(n)| ∈ Bε(x).

Assume that the eigenvalues λ(n)
i ofHΛ(n) are listed in increasing order, counting

multiplicity. Let λ̃(n)
i be the eigenvalues of

∑
j HCj ⊗ 1Λ(n)\Λ(km) also listed in

increasing order. By Weyl’s perturbation theorem, and Lemma 4.1, there exists M ′

such that for m > M ′ there exists N ′ = N ′
m such that n ≥ N ′ we have

λ̃
(n)
i − |Λ(n)|F (m) ≤ λ

(n)
i ≤ λ̃

(n)
i + |Λ(n)|F (m).

Using the formula (4.10), we obtain that

µn(Bε(x)) ≥ µm(Bε′(x1))
kd

2 µm(Bε′(x2))
kd

2 e−2|Λ(n)|F (m)

and thus
logµn(Bε(x))

|Λ(n)| ≥
(

logµm(Bε′(x1))
2|Λ(m)| +

logµm(Bε′ (x2))
2|Λ(m)|

)
kd|Λ(m)|
|Λ(n)| − 2F (m).
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To conclude we take first a lim inf over n keeping m fixed and then choose a sub-
sequence ml such that liml→∞ |Λ(ml)|−1 logµml

(Bε′(x1)) = m(B′
ε(x1)). Together

with Remark 4.3 this concludes the proof of Theorem 4.4.

Theorem 4.5. Let Φ and Ψ be interactions with ‖Φ‖ <∞ and ‖Ψ‖ <∞. Suppose
that the commutators [KΛ(n), HΛ(n)] vanish for all n. Suppose ω(Φ) satisfies the
condition (3.1). Then the probability measure

µn(A) = ω(Φ)(IA(|Λ(n)|−1KΛ(n)))

satisfies a large deviation principle on the scale |Λ(n)| with a concave rate function
s(x). We have

sup
x

(αx + s(x)) = P (α), s(x) = inf
α

(P (α) − αx),

where P (α) = limn→∞ |Λ(n)|−1 log tr(e−HΛ(n)+αKΛ(n)) is the translated free energy.

Proof. Since

ω(Φ)(IA(|Λ(n)|−1KΛ(n))) ≥ e−c(n) tr(IA(|Λ(n)|−1KΛ(n))e−HΛ(n))
tr(e−HΛ(n))

,

the theorem follows immediately from Theorem 4.4.

Remark 4.6 (Equivalence of Ensembles). For the tracial case it is not diffi-
cult [36] to show the variational formula s(x) = sup{s(ω);ω(AΨ) = x} where s(ω)
is the specific entropy of the state ω and that the supremum is attained exactly if
ω = ωβΦ is a Gibbs-KMS state at temperature β = β(x) with β chosen in such a
way that ωβΨ(AΨ) = x. This is the equivalence of ensemble: the thermodynamic
function entropy can be computed via microcanonical or canonical prescriptions.
Furthermore, the LDP can be used to prove that suitable microcanonical states
are equivalent to canonical states, see [36] for the classical case and [24, 25] for the
quantum case. Non-commutative versions of equivalence of ensembles are consid-
ered in [7].

4.3. Classical subalgebras

In this section, we assume that ω is an asymptotically decoupled state and that
Ψ ∈ B is a classical interaction, i.e. there exists a classical subalgebra O(cl) ⊂ O
such that, for all X , ψX ∈ O(cl). For example if Ψ = {ψx}x∈Zd consists of only of
“one-site” interactions then Ψ is classical. More generally any classical spin system
is described by a classical interaction. Note that we do not assume any relation
between the interaction Ψ and the state ω; if ω = ωΦ is a Gibbs state for the
interaction Φ then Φ and Ψ need not commute.

As noted in Sec. 3.1 the restriction of ω on O(cl) can be identified with a prob-
ability measure dω(cl) on the configuration space L. Furthermore, it is easy to see
that the state ω(cl) on the C∗-algebra O(cl) 
 C(L) is asymptotically decoupled
whenever the state ω on O is asymptoticallly decoupled.
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We have

Theorem 4.7. Let Ψ be a classical interaction with ‖Ψ‖ < ∞ and let ω be an
asymptotically decoupled state. Then the sequence of probability measures

µn(A) = ω(IA(|Λ(n)|−1KΛ(n))),

satisfies a large deviation principle on the scale |Λ(n)| with a concave rate function
s(x). Moreover

s(x) = inf
α

(f(α) − αx),

where

f(α) = lim
n→∞

1
|Λ(n)| logω(exp(αKΛ(n))).

Proof. The proof reduces to the classical case (see [23]) since the measures µn can
be written as

µn(A) = ω(cl)(IA(|Λ(n)|−1KΛ(n))) =
∫

I{|Λ(n)|−1KΛ(n)∈A}(l)dω(cl)(l)

and the restriction of ω(cl) on O(cl) is asymptotically decoupled. Following
Remark 4.3 we choose arbitrary x, x1, x2 such that x1

2 + x2
2 = x and 0 < ε′ < ε. We

divide the cube Λ(n) as explained before Lemma 4.1. We choose M and N = Nm
such that for m > M and n > N∥∥∥∥∥∥

1
|Λ(n)|KΛ(n) − 1

|Λ(km)|
kd∑
j=1

KCj

∥∥∥∥∥∥ ≤ ε− ε′. (4.11)

Let lCj be configurations such that KCj(lCj )/|Cj | ∈ Bε′(x1) for 1 ≤ j ≤ kd

2 and
KCj (lCj )/|Cj | ∈ Bε′(x2) for kd

2 + 1 ≤ j ≤ kd. By (4.11) any configuration lΛ(n)

which coincides with lCj on all Cj satisfies KΛ(n)(lΛ(n))/|Λ(n)| ∈ Bε(x).
Therefore using the fact that ω(cl) is asymptotically decoupled we have the

bound

ω

(
IBε(x)

(
KΛ(n)

|Λ(n)|
))

=
∫

I
KΛ(n)
|Λ(n)| ∈Bε(x)

ffdω(cl)

≥
∫ kd

2∏
j=1

I
KCj
|Cj | ∈Bε′(x1)

ff
kd∏

kd

2 +1

I
KCj
|Cj | ∈Bε′ (x2)

ffdω(cl)

≥
(∫

I
KΛ(m)
|Λ(m)| ∈Bε′ (x1)

ffdω(cl)

) kd

2
(∫

I
KΛ(m)
|Λ(m)| ∈Bε′(x2)

ffdω(cl)

) kd

2

e−c(m)kd

.
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Thus we obtain
logµn(Bε(x))

|Λ(n)| ≥
(

logµm(Bε′(x1))
2|Λ(m)| +

logµm(Bε′(x2))
2|Λ(m)|

)
kd|Λ(m)|
|Λ(n)|

− 1
|Λ(n)|c(m)kd.

We conclude by taking the lim inf over n and then choosing a subsequence ml such
that liml→∞(|Λ(ml)|)−1 logµml

(Bε′(x1)) = m(B′
ε(x1)). The identification of the

rate function follows from Varadhan’s lemma.

Remark 4.8. One can show (see [32, 29] for more details) that the rate function
satisfies the following variational characterization:

s(x) = sup{−hcl(ν, ω(cl)); ν(AΨ) = x},
where hcl is the classical relative entropy per unit volume, and the supremum is
taken over all classical translation invariant states.

4.4. Dimension 1

Throughout this section we assume that d = 1 (so we write |Λ(n)| = n) and that
ω is an asymptotically decoupled state, for example we may assume that ω a KMS-
Gibbs state for a finite range interaction. We also assume that Ψ is a finite range
interaction.

The crucial estimate needed to control the effect of non-commutativity is an
estimate on the difference between the spectral projections associated to KΛ(n) and∑k
j=1KCj (see Sec. 4.1). To prove this we relies on a “cocycle estimate” proved in

[1], which follows from the fact that the time-evolution τt(A) of any local observable
A for a finite-range quantum spin system can be extended to a entire analytic
function of t. This allows to prove the following “exponential version” of Lemma 4.1.

Proposition 4.9. Let Ψ be a finite range interaction of range R and let β ∈ R.
Then there exists a function Fβ(m) = Fβ(m,R,Ψ) with

lim
m→∞Fβ(m) = 0. (4.12)

such that

lim sup
n→∞

1
n

log
∥∥∥eβKΛ(n)e−β

Pk
j=1KCj

∥∥∥ ≤ |β|Fβ(m). (4.13)

Proof. The proof is an application of the results in [1], see in particular Secs. 4
and 5. The basic bound in [1, Sec. 5], is that if AX ∈ OX with diam(X) ≤ R then
there exists a constant D(β,R,Ψ) such that

‖eβKΛ(n)e−β(KΛ(n)−AX)‖ ≤ e|β|D(β,R,Ψ)‖AX‖. (4.14)

The bound (4.14) follows from Dyson formula and estimates (uniform in n) on the
dynamics in imaginary time generated by the Hamiltonian KΛ(n). To apply these
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results here we write

KΛ(n) =
k∑
j=1

KCj +
∑

X⊂Λ(n)
X 
⊂someCj

ψX .

Let tX ∈ {0, 1} and let us define the family of interpolating Hamiltonians

KΛ(n)({tX}) =
k∑
j=1

KCj +
∑

X⊂Λ(n)
X 
⊂someCj

tXψX .

The estimates on the dynamics in [1] are easily seen to be uniform in {tX} and so
we can apply the bound (4.14) iteratively, changing at each step one tX from 1 to
0. Using that Ψ has a finite range R we obtain the bound

‖eβKΛ(n)e−β
Pk

j=1KCj ‖ ≤ e

|β|D(β,R,Ψ)
P

X⊂Λ(n)
X 
⊂someCj

‖ψX‖
.

But the sum over X is now treated exactly as Lemma 4.1 and we find Fβ(m) =
F (m)D(β,R,Ψ).

We use this bound to prove an exponential estimates which control how the
spectral projections change when we replace KΛ(n) by

∑k
j=1KCj .

Proposition 4.10. Let ε > ε′ > 0. Then for any α > 0 there exists a function
F̃α(m) with limm→∞ F̃α(m) = 0 such that

lim sup
n→∞

1
n

log

∥∥∥∥∥∥IBε′ (x)


(mk)−1

k∑
j=1

KCj


 IBε(x)C (n−1KΛ(n))

∥∥∥∥∥∥
≤ −α(ε− ε′ − F̃α(m)). (4.15)

Proof. Let us write

KΛ(n) =
∑
i

µiPi,

k∑
j=1

KCj =
∑
l

λlQl, (4.16)

where Pi and Ql are rank-one projections and µi and λl are the eigenvalues of KΛ(n)

and
∑
j KCj . For any β ∈ R

IBδ(y)(n−1KΛ(n)) =
∑

i;
µi
n ∈Bδ(y)

Pi

= eβ(KΛ(n)−ny)
∑

i;
µi
n ∈Bδ(y)

e−β(µi−ny)Pi

≡ eβ(KΛ(n)−ny)Vβ,y,δ (4.17)
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and

IBε′ (x)


(mk)−1

k∑
j=1

KCj


 =

∑
l;

λl
mk∈Bε′(x)

Ql

=
∑

l;
λl
mk∈Bε′(x)

eβ(λl−xn)Qle
−β(

P
j KCj

−xn)

≡ Wβ,x,ε′e
−β(

P
j KCj

−xn), (4.18)

with the bounds

‖Vβ,y,δ‖ ≤ e|β|nδ, ‖Wβ,x,ε′‖ ≤ e|β|mk(ε
′+( n

mk−1)|x|). (4.19)

If y > x we choose β = α > 0 and using Eqs. (4.17) and (4.18) as well as the
bounds (4.13) and (4.19), we obtain

lim sup
n→∞

1
n

log

∥∥∥∥∥∥IBε′ (x)


(mk)−1

k∑
j=1

KCj


 IBδ(y)(n−1KΛ(n))

∥∥∥∥∥∥
= lim sup

n→∞
1
n

log ‖Wα,x,ε′e
−α(

P
j KCj

−nx)eα(KΛ(n)−ny)Vα,y,δ‖

≤ lim sup
n→∞

[
−α(y − x) +

1
n

log ‖e−α
P

j KCj eαKΛ(n)‖

+
α

n
(nδ +mkε′ + (n−mk)|x|)

]

≤ −α(y − x) + αFα(m) + α(δ + ε′) + α
g(m)
m

|x|.

Similarly, for y < x, we choose β = −α and obtain a similar bound and finally

lim sup
n→∞

1
n

log

∥∥∥∥∥∥IBε′ (x)


(mk)−1

k∑
j=1

KCj


 IBδ(y)(n−1KΛ(n))

∥∥∥∥∥∥
≤ −α|y − x| + αFα(m) + α(δ + ε′) + α

g(m)
m

|x|. (4.20)

Next we choose δ be such that ε > 2δ + ε′ and choose finitely many intervals Tl
and xl ∈ Tl, l = 1, . . . , L such that

Bε(x)C ∩ [−‖Ψ‖, ‖Ψ‖] =
⋃
l

Tl, Tl ⊂ Bδ(xl).
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By the principle of the largest term, and using the bound (4.20), we obtain

lim sup
n→∞

1
n

log

∥∥∥∥∥∥IBε′ (x)


(mk)−1

k∑
j=1

KCj


IBε(x)C (n−1KΛ(n))

∥∥∥∥∥∥
≤ lim sup

n→∞
1
n

log

∥∥∥∥∥∥IBε′ (x)


(mk)−1

k∑
j=1

KCj


 L∑
l=1

ITl
(n−1KΛ(n))

∥∥∥∥∥∥
≤ max

l
lim sup
n→∞

1
n

log

∥∥∥∥∥∥IBε′ (x)


(mk)−1

k∑
j=1

KCj


IBδ(xl)(n

−1KΛ(n))

∥∥∥∥∥∥
≤ −α(ε− ε′ − δ) + α

(
Fα(m) +

g(m)
m

|x|
)
. (4.21)

Since δ is arbitrary this concludes the proof with F̃α(m) = Fα(m) + g(m)
m |x|.

With this estimate we can now prove

Theorem 4.11. Let d = 1, let ω be an asymptotically decoupled translation invari-
ant state, and let Ψ be a finite range interaction. Then the sequence of probability
measures

µn(A) = ω(IA(n−1KΛ(n))),

satisfies a large deviation principle with a concave rate function s(x). Moreover

s(x) = inf
α

(f(α) − αx),

where

f(α) = lim
n→∞n−1 logω(exp(αKΛ(n))).

Proof. Let ω be an asymptotically decoupled state with parameters g and c. Let
x, x1, x2 be such that x1

2 + x2
2 = x and 0 < ε′ < ε. For any n > m we decompose

Λ(n) as in Sec. 4.1. Note that

k/2⊗
j=1

IBε′ (x1)

(
KCj

m

) k⊗
j=k/2+1

IBε′ (x2)

(
KCj

m

)
≤ IBε′ (x)

(∑
jKCj

mk

)
, (4.22)

and that for any projections P and Q and a state ω we have

ω(P ) = ω(QPQ) + ω((1 −Q)PQ+QP (1 −Q)) + ω((1 −Q)P (1 −Q))

≤ ω(Q) + 2‖(1 −Q)PQ‖ + ‖(1 −Q)P (1 −Q)‖
≤ ω(Q) + 3‖(1 −Q)P‖. (4.23)
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Using that ω is asymptotically decoupled, and estimates (4.22) and (4.23), we obtain

1
2m

logω
(
IBε′ (x1)

(
KΛ(m)

m

))
+

1
2m

logω
(
IBε′ (x2)

(
KΛ(m)

m

))

≤ 1
mk

logω


k/2⊗
j=1

IBε′ (x1)

(
KCj

m

) k⊗
j=k/2+1

IBε′ (x2)

(
KCj

m

)+
c(m)k
mk

≤ 1
mk

logω


IBε′ (x)



∑
j

KCj

mk




+

c(m)
m

≤ 1
mk

log


ω
(
IBε(x)

(
KΛ(n)

n

))

+ 3

∥∥∥∥∥∥∥∥∥∥∥
IBε′ (x)




k∑
j=1

KCj

mk


 IBε(x)C

(
KΛ(n)

n

)
∥∥∥∥∥∥∥∥∥∥∥


+

c(m)
m

.

Keeping m fixed we take a lim inf over n and using Proposition 4.10 we obtain

1
2m

logω
(
IBε′ (x1)

(
KΛ(m)

m

))
+

1
2m

logω
(
IBε′ (x2)

(
KΛ(m)

m

))

≤
(

1 +
g(m)
m

)
max{m(Bε(x)),−α(ε− ε′ − F̃α(m))} +

c(m)
m

. (4.24)

To conclude we will use the bound (4.24) repeteadly.

(a) Assume first x = x1 = x2 and assume that s(x) > −∞. Choose first α so large
that

−1
2
α(ε− ε′) < m(Bε(x)),

and then M = M(α) so that F̃α(m) ≤ 1
2 (ε− ε′) for m > M . By (4.24) we have

then

1
m

logω
(
IBε′ (x)

(
KΛ(m)

m

))
≤
(

1 +
g(m)
m

)
m(Bε(x)) +

c(m)
m

,

and thus m(Bε′ (x)) ≤ m(Bε(x)). This implies that the Ruelle function s(x)
exists and is finite.
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(b) Assume that s(x) > −∞ and x = 1
2 (x1 +x2). Repeating the same argument as

in (a) one obtains, for m large enough,

1
2m

logω
(
IBε′ (x1)

(
KΛ(m)

m

))
+

1
2m

logω
(
IBε′ (x2)

(
KΛ(m)

m

))

≤
(

1 +
g(m)
m

)
m(Bε(x)) +

c(m)
m

,

and this implies that 1
2m(Bε′ (x1)) + 1

2m(Bε′(x2)) ≤ m(Bε(x)). Thus the rate
function s(x) is concave wherever it is finite.

(c) Let us assume that s(x) = −∞. Then for any t > 0 we can find εt such that
for ε < εt we have m(Bε(x)) ≤ −t. By (4.24) we have

1
m

logω
(
IBε′ (x)

(
KΛ(m)

m

))

≤
(

1 +
g(m)
m

)
max{−t,−α(ε− ε′ − F̃α(m))} +

c(m)
m

,

and thus taking m→ ∞ we obtain

m(Bε′(x)) ≤ max{−t,−α(ε− ε′)},

and so

s(x) ≤ max{−t,−αε}.

Since α and t are arbitrary we have s(x) = −∞.
(d) Assume that s(x) = −∞ and x = 1

2 (x1 +x2). Repeating the same argument as
in (c) for any t > 0 there exists εt > 0 such that for all α > 0,

1
2m

logω
(
IBε′ (x1)

(
KΛ(m)

m

))
+

1
2m

logω
(
IBε′ (x2)

(
KΛ(m)

m

))

≤
(

1 +
g(m)
m

)
max{−t,−α(εt − ε′ − F̃α(m))} +

c(m)
m

and this implies that 1
2m(Bε′(x1)) + 1

2m(Bε′(x2)) ≤ max{−t,−α(εt − ε′)}.
Hence we obtain

1
2
s(x1) +

1
2
s(x2) =

1
2
s(x1) +

1
2
s(x2) = −∞ ≤ s(x).

Combining (a)–(d) shows the existence of a concave RL-function and this concludes
the proof of Theorem 4.11.

Remark 4.12. A characterization of the rate function using classical relative
entropies is proved in [29].
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pp. 393–472.

[33] S. Roelly and H. Zessin, The equivalence of equilibrium principles in statistical
mechanics and some applications to large particle systems, Expo. Math. 11 (1993)
385–405.

[34] D. Ruelle, Correlation functionals, J. Math. Phys. 6 (1965) 201–220.
[35] D. Ruelle, Statistical Mechanics: Rigorous Results (World Scientific, 1999).
[36] B. Simon, The Statistical Mechanics of Lattice Gases, Vol. I, Princeton Series in

Physics (Princeton University Press, 1993).


	1 Introduction
	2 Ruelle--Lanford Functions
	3 Quantum Lattice Systems
	3.1 Interactions and states
	3.2 Asymptotically decoupled states

	4 Quantum Large Deviations Theorems
	4.1 Preliminaries
	4.2 Tracial state and conserved quantities
	4.3 Classical subalgebras
	4.4 Dimension 1


