
Low-temperature phase diagrams of quantum
lattice systems. III, Examples

Autor(en): Fröhlich, Jürg / Rey-Bellet, Luc

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 69 (1996)

Heft 5-6

Persistenter Link: http://doi.org/10.5169/seals-116980

PDF erstellt am: 03.08.2019

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

http://doi.org/10.5169/seals-116980


Helv Phys Acta 0018-0238/96/060821-29S1.50+0.20/0
Vol. 69 (1996) (c) Birkhäuser Verlag, Basel

Low-Temperature Phase Diagrams of Quantum Lattice
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Abstract. We use the low-temperature expansion and the extension of Pirogov-Sinai theory developed

in [1], and the perturbation theory of [2] to describe the phase diagrams of two families of
fermionic lattice systems at low-temperature: the balanced model and a variant of the t — J model.

1 Introduction
In this paper, we illustrate the methods developed in two previous papers [1, 2] to analyze the
low-temperature phase diagrams of quantum lattice systems in terms of two classes of models, the
balanced model and the t — J models (of interest in connection with high-temperature
superconductivity). In this paper, we describe our main results and discuss the key ideas of the proofs, but
we do not present all the details of our calculations. Furthermore, we permit ourselves to describe
various conjectures. Methods similar to those in [1] have been developed by Borgs. Kotecky and

Ueltschi, [3], for quantum spin systems.
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1.1 The models
We consider two spin-1/2 models on a two-dimensional lattice, (but our methods can be used in

any dimension d > 2).

(i) The balanced model.
The Hamiltonian of the model, for a finite subset A of 2Z2. is given by

Hbal(t) Y {J^)^3ì)nxny+ Y (¦/'43)<tf')n,nï
ll«-»ll=i ||*-»||=v5
(*ï)CA (ry)CA

+ Y Vnx+nxi - Y E ' (4aV + ft-c-) • I1)

(it/)CA

where o4 i 1,2,3, are the Pauli matrices acting on the spin space at site a: 6 A, c\.a and r1CT

are the creation and annihilation operators for a particle with spin a at site x, nxa is the number

operator for a particle with spin tr at site x, and nx nx+ + nx\, is the total particle number

operator at site x. The Hilbert space at each lattice site a; G A is isomorphic to C As a basis for
C4, we choose {|n), It), It), |0)}.

We shall consider the antiferromagnetic case, i.e., J > 0 and ,/' > 0, and a large on-site repulsive
interaction, U S> J, U S> ,/'. The word "balanced'' refers to the condition J' J/2. At half-filling,
Hbal(^) has an infinite number of groundstates and does not satisfy the Peierls condition. The
hopping term. Hf,al(t) — //(,aj(0), is treated as a perturbation. By using a variant of perturbation
theory developed in [2], we shall show that the hopping term lifts the infinite degeneracy of the
groundstate energy of ///(,„((0) in order t2. Two Néel states will turn out to be the groundstates of
Hbal(t), and long-range order survives at finite temperature.

(ii) A variant of the t—J model
The Hamiltonian of this model is given by

ll*-vll=i
L

- E E t (cL':yo A h.c.'j + Y Anxny~YlmT- (2)
lk-sll-1 <r6{tl} ||*-ï||=^ i6A
<*y)CA (*î/)CA

We require an infinitely strong on-site repulsive interaction, i.e, we forbid double occupancy. The
Hilbert space each lattice site x 6 A is isomorphic to (D3. A convenient basis for C3 is {| f), | |).
|o>}.

We study the antiferromagnetic case, i.e, J > 0. Since the unitary transformation rUeA, °* >

where Ae is the even sublattice of A, changes the sign of A, we may assume, without loss of generality,
that A > 0. We do not impose any restriction on the values of v and v'. We study this model with
the help of perturbative methods (see [2]) which are applicable only in the regime where A/.7 and

a suitable dimensionless version of t is small.
This model describes the motion of holes in an antiferromagnetic background. It is a variant

of the t — J model which may describe some features of high-Tc superconductors. The plain t — J
model corresponds to the parameters values v —J, A 0 and can be derived from the Hubbard
model in the strong coupling limit. Although the physically relevant parameter ranges are A « .7/2
and t sa J, it appears to be of interest to study the model in the limit of strong anisotropy and weak

hopping where rigorous results can be obtained, with the hope that such results can be extrapolated
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Figure 1: Spiral order in TL

to the physical domain. For example these results indicate in which domain of parameter space
Fermi liquids or a superconducting phase might appear.

1.2 The methods
For the convenience of the reader we briefly recall the results obtained in [1. 2]. The pert.urba.tion
theory of [2] will serve to cast the Hamiltonians defined in (1) and (2) in a form thai enables us l.o

apply the low-temperature expansion (Pirogov-Sinai) theory of [1] to our models.
Standard references for the general formalism of quantum lattice systems are [4, 5, ()]. In

this paper, we consider lattice gases of fermions and we require a slight modification of the usual

formalism. Indeed fermionic creation and annihilation operators at, different lattice sites do not
commute but anticommute. But we have in the sequel commutativity (or locality) conditions.

A quantum lattice system is defined by the following data:

(i) To each x € 2 is associated an Hilbert space Hx which is isomorphic, for all x, to a fixed,
finite-dimensional Hilbert space Ji. We choose an ordering on 2 for example the spiral ordering
depicted in Figure 1 for d 2 (and an analogous ordering for d > 3). This ordering is chosen

to have the property that, for any finite set X, the set X := {z e HA.z < X] of lattice sites
which are smaller than X, or belong to X, is finite. The Hilbert space associated to a. finite subset,

X {x{ -<¦¦¦¦< .ï|a'j} C 2Z is the ordered tensor product

nx ='#,-, ®---®uxm ¦

and we denote j£(Hx) the algebra of all bounded operators on Jix.
(ii) For any finite subset X C ~SA two operators algebras acting on Hx are given

• The (local) field algebra Tx C C(HX),

• The (local) observable algebra Ax _ Tx-.

which satisfy the following properties.

(a) If X C Y and x -< y, for all îê.ï and all y G Y \ X, then there is a natural embedding of Tx
into Ty and, in the following, we write R for both B e Tx and B V:, lyY,x in Ty.
(b) For the infinite system, the (quasilocal) field and operator algebras are the C*-algebra.s given
by

—:—: norm —:—¦ norm
A [J Ax ¦ A (j Tx

XfTL" X/*TV

(the limit taken through a sequence of increasing subsets of Z' where increasing refers to the spiral
ordering defined above).
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(c) The elements of the field and observable algebras satisfy the commutativity condition: If XCiY
0, then for any A e Tx, B G Ay

[A B] 0. (3)

For fermions, as in our examples, the field algebra, Tx, is the algebra generated by creation
and annihlation operators at lattice sites x 6 X and the observable algebra, Ax, may be taken to
the subalgebra of Tx consisting of gauge-invariant operators. For example, for spin 1/2 fermions,
we take Ux ~ C2 <g> C2, for all x £ ~SLd, with the basis

Creation and annihilation operators are given in terms of a Klein-Jordan-Wigner transformation

4T ®y<x (ffyi ® ^2) ® CT*i cx-t (<-t)

c*| ®»-<* (<r»i ® cr32) ® a3! C* CT
+

c,4 (c^)

where crJ, aft, tr3,, i 6 2'', i 1,2 are the Pauli matrices acting at lattice site x on the first or
second factor of (C2 <8> <C2. This representation makes explicit the non-local character of creation
and annihilation operators: c*CT, cxa, a 6 {til} belong to £(HX)- With this representation it is

straightforward to check the commutativity condition (3).
The methods of [1] can applied to Hamiltonians of the form

H Ho(y) + V,

defined on the Hilbert space HK) where A is a finite (arbitrarily large) subset of the lattice Z". We

assume that both operators, Ho(A) and V, can be written as sums of local operators which belong
to the observable algtbras:

H0(u) Y^xill), <ßx(l±)£Ax
*CA

v Y yx VxeAx ¦

XcA

We consider translation-invariant lattice systems, i.e. systems satisfying

4>x(a) $+.(£)¦ vx vx+a.

for all X C TLd, a e Zrf.

Furthermore, \i £ IR parametrizes "external fields" (chemical potentials, magnetic field.
Our assumptions on Ho(ß) are the following: there is a domain Ö C IR such that the conditions
H1-H4 below are satisfied.

• HI. Hq(u) is a finite-range classical Hamiltonian.
(a) The operators {<t>xil1)} have finite range r, i.e.,

r := max \x, - y,\, (5)
x-.ix (fi)yo

z.yÇM, l<t<f
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is finite.
(b) There exists a basis {e? }jÄe/i where / {1,..., A'}, N dim?^, is a finite set independent

of x, such that, for all X C 7Ld and all u G Ö, 4>°x(p) ls diagonal in the tensor-product-
basis

{Œxexejjùei ¦

In our examples the basis {ex-}3x<=i is given by (4).
The set of configurations on A, SiA, is defined as the set of all assignments {jx}xçA with 7) G /.

A configuration uA is an element of Qa and. for X C A, ujx denotes the restriction of u>,\ to the
subset X. To each configuration ujx one can associate the state ®x-eXeA,^, with iox {.y,}.gv-
which will be denoted eulx. Since the interactions 0X are uniquely determined by the matrix
elements

(^MW)K,) <<wIÄ(e)Kx)
:= Ä(m)K),

we may view <j>x as a function on the set of configurations. Given a configuration u> := w^- of the
infinite system (A /~ HA), we let e(u)(to) denote the energy density of w, defined by

e(p)(u) limA/z-— ^ (e^AIÄ(M)le^A> ¦ (6)
1 I XcA

Note that the limit exists e.g. if u> is periodic. Let K, be the set of all of periodic states {s\
euj, i

¦ ¦ -sp eUp} (where uij, ¦ ¦ -,uip are periodic configurations) with the property that, for every

j 1, • • •, P, s3 is a groundstate of Ho(y), for some fi € O, in the sense that e;(/i) := e(/j)(uy) is a.

minimum of e(//)(o;), w G Î2.

• H2. Peierls condition.
The set, /C, of periodic groundstates of Ho(ß), with /7 e 0. is finite and Ho(ß) satisfies the
Peierls condition with a Peierls constant k independent of /1 G Ö.

The Peierls condition requires that there be a non-zero energy per unit interface ("contour")
separating two periodic groundstates. A precise statement and a useful criterion (see [7]) are given in

Appendix B. Note that the dimension of Ö, P — 1, is assumed to be one less than the number of
groundstates.

For each value of ß, there is a set of periodic groundstates of H0(/A

Q^°\u) :={.h : e3(u) min efc (//,)}.

The classical zero-temperature phase diagram is the family of manifolds

sffL,,} := teeO : Q^0)(A) {sPl,..-,sPk}},

with 1 < k < P; sPl, spk G KZ. These manifolds are called the strata of the phase, diagram.

• H3. Regularity of the phase diagram. The phase diagram is regular, i.e., the map

ß '—? (fi(/J) ^ m'mek(fj,) ep(u) - min ek(u))
V k k '

is a homeomorphism of O into the boundary of the positive octant in IR
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Note that this means that the stratum of maximum coexistence. SjA' is a single point the

origin of the P-octant), the strata with p — 1 groundstates are curves starting from it the
coordinate halfaxes), the strata with P — k groundstates are fc-dimensional manifolds bounded

by the strata with P — k + 1 ground states. (This geometry is also known as the Gibbs phase rule)

• H4. Smoothness properties.
The maps p i—t <j>x (p) are differentiable, and their derivatives have uniformly bounded norm
on O. Moreover the determinant of the matrix

Tj^(eK) - «K» (7)
aAi / i<ij<p-i

is uniformly bounded away from zero throughout O.

The perturbation Hamiltonian V is assumed to satisfy the following conditions.

• VI. Exponential decay.
There exists e > 0 and A < 1 such that

||VB|| < e\^Bl

where g(B) is the cardinality of the smallest connected subset of the lattice containing B.

For fermionic systems V is assumed to be gauge-invariant. This property is crucial both in

proving statistical independence of the weights of disjoint contours in a low-temperature expansion
(see [1]), and in our perturbation scheme (see Appendix A and [2]).

The first part of the analysis in [1] yields a criterion to determine the stable phases of H, for
a fixed value of p., if Ho(p) is in the symmetric regime. The Hamiltonian Ho(y) is said to be in

the symmetric regime if, in a neighbourhood of p, Ho has a single groundstate or, more generally,
finitely many groundstates related by some symmetry operation.

For a periodic state s3 G KZ. and finite regions T D A. the Hamiltonian "with boundary condition"

sj is the operator

»r E Pr\A^x(lZi) + Vx)Pr\A, (8)

ATiA^e

where P(lA := \sjr\A){sjr\A\- The Gibbs state in the finite volume A and boundary condition s,
and inverse temperature ß is the positive linear functional on T\ defined by

UA exp(-6H(J)
TA 9 A ^ (A)i lim A A.

r/z« trexp(-/3rYpJJ

The infinite-volume limits of these functionals determine the phase diagram of the system.
In [1, Theorem 2.2] the following theorem has been proven:

Theorem 1.1 (Low-temperature expansion in the symmetric regime.)
Assume that, for a fixed value of p, Hq(ji) satisfies condition HI, is in the symmetric regime, and

satisfies the Peierls condition H2. Assume, further, that the perturbation V satisfies condition VI.
Then there are constants R O(n) and Eo > 0 such that, for each ß, e and A in the region

max(e~/3r', —) < cU,
K
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there exists a family of functions fj(p), 1 < j < P (the truncated free energy densities), such that
the following holds: If, for some j G {1, • • -, P},

f](p) ,93B Me) t9)
\<k<r

for some values of e, ß and A, then

1. fj(p) coincides with the true free energy of the system

f^ -U^w\XogZ{- (10)

(A)' := lim (A)i, (11)
A/'Z*

2. The infinite-volume limit

exists for any local observable A.

3.

\(Ay - (s3\A\s3)\<\\A\\\X\O(e0)

for any operator A in Ax ¦

Theorem 1.1 shows that the long-range order of the groundstate survives at finite temperature
and under the addition of a sufficiently small quantum perturbation. This theorem, combined with
a high temperature expansion (see [8]), permits to prove the existence, at finite temperature, ol

phase transitions between ordered phases and a disordered phase.
The second part of the analysis refers to the stability of the phase diagram as a whole. It

extends Pirogov-Sinai theory [9, 10] to a certain class of quantum Hamiltonians.
The set of coexisting Gibbs states, Q^,A'(/i), is defined similarly to the set Q'00'"'^), replacing

groundstate energy densities by truncated free energy densities (see [1]):

Qf^V) {s3 : f3(u) min fk(fi))-
\<k<r

One then defines

sul..,„A := i!±£° ¦ 2(/3'A)M {%i,---,^}}-{«Pi

The following theorem is proven in [1, Theorem 2.3]:

Theorem 1.2 (Pirogov-Sinai theory)
Assume that the Hamiltonian Ho(j-i) + V satisfies conditions HI - H4 and VI.

Then there are constants k O(k) and £o > Ü such that, for each ß, e and A in the region

-Bk e^t
max (e —) < £o,

there exists a non-empty open set Oßt\ G IR such that:

• The phase diagram defined by the strata Oßt\ n S\f s
is regular, and these strata are

differentiable manifolds.
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• As co —? 0, the strata On \ D Sj tends 7o M,e zero-temperature classical strata
\SFt,...,sPk)

Ö (I 5^' i, pointwise in p. In particular, the distance between the maximal-coexistence

manifolds Sx
' and SjA' is O(eo)-

This theorem describes the first order phase transitions (coexistence of several phases), when

the parameters p vary. It, shows that the phase diagram of llo(ß) + V, at low-temperature and for
a sufficiently small perturbation V. is a smooth deformation of the phase diagram of Hod1) at zm)
temperature.

In [2] it is shown how to describe the low-temperature phase diagram of certain quantum lattice
systems for which conditions H2 and H3 are not, a priori, satisfied. Indeed, it may happen I liai
the groundstates of the Hamiltonian Ho(,i) are infinitely degenerate (in the thermodynamic limit),
but that the perturbation reduces this degeneracy to a finite one. We consider Hairiiltonia.ns of t

Inform

H(t) H0(p) + tV,
t being a perturbation parameter. We assume that Ho(ß) satisfies conditions HI and H4 and. in

addition, we require the following hypotheses on Ho(ß) and V.

• PI. M-potential.
Ho(lA can be written as

//„(m) y Ate). (i2)
MCA

where {4>°M(p)} is a translation-invariant, finite-range m-potential (see [7]).

More explicitly, condition PI amounts to assuming the following property. There exists at least

one configuration u> of the infinite system minimizing 4>0^, for all M, i.e.,

*S,(w) min $m(c/), for all M C TLd (13)

The set of all configurations for which (13) holds are groundstate configurations of//u(/i). Condition
PI allows us to define local groundstates of the restriction of Ho(p) to a subset of the lattice.

We assume that the perturbation V satisfies, instead of VI, the following stronger condition.

• P2. Finite-Range
V is a finite-range translation-invariant perturbation Hamiltonian.

In [2] we construct a unitary transformation, U(t), such that the transformed Hamiltonian.

H(t) U(t)H(t)U(t)-\

can be cast in the form
H(t) H0(t) + V(t),

such that Pirogov-Sinai theory, see [1. 2], can be applied to the pair (Ho(t) V(t)), with Ha(t) playing

the role of Ho(p) and V(t) playing the role of the quantum perturbation V. In our applications,
U(t) will have the form

U(t) exp (tS)

with S —S* independent of t. The construction of S is reviewed in Appendix A. This choice of
U(t) corresponds to second order perturbation theory. If the accidental degeneracy of the ground-
states of Ho(p) is lifted by the perturbation tV in some finite order of perturbation theory one may
construct corresponding unitary transformations (see [2]).
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In order to apply Theorem 1.1 one has to check that the Hamiltonian Ho(t) satisfies conditions

Hl, H2. Condition HI requires that there be a tensor-product basis in which Ha(t) is diagonal.
Condition H2 is equivalent to saying that the perturbation lifts the infinite degeneracy of the
groundstates to a finite one and that the Peierls condition holds with a (t-dependent) Peierls
constant k. If these conditions hold the spectrum of Ho(t) can be described as follows. Above
the groundstate there are "low-energy" states whose energies are separated from the groundstate
energy by a (i-dependent) gap k and "high-energy" states whose energies are separated from the
groundstate energy by a gap A of order 1.

In order to apply Pirogov-Sinai theory (Theorem 1.2) one has to further check condition H3.
That the phase diagram of Ho(ß) is not regular may mean, for example, that, on the hypersurfaces of
the phase diagram separating two regions with different sets of groundstates, there are, besides those
of the adjacent regions, (infinitely) many other ones. We have to understand how the degeneracy
is lifted by the perturbation: It may happen that the phase diagram of Ho(t) becomes regular or
that a new phase appears in a small domain surrounding the hypersurface in question (as in the
t-J model treated below).

Concerning condition VI the following lemma is proven in [2],

Lemma 1.3 Assume that the Hamiltonian Ho(fi) +tV satisfies conditions HI, PI and P2. Then
the unitary transformation U(t) (see Appendix A) is such that, for sufficiently small t, the new

perturbation V(t) satisfies condition VI (exponential decay).

For quantum lattice systems, the perturbation is usually not relatively bounded, and we cannot,

apply standard theorems of analytic perturbation theory (as in e.g. [11]). We prove that if the
Hamiltonian satisfies conditions PI and P2 then the unitary transformation U(t) can be written in

terms of local operators. The commutativity of operators localized in disjoint subsets of the lattice
(see (3)) ensures the exponential decay of the interactions contributing to H(t).

Note that, when applying Theorems 1.1 or 1.2 to the Hamiltonian H(t), all relevant parameters
k, s and A depend on t.

In subsequent sections we analyze concrete models.

2 The balanced model
We consider the Hamiltonian

Rbaiit) Hbal(Q) + 1K.

vfhere

and

Hba0) y ("743)43)Ks + E (jMj)43)K"v + £<m.:t»u- 0')
(•«»>CA (ly)CA

k Y 1{x - Y E (4,-v + <4*<v) • (15)
ll*-»ll=i, ll*-*ll=i. ff6{tl}

(¦•»)CA (tV)CA

As announced in the introduction, we consider the antiferromagnetic case, i.e., ,7 > 0 and

J' > 0, with J' J/2 and with a large on-site repulsive interaction, U >• J.
The Hamiltonian is defined on any finite subset A of Z2. For convenience, we take A to be a

large square. In the sequel, we consider the model at half-filling, i.e., the number of particles is

equal to the number of sites, N J2xnx \M-



830 Fröhlich and Rey-Bellet

Ldt -_: +

'-+-] - + ¦-¦
+ - + -
+ - + ;~
+ - + :-
+ - + ; —

Figure 2: Examples of contours which do not satisfy the Peierls condition

The groundstates of Hbai(0) are easily determined by regrouping the interactions so as to express
them in terms of an m-potential:

Hbal(0) Y<t>°B,
B

where

fB ,JY C^(M3))nxny+ Y (M3Ì°y jP^x^y
II»-» 11=1

<iï>CS ll«-ïll=^î
<»»CB

+ lu Jnztn*+

and P is a two-by-two block. One verifies that f°B takes its minimal value for the following
configurations (up to rotations by 7t/2 and global spin flips).

+ +

The groundstates are the configurations with the property that, on all two-by-two blocks, one
encounters one of the above configurations. One can alternatively describe the groundstates as

consecutive lines of Néel ordered spins where each line can be flipped independently of the other
ones. Their degeneracy is infinite in the thermodynamic limit. The groundstate energy density is

e-bal ¦J.

One can see that Hbai(Q) does not satisfy the Peierls condition: In Fig.2 we display two examples
of configurations with one "island" of one groundstate in another groundstate for which the Peierls
condition does not hold. The solid lines separate the regions with different groundstates and the
dashed lines indicate the parts of the contour which contribute to the energy of the contour. The

energy of the configuration shown on the left of Fig.2 does not depend on the length of the contour
but only on the number of corners of the contour. The contour separating the two groundstates
can be made arbitrarily long without changing its energy. The energy of the configuration shown

on the right of Fig.2 is proportional to the vertical pieces of the contour. The length of the contour
in the horizontal direction can be arbitrarily long without changing its energy.

Next, we consider the unitary transformation exp (tS) defined in Appendix A (see (46)). The

operator S can be written as a sum of local operators

s Y »Bx
X=(xy)

Y *A-lH0X(K%x),
X {xy)

where X (xy) is a pair of nearest neighbours, and Bx, the support of the operator ,S'gx. is the
set of lattice sites at distance < 1 from X (see (36)). The local operators Hox are defined in (42).
and

1<bx=PubxI<xP1bx + P1BxI<xPbx
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where Kx is given by (15) and PB Pg are local projection operators with support Bx (see

(37)). The operators Pg are the projections onto the subspaces of states which, when restricted
to Bx. are groundstates of Hbai(Q), and PB are the projections onto the subspaces of states which,
when restricted to Bx. are excited states, the excitation being localized in X.

The transformed Hamiltonian reads (see (48))

Hb„i(t) exp(tS)Hbai(t)exp(-tS)
Ho(t) + V(t).

with

H0{t) Hial{0) + t Y K<bx + A E PBx*dSiBx{KBx)PBx (16)

X=(xy) X=(xy)

where KB"x is defined in (39). and ad/l(ö) denotes the commutator. AB - BA.
The second term of (16) vanishes and the third one gives a contribution to the groundstate

energy given by

-2 Y [^-lHox(P%xKxPhx)PlBxKxP0Bx-P0BxKxPlBx^-1tfox(PlBxI<xP0Bx)]
X=(xy)

-AY" P"
y±f \ E^x - Po Bx '

where E\X — 3J + U is the energy of the excitation caused by the hopping of a single particle,
and Eo is the groundstate energy of Hbai(0).

It is easy to see that the groundstates of Ho(t) are Néel states with an energy density

e„(t) -.7-t2 4

2.7 + U

and that the Peierls condition holds for H0(t) with a constant proportional to fc'2. By Lemma 1.3

and Theorem 1.1, we have the following result

Proposition 2.1 There exists a constant to such that:

1. For any 0 < t < tu. the groundstates of Hbai(t) at half-filling are small perturbations of the

Néel states.

2. There exists ßo ßo(t) < cc such that, for 0 < t < t() and ß > ßo(t), the long-range order of
the groundstates persists.

Note that, in Proposition 2.1, t must be strictly positive.

3 The t-J-X-v-v' model
In this section, we study the t — J — A — v - v' model, i.e.. the family of Hamiltonians

Ht-.,(\,t) H,-j(0Ai) + XV + tK
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where

77,.-j(0,0) Y ^ (M3M3) +v) n*«v + E v'nxnv-Ylm* (17)
ll*-y|l l \\.t-y\\=V2 xeA
(^y)CA {.iy)CA

a - Y E (<4<v + 4c-) (i8)
ll*-»ll=i a£{+,l}
('l)CA

v E (W' + W'H-v (19)
lk-»ll=i
(*»)CA

The system described by this Hamiltonian is confined to an arbitrary finite subset A of Z2 which
we take, for convenience, to be a large square.

This chapter is organized as follows. We first recall some results, derived by Gruber and Sütö
[12], on the Hamiltonian 7p_j(0,0). We then investigate the stable phases of Ht-j(\, t), for small
t and A. For the regions of the phase diagram where the groundstates of 7p_j(0,0) are infinitely
degenerate, we use the perturbation scheme of [2] (see Introduction and Appendix A) together
with the low-temperature expansion of [1] (Theorem 1.1) to study the degeneracy breaking effect
of the perturbation. We determine the low-energy spectrum of 77(_j(A,f) to leading order in t
and A, (i.e., to order t2 and A2). We are able to determine all stable phases of the Hamiltonian
Hj-j(\,t), except for one for which a higher order computation is needed. Finally, we investigate
the regularity properties of the Hamiltonian Ht-j(\,t) for small t and A. We have several kinds of
results (some of them only at a heuristic level).

(i) For some parts of the phase diagram (v < J), it is straightforward to prove, with the help
of our perturbation scheme, that the phase diagram of the "unperturbed part", Ho(X,t), of the

unitarily equivalent Hamiltonian. H(X, t), becomes regular. Thus we can apply Pirogov-Sinai theory
(Theorem 1.2) and conclude the regularity of the phase diagram at low-temperature.

(ii) For other parts of the phase diagram, our computations indicate that the quantum perturbations
induce new phases in asmall region surrounding the non-regular part of the Hamiltonian /7t_./(0, 0).
We are not able to predict anything about the stability of these phases because the "unperturbed"
part Ho(\,t) does not satisfy condition HI: there is a basis in which Ho(X,t) is diagonal, but
this is not a tensor-product basis. It is an interesting question to ask whether Theorems 1.1 and
1.2 still hold under this weaker condition. Nevertheless, we emphasize that our methods are able
to detect the appearance of new quantum phases stabilized by the quantum perturbation in the
vicinity of the non-regular part of the phase diagram of P,_./((), 0). If we only wish to prove that
the groundstates we find are the true groundstates of Ht-j(X, t), we may use another method (the
dressing transformation) developed by Albanese [13], as shown in [14].

(iii) On some lines of the phase diagram, the groundstates of Ht-.i(0, 0) describe arbitrary
configurations of holes in an antiferromagnetic background with an (extended) hardcore condition,
(two holes cannot be nearest neighbours and/or next nearest, neighbours), and with a constraint
on the density of holes. In order to find the groundstates of the "unperturbed" part 77U(A, /) of I he

transformed Hamiltonian H(X,t), we use the following idea (see [15]): the quantum pert.urbar.ion
induces (to a given finite order in the perturbation parameter) an effective finite-range interaction

between holes in an antiferromagnetic background. One may hope to be able to derive an
effective Hamiltonian that governs the arrangement of holes. An analogous method has been used

by Gruber, Jedrzejewski and Lemberger [12], and Kennedy [17], to study the groundstates of the
Falicov-Kimball model. It turns out that, for A > 0,t 0, one can derive an effective (Ising-type)



Fröhlich and Rey-Bellet 833

u f^±

_ ("-' -1-2?)u -

o o

- + 'A^dl + Av-

Figure 3: Zero-temperature phase diagram of //t_./(0,(J) for v < J

Hamiltonian. For t > 0, the situation is more involved: for it, can happen that the effective Hamiltonian

is not of finite-range. In our model, we find a phenomenon that could be of some significance
for superconductivity: We find that, for v ,7, v' > 0, the effective Hamiltonian is not of Ising-type:
there are terms describing hopping of two next-neighbour holes. Albanese and one of the authors
have shown, [18], that the groundstates of two holes in an antiferromagnetic background describe
a (delocalized) bound pair. We identify here the region of the phase diagram where such states
might, occur. This problem as well as related ones (see [19]) are. in our view, worth being further
investigated.

3.1 The classical J-v-v' model
We first consider the classical limit of our Hamiltonian (t, X 0)

/p_.;(o,o)= y 5 (•/43M3)+ «)«»«,+ E "V^-E /HI,
|[t-,||=1
(•j|C*

»ll=V5
(>»)CA

This model is equivalent to a spin-1 model. Is has several physical interpretations, e.g.. Hf1 — II< '

mixtures, ternary mixtures, or diluted magnetic alloys. We recall some results, derived in [12],
about, the phase diagram of this model at low-temperature.

In order to find the groundstates, we regroup the interactions so as to express //;_,/(().()) in

terms of an m-potential,
Ht-.,(Q,Q) Y4>B,

B

where B is a square containing four lattice sites and

<t>% E 4
('/fTiJ),T«i> + '-¦) nxi'y + Y "'"-^'y - E \im*-

»-»11=1 || ï — y|[= n/2 XeBll*-»|l=l
<JS>CB

,-,||=yï
<xy>CB

On a square B there are 34 possible configurations. Since we consider the case .7 > 0. we can
exclude all configurations on the square B where one pair of nearest, neighbour spins is parallel.
This reduces the number of possible configurations to 35. The invariance of the Hamiltonian under
rotations by 7r/2 and under spin flip splits these configurations into 6 groups listed below.

^B e
+ O O

o +
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Figure 4: Zero-temperature phase diagram of Ht-j(0,0) for v J
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Figure 5: Zero-temperature phase diagram of //(_,/(0,0) for v > J

The groundstates are obtained by constructing configurations which, when restricted to an arbit rary
square B, are among those 35 allowed configurations. Note that the energy per site of any one
of these configurations, w, is equal to the value of <j>g(b>). The zero-temperature phase diagram
of //(_,/(0,0) is shown in Figs. 3. 4 and 5 for different domains of the parameters. On the phase
boundaries of the phase diagram, the allowed configurations on each square B are those allowed

on both sides of the boundaries, except when v ,7, where additional allowed configurations exist;
see Fig.4.

On the solid lines, the groundstates are those of both regions adjacent to the line. Hence the
phase diagram is regular on the solid lines. On the dashed lines, apart from the groundstates of
both regions adjacent to the line, there are infinitely many other groundstates. The phase diagram
is therefore not regular on the dashed lines.

The low-temperature phase diagram of this model has been studied by Gruber and Siito [12].

They show how to extend the usual Peierls argument arid Pirogov-Sinai theory to some models
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with an infinite number of groundstates. Their key idea is to introduce an equivalence relation
among groundstates and to replace the concept of groundstates by the concept of equivalence
classes. Furthermore, they introduce some conditions replacing the Peierls condition. A necessary
condition for their Peierls argument to apply is that the model has a residual entropy. They prove

e.g. that the ordering of the groundstates described by +
~ survives at finite temperature,

and that there are coexistence lines between three or four phases which are small deformations of
the solid lines shown in Fig.5.

3.2 The stable phases of the t — J — A — v — v' model
In this section, we discuss the stability of phases under perturbations in open domains of parameter
space excluding the phase boundaries of Ht 0). The phase boundaries are discussed in Sections
3.3 and 3.4.

For the region of the phase diagram where the groundstates of Pt_,/(0,0) are the Néel states
or the empty lattice, one can directly apply the low-temperature expansion of [1] (Theorem 1.1)
and prove the persistence of long-range order for small values of A and t and for low enough
temperatures.

For the other phases the degeneracy is infinite. An explicit description of the degeneracy in

different regions of the phase diagram follows below. Then one has to apply the perturbation
scheme described in Appendix A and compute the groundstates of HU(X, t). The perturbations are
given by

V= Y Vx, K= Y K*>
X (xy) X (xy)

where X (xy) is a pair of nearest neighbours, and Vx and Kx are given in eqs. (19) and (18).
The unitary transformation is given by U(X,t) exp (tSh + XSV), where

S« E^x=Ead"1^(/^,x) (20)

sV E^E-^M1^)- (2i)
X X

Here Bx is the set of sites at distance < 1 from X; the operators Hox, K(B and Vg\ are defined

in Appendix A (see (40), (42) and (43)). The transformed Hamiltonian, 7p_j(A,i), has the form

Ht-j(X,t) U(X,t)Ht-.,(X,t)U(X,t)-1
H0(X.t) + V(X.t)

where

H0(X,t) 77,_.,(ü,0) + r Y Ä'ßx+A Y Vè°x

X=(xy) X=(xy)

+ J E P°Bx*dS§x(K%\)F»Bx
X (xy)

+^ Y PBA^k(VB"x)PBx
x=(^)

+f E PBx^S§x(V^x)+-,dSvBx(KuB\x))p"Bx, (22)
X {xy)
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Figure 6: Groundstates (l/4<j) and (l/4„) of H0(X,t), for hole density 1/4

and Küß and V^ are given by (39). The operator V(X,t) can be written as a sum of local terms,
which, by Lemma 1.3, satisfy condition VI (see Appendix A).

Next, we compute the groundstates of Ho(X,t) for the different parts of the phase diagram.
Note that Kg1 and the last two terms of (22) vanish: there is no contribution of order t and of
order At. The other terms yield

£pèx»ÌS§x(K%\)P»Bx -fY-^-^Pèx (23)
1 X ^ix ~ ßo

^xad5^(Vgì)^ -^Yjv^Pk, (24)
z x Cj\x ~ ^o

where Eo is the groundstate energy of P(_j(0, 0), E{x is the energy of the excitation caused by the

hopping of a particle, and E\x is the energy of the excitation caused by flipping a pair of nearest
neighbour spins. We have the following results for the different regions of the phase diagram (see

Figs.3, 4 and 5).

(!)«*€{( ;)}.
The groundstates of 7/(_,/((), 0) consist of lines of Néel-ordered spins alternating with lines

with particle density 1/2. The degeneracy is infinite since the positions of the holes in each line

are independent of the other lines. Both kinds of terms, the magnetic terms and the hopping
terms, lift the degeneracy of the groundstates. The magnetic fluctuations favour the arrangement,
of fioles (1/4,/) shown on the left of Fig.6. The hopping terms favour the same arrangement, for
v' < (v — ¦/)/4, and the arrangement (l/4„) shown on the right of Fig.6, for v' > (v — J)/4. The

corresponding groundstate energy densities are given by

(1'-J) / 3M 7A2 / 1

e(\4A - + v' /2 h\ / a/ ' a a 7 \ a., i a 7 '

(1/4.)

2 4 6.7 \4v' + 6J jj + 5.7

(v -J) 'ip A2 - / 2

2 4 .7 \v-x-bJ

(n) ^b e

The groundstates of Ht_./((), 0) can be described as lines of holes alternating with lines with
particle density 1/2. The degeneracy is infinite since the positions of the particles in one line

are independent of the other lines and the orientations of the spins are arbitrary. The magnetic
terms do not lift the degeneracy of the groundstates. The hopping terms favour antiferromagnetic
ordering between spins at distance 2 within the lines. The hopping terms favour the groundstates
(3/4„) shown on the left of Fig.7. for t/ > (v — J)/4, and the groundstates (-i/4f) shown on the
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Figure 7: Groundstates (3/4,) and (3/4d) of f/"0(A,i), for hole density 3/4
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Figure 8: Groundstates (l/2a/) of H0(X,t), for hole density 1/2

right of Fig.7, for v' < (v - J)/4. The degeneracy of the groundstates (3/4j) is still infinite. (The
spins in every line of density 1/2 can be flipped, independently in different lines.) We expect this
degeneracy to be lifted only by the terms of order t4 of the perturbation series. The corresponding
groundstate energy densities are given by

e(3/4,) {^AA-\p-t2(-^)
(„ - r\

e(A/4d)
2 4P

1 1

v — J Zv

R wb e {( I : J).
The groundstates of Pt_j(0,0) are lines of holes alternating with lines of Néel-ordered spins.

The magnetic terms do not lift the degeneracy of the groundstates. The hopping terms do: they
favour the antiferromagnetic ordering (l/2ay) of the spins at distance two (Fig.8). The groundstate
energy density is given by

*(l/2a fi
A - J)

4

A2

y
2t2

Sv' ¦ J)

H^bg{(; ; )}.
In the groundstates of P(_j(0,0) the holes and the particles are arranged in a checkerboard

configuration, the orientation of the spins is arbitrary. We discuss this case in [2]. It is shown there
that, for v' > 5J/3, the degeneracy of the groundstates becomes finite in order t4; the spins are
aligned in one diagonal direction and Néel ordered in the other diagonal direction.

We now apply Theorem 1.1 (the low-temperature expansion) to the Hamiltonian

Ht-j(X,t) H0(\,t) + V(X,t),
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in the region of parameters, where Pu(A,t) has a finite number of groundstates. Lemma 1.3 ensures
that V(X,t) satisfies condition VI. Condition HI is clearly satisfied, since PU(A,/) is diagonal in
the same basis as Py. To check the Peierls condition, we use the criterion of llolzst.ynsky and

Slawny, (see [7] and Appendix B). We decompose the Hamiltonian as follows.

Ho(X,t) Y <t>M(X,t),
/V/c A

/here M is a four by four box containig 16 lattice sites, and

4>M(X,t)= Y Ta (•/ffi3)43) + v) n^y + E An*nv
I

2

WC« "(t,)cll
24 V x y " t—1 9

»ll=i ||*-vN=^

•E&- + 5 E ^(f^V(^) + ^Bx(^))p;16 2 x^ °* \ 2

BXCM

0

Bx'

Since the periodic groundstates found in this section (their degeneracy is finite) have all period I.

it is easily seen that the terms {<J>m} form an m-potential and hence, by the criterion quoted in

Appendix B, Ho(X,t) satisfies the Peierls condition. Using Theorem 1.1 and Lemma 1.3. we obtain
the following result.

Proposition 3.1 For tarli chaire of p, v — J and ?/ for which the groundstates of PU(A./) an
(1/4^), (l/4„), (3/4„) or (l/20/) (see Figs 6, 7 and 8) there are constants tu and Xu (Upending on

/i. v — J and v' such that

1. For 0 < A < Au and 0 < t < to, the- groundstates of //(_./(A, /) art small perturbations of tin

groundstates of Ho(X, t).

2. For 0 < A < Ao and 0 < t < to, and for low enough temperature (depending on I and X). tin
long-range order of the groundstates of H,-.j(X,t) persists.

3.3 Regularity of the phase diagram (groundstates on the phase
boundaries of Ht-j(0,0))

In this section we investigate the regularity properties of the phase diagram of the Hamiltonian
Ho(X,t), i.e., we investigate how the perturbation Hamiltonians lift the infinite degeneracy of the

non-regular part of the phase diagram of Ht-j(0,0) (the dashed lines of Figs. 3, 4 and 5).

(i) v < ,7, (see Fig.3).

M=(«-j)/2,wse{( : ; : :)}.
The groundstates of P(_./(0,0) consist of lines of particles and lines of holes with the
constraint that there not be two consecutive lines of particles. The magnetic (exchange) energy
is minimized for the groundstates where lines of particles and lines of holes alternate. The

hopping terms favour the same groundstates. In addition, in each line of alternating holes

and particles, the kinetic energy is minimized if the spins of two consecutive particles (at
distance 2) are anti-parallel (Fig.8). Hence the phase diagram of the classical part. P0(A,i),
of the unitarily equivalent Hamiltonian P(_.;(A,i) becomes regular.



Fröhlich and Rey-Bellet 839

1/2./

Figure 9: Zero-temperature phase diagram of H0(X,t) for v < J

p 3(v-J)/2 + 4v',u>Be{( '_ ;)( + ;)}.
The groundstates of 7p_.;(0,0) consist of lines of holes and lines of particles without
consecutive lines of holes. The magnetic perturbation favours the Néel states and the hopping
terms the groundstates shown in Fig.8. Hence, the phase diagram of H0(X,t) is regular.

The zero-temperature phase diagram of H0(X,t), for v < .7, is shown in Fig.9. With the results of
Section 3.2 and Theorem 1.2, we obtain the following proposition:

Proposition 3.2 There are constants t0 and X0 such that, for 0 < t < t0, 0 < A < A0 and for
v < J. the phase diagram of the Hamiltonian Ht-j(X,t) is a smooth deformation of the zero-
temperature phase diagram, of Ha(X, t). provided the temperature is low enough (depending on t and
X).

(ii) v ,f (see Fig.4).

• At the point p 0. t/ 0.

WB 6 + -
- +

At this point of the phase diagram, any configuration of particles (with suitably ordered

spins) and holes is a groundstate configuration of P,_j(0,0). It is not difficult to see that
the magnetic perturbation favours the groundstates of spin singlet dimers with hole density
1/2 (see Fig.10), because these are the only configurations for which the terms XVg° in (22)

yield a negative contribution to the energy. Their energy density is

e(l/2j)
•/)

S

A
+ 0(A2,f.2). (25)

Note that the Hamiltonian Hu(X.t) does not, satisfy Condition HI, it is diagonal in a basis

which is not a tensor-product basis. Nevertheless, given A > 0, we conjecture that one

can use low-temperature expansion methods to prove that, in a small neighbourhood of
{.7 v v' 0 .p ()}. and for low-enough temperatures, the ordering described on the left
of Fig. 10 survives.
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Figure 10: Dimer configurations with hole densities 1/2 and 2/3
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Figure 11: Zero-temperature phase diagram of H0(X. t) for v J

l/2d

P o,v'>o.uJBe{(: ;)(: ;)(: :)}.
The groundstates of P(_j(0,0) consist of segments of lines of particles of arbitrary length
isolated by walls of holes. For A <C v'. the magnetic perturbation favours the phases of dime.rs
with hole density 2/3 described in Fig.10. since these are the only states whose energy has a

contribution proportional to A. Their energy density is

f(2/3,) ^l-J-^+0(A2.t2). (26)

Note that the degeneracy of the groundstates remains infinite.

• The line p 4v' is discussed in Sect. 3.4.

v > .7 (see Fig. 5).

On the lines/i 0, (n 4v'),toB e {( I l)(l :)}({(+ OO 0}'rosp-)'
The groundstates of Pf_j(0,0) consist of isolated particles with hardcore conditions. The

magnetic perturbation does not lift the degeneracy of the groundstates. This is a domain
of the phase diagram where we do not understand how the hopping perturbation lifts the
degeneracy.
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Figure 12: Zero-temperature phase diagram of Ho(X,t) for v > J

p (v-.j),v'>(v-j)/4,oJBe{(: ;)(: ;)}.
The magnetic perturbation again favours the phase of dimers with hole density 2/3 shown

on the right of Fig.10, with energy density given in (26).

(t,-j)/4,a,Be{(: ;)(; ;)}.
The groundstates of P(,_,/(0, 0) consist of consecutive lines with hole density 1/2. the position
of the holes in one line being independent of the position of the holes in the adjacent lines.

It, is not difficult, to check that the magnetic perturbation favours the groundstate of dimers
with hole density 1/2, shown on the left of Fig.10. with energy density given in (25).

3.4 Effective Hamiltonians for configurations of holes in an anti¬

ferromagnetic background
In this section, we investigate some non-regular parts of the phase diagrams shown in Figs.4 and
5. where the groundstates of P(_,/((),0) can be described as a "liquid" of holes. The positions of
the holes are constrained by an extended hardcore condition, and the density of holes must belong
to a certain interval.

1. For v > .7. on the line p 2(v — .7) + 4u', the groundstates correspond to arbitrary configu¬
rations of holes in the antiferromagnetic background without any pairs of nearest neighbour
(n.n.) and next nearest neighbour (n.n.n.) holes, and the hole density is between 0 and 1/4.

2. For v > .7, on the line p 2(v - ,7), the groundstates correspond to arbitrary configurations
of holes without any pairs of n.n., and the hole density is between 0 and 1/2, for v' 0, and

between 1/4 and 1/2. for v' > 0.

3. For v J (resp. v > .7), on the line p 4v' (resp. p (v — •/) +4v'), the groundstates
correspond to arbitrary configurations of holes without any pair of n.n.n., and the hole density
is between 0 and 1/2, for v ,/, (between 1/4 and 1/2, for v > ,7, respectively).
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We shall consider only cases 1 and 2. for A > 0, t 0 (case 3 can be treated in a similar way),
and case 3 for t > 0.

We first consider the case A > O.t 0. In order to find the groundstates of PU(A, 0). we
work in the canonical ensemble, i.e.. we fix the number of holes and compute their interaction by
performing the unitary transformation (21). In a sense, we eliminate (''trace out'') the spin degrees
of freedom and obtain an effective (Ising-type) Hamiltonian governing the arrangement of holes in

the antiferromagnetic background.
The energy, E({xi xn)). of a configuration of holes at sites Xi,...,xn is normalized by

subtracting the energy of the half-filled lattice. Eh.j. |A| ((v - .7) + 2v' - 4A2/3.7). We set

e({xi ,Xn}) :(X, - X-l, ¦ ¦ •¦ Xl - xn)

E({xx xn)) - Ek.j.,

and recursively define N-body potentials

Ukj({xi,...,xn}) =UN(xi - x2, ¦ ¦ .,Xi - xN)
,V-2 N

e({xu. ..,xN}) - Y Y Un-j({xi,- ••.kn}\{k«i xij)) - Ee(s')-
7=1 {'. h}C{l,...,N} 1 1

All the energies and A'-body potentials are invariant under translations, rotations by 7r/2 and

reflections.
It is now straightforward, but lengthy, to compute the effective Hamiltonians in different

regimes. They have the following form

li'ii Y?(xinx + E^2(x ~ y)nxnv + YU'^£ ~ y<x ~ Anxnvnz
x rtj xy:

+ 2J Ua,(x — y,x — z,x — w)nmnxnynz (27)
xyzw

where nx 0, 1 is the hole number operator at site x. The hole selfenergy is given by

16A2
s(x) £ -'2(v-J)-4v'+—j. (28)

15.7

The two-body potentials are given by

UAei) ^. (29)

W2(ei+e2) <-<'+-—, (30)
15,7

?A2
UA2ei) -, (31)

U2(2ei+e2) -~, (32)

%(3e0 -0,- (:i:i)
15./

where ([ and e2 are the unit vectors of the lattice 2 The three-body and four-body potentials
are considered below, for different regimes.
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Figure 13: Three-body potential in the presence of n.n. and n.n.n. hardcore condition
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Figure 14: Groundstates of H,jj with n.n. and n.n.n. hardcore conditions for densities 1/5
and 1/4

Finding the groundstates of such Ising-type Hamiltonians is, a priori, not easy. One way of
finding them is to prove that one can express II, jj in terms of an m-potential. This is usually
not possible. A more refined way. (see [17]), is to find a decomposition li,jj YIm'Pm of the
Hamiltonian and an auxiliary family of interactions Km such that, J2m ^m 0. Then one has to
find configurations minimizing <Pm + KM ¦ We expect that this method would yield rigorous results

on the groundstates of the Hamiltonians derived above, but we shall not prove such results in this

paper.
For the case of a n.n and a n.n.n hardcore condition, the 2-body potentials are given by (31).

(32) and (33). The only other non-vanishing many-body potential is the 3-body potential; see

Fig.13. In Fig.14, we show the conjectured groundstates for hole density 1/5 and 1/4.
The corresponding energy densities are

Am fc^_i^ (34)
5 5 5 5.7

Iv - J) 'iu 7A2 „,e(i/4d) —r^ + "-T~AJ- {:i,)

In the corresponding part of the phase diagram

v > J. u 2(v - .7) + 4v' - 2A2/3.7.

it is easy to check that the Néel states, the groundstates with hole densities 1/4 and 1/5 (Fig.l I)

are degenerate. This leads to the following conjecture on the groundstates of 77U(A,0): On the line

p 2(v — J) + 4v' — 2A2/3J the groundstates consist of parallel lines of lattice sites which are
either completely occupied by holes or completely occupied by particles, the slope of the lines with

respect to the lattice is (2, 1), (2,-1), (1,2) or (-1,2). The degeneracy is still infinite in this part
of the phase diagram, and, to this order, the phase diagram is not regular.

For the case of a n.n. hardcore condition, the 2-body potentials are given by (30), (31), (32) and

(33). The non-vanishing 3-body potentials are given by (3b.1), (3b.2) (3b.3)and (3b.4) in Fig.15,
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Figure 15: 3-body and 4-body potentials for n.n. hardcore condition

o + - o + -
+ o + - o +
- + o + - o

0 - + o + -

Figure 16: Groundstates of //,// with n.n. hardcore conditions for densities 1/3

and the non-vanishing 4-body potentials are given by (4b.1), (4b.2) and (4b.3) in Fig.15. We show,
in Fig.16, the conjectured groundstates for density 1/3. The energy density is

(v-J) 2p 4A2

We conjecture that a new phase corresponding to the groundstates with density 1/3 (Fig.16)
appears when p belongs to the interval

p € (2(v - J) - 8A2/,7, 2(v - J) + A2/J),

around the line p 2(v — J). Since the groundstates are infinitely degenerate in this phase, one
cannot predict anything about its stability.
Possible existence of a Fermi liquid of holes

For the case t f: 0, the situation is more complicated. Then the effective Hamiltonian is, in general,
not of finite range. Furthermore, for v J and u 4v', it, is not of Ising-type: in order t2, there

are terms which correspond to the hopping of a pair of nearest neighbour holes: If (xy) denotes a

pair nearest neighbour with y x + tj, j 1.2

t2
Thopp Y-j^UesA+'-A-y + '4-^/V'*-«/-)

{xy)
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where cx and c], are the annihilation and creation operator for holes at site x obeying (spinless)
fermion anticommutation relations.

This is a region of the phase diagram where we conjecture that the model is not a insulator (see

[18] and [19] for related results). As one of the key results of this paper we regard this identification
of regions in parameter space, where Fermi liquids of holes or superconductivity (see [18]) might
appear.

3.5 Conclusions
The phase diagram of the t — J — v — v' model, for small A and t and at low temperature, shows
a, surprisingly rich stucture. The methods developed in [1] and [2] permit us to investigate the

stability of finitely degenerate phases of Ht-j(0,0) under small perturbations and the degeneracy-
breaking effect of the perturbations (Proposition 3.1, Section 3.2). They enable us to show that the
phase diagram of Ht-j(X, t) may be regular even in regions, where the phase diagram of Ht-.j((), 0)
is not (Proposition 3.2, Section 3.3). They also suggest the appearance of several new phases,

among them phases of dimers and, possibly, Fermi liquids or superconducting phases (Section 3.4).

A The Unitary conjugations
We consider Hamiltonians, H(t), of the form H0 + tV satisfying conditions HI, PI and P2 specified
in the introduction. We briefly recall here the construction of the unitary transformation U(t) used

throughout the paper and refer to [2] for proofs and for extension of the methods to higher orders.

By condition PI, Ho can be expressed in terms of finite-range, translation invariant m -
potentials (see [7] and (12)). We define the set of groundstate configurations of Hq associated with a

subset F of A as follows:

fiy {ujy ¦ *Uv (wy) min <èx(Ax) forariy X Ç Y}

and let

HY ¦¦= W e Hy : ti Y c"y("y)
"y60°,

be the subspace of Hy spanned by the local groundstates in Y. We define Py to be the projection
operator onto the subspace HY.

Let A' be a finite subset of the lattice (which may be thought of as the support, of an excitation).
For a: 6 A, we define

Wx := {y e A : \yt - x) < r, for L < i < v)

Bx := (J W- (36)
x-ex

r being the range of the m-potential, (eq.(5)).
We introduce some special projection operators on Hbx '¦ Let, Pg be the orthogonal projection

onto the subspace 77B Let PB be the orthogonal projection onto the space of states with
excitations localized in X C Bx • It is defined as

PBx'-=P'Bx\x-PBx- (37)
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Two excitations with support in X and X' are said to be connected if X' n Bx / 0. If they are
disconnected, our choice of Bx implies that their unperturbed energies are additive. We further
define

PBx '¦= 1BX - Pßx - Pßx-

where lBx is the identity operator on HBx.
We decompose the perturbation V with respect to the partition of unity

1BX P0BX + Phx+PBX, (38)

and since we restrict our attention to an analysis of the perturbation of the groundstates of Ho by
the term tV, it is convenient to write the perturbation V f2x Vx as

V Vw + Vm + VR,

where Vm is the operator defined by

Vm'--=YPBxVxPUBx'-=Evê"x, (39)
X x

and Vul is the ''off-diagonal'' operator:

V"1 ¦= Y PBx Vx PBx + Phx Vx PBx := E V°b\ • (40)
X X

Here Pk VXPB is an operator in ABx that vanishes unless it acts on some local groundslaie:
every term in Vg connects a local groundstate in 77B with an excited state localized in A. The

operator VB is given by

VR '¦= Y(PBxVxPhx + PBxVxPBx) --=YVbx- (41)
X X

We denote by 'aAA(B) the commutator AB - BA. We define

Obx ¦¦= [AB\ := P%xAxPBx + PBxAxPBx ¦¦ Ax e Ax}-

0Bx contains only "off-diagonal" operators (with respect to the partition of unity (38)). We define

Hox Y <t>M
• (42>

MnX±<b

and, on 0Bx, we define

ad"1 Hox (a"^) j dPE-^x^dPE,, (43)

where {Pe} are the spectral projections of 77ua'- It is easy to see that

¦adHox (ad-'rVuA- (.4B'J) A°B\. 11)

In [2] it, is shown that, due to our choice of Bx, we have that

ad770 Ld-'Hox (A'2)) A°B\ (45)
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and that the operator norm of ad-1//"ox on 0Bx is bounded as follows:

llad-1^,* \oBx II < £
where A is the gap between the groundstate energy of Hox ar'd the rest of its spectrum.

A unitary transformation, U(t), is defined as

U(t) ets,

where
S YSBX- ('"')

X

and

SBx ad-^o* (v£)
ad"1^ (PBxV>PBx + PflxV>/>Bx). (47)

In [2] it is proven that the transformed Hamiltonian.

H(t) U(t)H(t)U(t)-'

can be cast in the following form
77(7) Ho(t) + V(t),

where Ho(t) is given by

Ho + tYv^ + J E PBxuxA<fSBx(V$x,)P°Bxuxl. (48)
X X,X'

X'nBx*Q

The proof is based on using the Lie-Schwinger series, the idendity (45) and the commutativity of

operators with disjoint support (see (3)).
The new perturbation, V(t), is given (see Lemma 1.3) by a sum of exponentially decaying

interactions satisfying condition VI. To ordert2, the groundstate energy of II(t), is given by the
lowest eigenvalue of Ho(t) and is obtained by diagonalizing Ho(t).

One may apply Theorems 1.1 and 1.2 to the pair (Ha(t),V(l)), provided the new unperturbed
part Ho(t) satisfies Conditions HI - H4 of the introduction.

B The Peierls condition
We assume that H0 is a finite-range Hamiltonian satisfying condition HI,

Ho Y *05/ '

YCA

Let K, := {si}f=1 be the set of periodic groundstate configurations of Ho- In order to state the
Peierls condition, we introduce the notion of contours. We define sampling plaquettes P(x) as

P(x) := {y € A :| x, - yb |< a for 1 <)<//}
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The constant a is chosen to be larger than the period of each of the groundstate configurations of
77(j and the range of the interactions $oy- A contour is constructed from sampling plaquettes on
which the configuration does not coincide with any of the groundstate configurations of //,,. The
defect set, 'd*o, of a configuration cj on the lattice A is defined as

du (J {P(x) : Wp(s) # (*-,-)pW, for all 1 < t < k}
i-SA

A contour of a configuration a; is a pair 7 (M.u>m). where M is a maximally connected component
of the, defect, set, Öuj. The set, M is the support, of 7. Two contours 7. 7' are disjoint if no pair
of plaquettes, P 6 7. I" £ 7'. intersect. Due to our choice of the size of the sampling plaquettes
we have a one-to-one correspondence between configurations and families of contours. This is seen

by associating to each configuration of the lattice, the corresponding sei of disjoint contours, with
the restriction that the interiors and exteriors of nested contours match. Families ol contours
corresponding to a configuration are said to be compatible. The energy of a configuration is

then expressible in terms of contour energies. To each contour 7. Ihere corresponds ,1 unique
configuration u>y that has 7 as its only contour. The configuration in any connected component ol

the set, A\M coincides with one of the groundstates. If the energy of the groundstate is normalized
to zero then the energy of the configuration uj1 is given by

tfüM E ^tyt-^y^)
KnA^B

'

: E(y).

If a configuration ui corresponds to a family of compatible contours

{ju---,ln},
then its energy is given by the sum of the energies of its contours, i.e..

tioH Y P^)
1=1

because of our choice of the size, of the sampling plaquettes. This allows us to rewrite the partition
function Z(A) of the system in A in terms of an ensemble of contours, with no other than excluded-
volume interaction, and use cluster expansion methods to study the system at, low-temperatures.
The Peierls condition demands that the energy of a contour be proportional to the total number of
lattice sites in the contour. More precisely, it, requires that there exist, a positive constant n, such

that the energy E(j), of a contour 7, satisfies

E(j) > k I 7 ],

I 7 I being the number of sites in 7. A useful criterion for the Peierls condition to hold has been

proven in [7].
CRITERION .If the Hamiltonian H0 is expressible in terms of a finite-range m-potential and has

a finite number of groundstates then the groundstates art necessarily periodic, and the Peierls
condition is satisfied.
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