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Abstract. We prove large deviation principles for ergodic averages of dynamical systems
admitting Markov tower extensions with exponential return times. Our main technical
result from which a number of limit theorems are derived is the analyticity of logarithmic
moment generating functions. Among the classes of dynamical systems to which our
results apply are piecewise hyperbolic diffeomorphisms, dispersing billiards including
Lorentz gases, and strange attractors of rank one including Hénon-type attractors.

1. Introduction and statement of results
This paper is about large deviations of ergodic averages in chaotic dynamical systems.
Let f : M → M be a map with an ergodic invariant measure µ. Given an observable g ∈

L1(µ), let Sng(x)=
∑n−1

j=0 g( f j (x)). If x is distributed according to µ, then (1/n)Sng(x)
is an ergodic stationary sequence of random variables. By the Birkhoff ergodic theorem,
(1/n)Sng converges almost surely and in probability (with respect to µ) to the mean
value µ(g)≡

∫
g dµ. The theory of large deviations provides exponential bounds on the

probability that (1/n)Sng takes values away from the mean µ(g). These estimates are
typically expressed in the form

lim
ε→0

lim
n→∞

1
n

log µ
{

x :
1
n

Sng(x) ∈ [a − ε, a + ε]

}
= −I (a)

where I : R → [0,∞] is called the rate function.
Of interest to us are situations where µ has a density or is an SRB measure. Large

deviation results are known for Axiom A attractors and piecewise expanding maps in one
dimension; see e.g. [7, 24, 30, 42]. In this paper we extend these results to a class of
dynamical systems with weaker hyperbolic properties or, more precisely, to systems that
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admit Markov tower extensions with exponential return times in the sense of [43]. This
class can be seen as a generalization of systems with finite Markov partitions. It has been
shown to include many of the standard, much studied examples such as dispersing billiards
and Hénon-type attractors.

Given a dynamical system f : M → M , we say F :1→1 is an extension of f if there
is a continuous map π :1→ M such that π ◦ F = f ◦ π . In general, π need not be one-
to-one or onto. When we say F :1→1 has the structure of a Markov tower, we mean,
roughly, that: (i) 1=

⋃
∞

l=0 1l where 1l denotes the lth floor of the tower, each point
x ∈10 moves up the tower until it reaches the top level above x , after which it returns to
10; and (ii) F has a countable Markov partition {1l, j } with the property that π maps each
1l, j injectively onto a set in M with a hyperbolic product structure. To make a connection
to SRB measures, we require that each of the local unstable manifolds defining the product
structure of π(10)meet π(10) in a set of positive Lebesgue measure. Further analytic and
regularity conditions are imposed in [43].

Systems admitting Markov tower extensions are more flexible than Axiom A systems in
that they are permitted to be non-uniformly hyperbolic; roughly speaking, think of uniform
hyperbolicity as required only for the return map to the base. Reasonable singularities
and discontinuities are also permitted; they can be ‘hidden’, i.e. they do not appear in 1.
Most important of all, the tower structure makes transparent a characteristic of the system
intimately related to its statistical properties, a kind of ‘dynamical renewal time’ expressed
in terms of the return time function R :10 → Z+ where R(x) is defined to be the smallest
n with Fn(x) ∈10. A number of statistical properties of F :1→1 have been shown
to be captured by the tail properties of R; some of these properties can be passed to f .
Among the results proved in [43, 44] are the following.

• SRB measure. If
∫

R dmu <∞ where mu is the Lebesgue measure on unstable
manifolds, then f has an ergodic SRB measure µ with µ(π(1))= 1.

• Rates of mixing. Under an additional aperiodicity assumption on R, ( f, µ) is mixing
and the rate of decay of correlation for Hölder continuous observables is directly
related to the behavior of mu

{R > n} as n → ∞. For example, if mu
{R > n} =

O(e−αn) for some α > 0, then ( f, µ) has exponential decay of correlations. If
mu

{R > n} =O(1/nα), then ( f, µ) has polynomial decay of correlations.
• Central limit theorem. Given a Hölder observable g, the central limit theorem holds

for Sng provided that: (i) the autocorrelation functions of g decay fast enough in n
for the variance σ 2 to be defined; and (ii) σ > 0.

In this paper we complement these statistical properties by proving a few additional
limit theorems. See [13, 16, 19, 27, 34] for other limit theorems proved by using Markov
tower extensions.

Setting and assumptions in Theorems A, B, and C. The setting is that of a C1+ε

diffeomorphism f : M → M , possibly with discontinuities or singularities. We assume
that:

(i) f admits a Markov tower extension with properties (P1)–(P5) in [43];
(ii) the return time function R satisfies mu

{R > n} =O(e−γ n) for some γ > 0;
(iii) the observable g : M → R is Hölder continuous.
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We let µ denote the ergodic SRB measure given by the tower extension, and let
σ 2 denote the variance of (1/

√
n)

∑n−1
i=0 g ◦ f i as n → ∞ where g ◦ f i are distributed

according to µ. Our main technical result, on which the other results are based, is the
following.

THEOREM A. (Logarithmic moment generating functions) There exist positive numbers
θmax and ωmax such that the logarithmic moment generating function

e(θ)= lim
n→∞

1
n

log µ(eθ Sn g)

exists and is analytic in the strip

{θ ∈ C; |Re θ |< θmax, |Im θ |< ωmax}.

One may take θmax to be any number less than γ /(max g − min g) where γ is as in
Assumption (ii) above. As usual, e′(0)= µ(g), e′′(0)= σ 2. We also have that e(θ) is
strictly convex for real θ provided σ 2 > 0.

We now state two results that can be deduced from Theorem A using large deviation
techniques [18].

THEOREM B. (Large deviations) Let I (t) be the Legendre transform of e(θ). Then for any
interval [a, b] ⊂ [e′(−θmax), e′(θmax)],

lim
n→∞

1
n

log µ
{

x :
1
n

Sng(x) ∈ [a, b]

}
= − inf

t∈[a,b]
I (t).

Theorem B follows from Theorem A using essentially the same ideas as in the Gartner–
Ellis theorem [18, §4.5] and [21, pp. 102–103]. Note that we do not prove a full large
deviation principle: our estimates hold only on an interval containing the mean µ(g). It is
instructive to compare our results with those for countable state Markov chains, for which
it is well known (see e.g. [4, 9, 20, 25, 26, 40]) that exponential bounds on return times are
in general not sufficient to ensure a full large deviation principle for bounded observables.
They only imply a ‘local’ large deviation result (see [25]), which is similar to the result in
Theorem B.

We thank the referee for pointing out the following references to closely related works:
the recent preprint [28] contains similar but slightly less general results on exponential
large deviations as well as polynomial upper large deviations bounds for systems that admit
Markov tower extensions with polynomial return times (see also [31] in this direction);
the monograph [21] contains a thorough description of the approach to large deviations
via quasi-compactness which we follow here (see also [7, 25, 40]); finally the paper [1]
deals with non-uniformly expanding maps which admit a thermodynamic formalism and
therefore satisfy large deviation principles like Axiom A attractors.

In a slightly different direction, we remark that a central limit theorem (less general than
that in [44] since an exponential tail for R is assumed) can be deduced from the existence
of an analytic moment generating function e(θ) in a small complex neighborhood of the
origin.

One can also characterize the fluctuations of Sng which are of an order intermediate
between

√
n (central limit theorem) and n (large deviations). Such fluctuations, when
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suitably scaled, satisfy large deviations type estimates with a quadratic rate function
determined by σ 2.

THEOREM C. (Moderate deviations) Let an be an increasing sequence of positive real
numbers such that limn→∞ an/

√
n = ∞ and limn→∞ an/n = 0. Then for any interval

[a, b] ⊂ R we have

lim
n→∞

1

a2
n/n

log µ
{

x;
Sng − nµ(g)

an
∈ [a, b]

}
= − inf

t∈[a,b]

t2

2σ 2 .

Theorem C is obtained from Theorem A by showing that the moment generating
function of this scaled family of random variables is a quadratic and by using the Gartner–
Ellis theorem, see [18, §3.7] and [41].

We note that the results in this paper are derived solely from the Markov tower
extensions of the given system f . When f is sufficiently simple, such as in the case
of Axiom A attractors or piecewise expanding maps of the interval, other methods have
yielded stronger results (such as a large deviation principle on all of R or for empirical
measures) [24, 30, 42]. The tower construction enables one to treat—in a unified way—a
larger class of dynamical systems without insisting on optimal results.

Examples of dynamical systems to which the results above apply include:
(1) billiards with convex scatterers [43], including the case of small external forces [12,

14]; see [15] for related systems;
(2) piecewise hyperbolic attractors [11, 43];
(3) rank-one attractors including those of the Hénon maps [5, 35–37, 39, 43];
(4) non-uniformly expanding maps in one dimension [38, 43].

This paper is organized as follows. Sections 2–4 contain a detailed study of reduced
Markov tower models (towers with no contracting directions). We prove in this simpler
setting a number of results that may be of independent interest. Specifically, we introduce
a family of transfer operators Lθ associated to an observable g, provide conditions under
which these operators are quasi-compact on a suitable Banach space, and prove a Ruelle–
Perron–Frobenius theorem about their spectra. The moment generating function e(θ) is
then identified as the logarithm of the leading eigenvalue of Lθ , and more detailed versions
of Theorems A, B, and C are presented in §4. In §5 we show how to pass some of the results
obtained in §§2–4 to dynamical systems admitting Markov tower extensions. In particular,
Theorems A, B, and C apply to all systems that admit Markov towers with exponential
tails, including the ones listed above.

2. Tower models and transfer operators
Tower models with no contractive directions are studied in §§2–4. These objects are
introduced in [43]. A complete model description is included in §2.1 for the convenience
of the reader.

2.1. The reduced tower model. We begin with a finite measure space (10, m), a
measurable return time function R :10 → Z+, and a measurable map F R

:10 →10
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called the return map. Our dynamical system of interest is the suspension of the return
map F R under the return time R, i.e. we let

1= {(x, l) : x ∈10; l = 0, 1, . . . , R(x)− 1},

and

F(x, l)=

{
(x, l + 1) if R(x) > l + 1,

(F R(x), 0) if R(x)= l + 1.

One can picture the phase space 1 as a tower; 1 is the disjoint union
⋃

∞

l=0 1l where 1l

consists of those points (x, l) ∈1. We refer to1l as the lth floor of the tower and10 as the
base of the tower. Identifying 1l with the subset of 10 given by {x ∈10; R(x) > l}, we
obtain a measure—also called m—defined on all of1. We view m as a reference measure.
If

∫
R dm <∞, then we may normalize m and assume that m(1)= 1.

Assumptions (A1)–(A4) are in effect through §4.

(A1) Markov partition, dynamical distance and shift space. We assume the existence of
a measurable partition M= {1l, j } with the following properties. Each element of M
is contained in some 1l , and for each l ≥ 0, M|1l is a finite partition whose elements
are denoted by 1l, j , j = 1, 2, . . . , l j , l j <∞. The image of each 1l, j under the map
F is a finite union of elements of the form 1l+1, j ′ together with possibly 10. We
denote 1∗

l, j =1l, j ∩ F−1(10) when it is non-empty, and require that F |1∗

l, j maps 1∗

l, j
bijectively onto 10. The points in 1l, j \1∗

l, j can be thought of as moving upward, while
the points in 1∗

l, j return to the base of the tower. We assume M is a generating partition,

i.e.
∨

∞

i=0 F−iM consists of at most a single point.

The space 1 is endowed with the following dynamical distance. First, we define a
separation time s(·, ·) associated with the Markov partition M: if x and y do not belong
to the same 1l, j , we set s(x, y)= 0. If x, y belong to the same 1l, j , we define s(x, y) to
be the largest integer n such that F i (x) and F i (y) belong to the same element of M for
1 ≤ i ≤ n. Fix 0< β < 1. Then d(x, y)= βs(x,y) defines a metric on 1. In this metric, 1
is a separable space and F is continuous.

The way 1 comes about in examples, it need not be complete as a metric space,
i.e. for 1lk , jk ∈M, k = 0, 1, . . . ,

∨
∞

k=0 F−k1lk , jk can be empty even when all finite
intersections are not. For definiteness, we will complete 1 and extend F to a continuous
map on its completion. Denoting these new objects also by F and 1, we may now think
of F :1→1 as topologically conjugate to a countable shift of finite type.

Remarks. Since compactness and recurrence are two major issues in infinite shifts, the
following observations are important.

(1) Assuming the completion above, 1 is locally compact; indeed all cylinder sets are
compact. This is because each element of M is mapped onto a finite number of
elements.

(2) Since every point in 1 eventually returns to 10, the shift is irreducible, i.e.⋃
∞

i=0 F i (1l, j )=1 for every 1l, j ∈M.
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(A2) Exponential return times. There exist constants γ > 0 and D <∞ such that

m{R ≥ n} ≤ De−nγ .

(A3) Regularity of the Jacobian. The map F is absolutely continuous with respect to m.
Letting J F denote its Jacobian, we have:
• J F = 1 on 1 \ F−1(10);
• there exists C0 > 0 such that for all l, j and for all x1, x2 ∈1∗

l, j =1l, j ∩ F−1(10),∣∣∣∣ J F(x1)

J F(x2)
− 1

∣∣∣∣ ≤ C0β
s(F(x1),F(x2)). (1)

(A4) Aperiodicity. The values taken by R have no common divisor greater than 1.

2.2. Relevant transfer operators. In our study of large deviation properties, the
observables considered will be functions g :1→ R or C which are bounded and uniformly
Lipschitz with respect to the metric d(x, y) defined in (A1).

Let X = {ϕ; ‖ϕ‖<∞} be the Banach space with norm ‖ϕ‖ = |ϕ|∞ + |ϕ|h where

|ϕ|∞ ≡ sup
x∈1

|ϕ(x)|,

and

|ϕ|h ≡ sup
l, j

|ϕl, j |h, |ϕl, j |h ≡ sup
x1,x2∈1l, j

|ϕ(x1)− ϕ(x2)|

d(x1, x2)
.

The transfer operator L0 associated with F is defined by

(L0ϕ)(x)≡

∑
y:Fy=x

1
J F(y)

ϕ(y).

First, we check that L0(ϕ) is well defined for bounded ϕ: by the regularity of the Jacobian
in (A3), there exists C ′

0 such that for any x ∈1∗

l, j ,

C ′−1
0

m(1∗

l, j )

m(10)
≤

1
J F(x)

≤ C ′

0

m(1∗

l, j )

m(10)
.

This implies that for all x ∈10,∑
y:F(y)=x

1
J F(y)

≤ C ′

0

∑
1∗

l, j

m(1∗

l, j )

m(10)
≤ C ′

0.

Two elementary and useful facts are that for all bounded functions ϕ and ψ :
• m(ψ(L0ϕ))= m((ψ ◦ F)ϕ);
• a measure µ= ϕm, ϕ ∈ L1(m), is F-invariant if and only if L0ϕ = ϕ.
We know from [43] that for F satisfying (A1)–(A4), there is a unique h such that L0h = h.
This fact will be proved again in greater generality in the next two sections, but we first
assume it to motivate the approach taken below.
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Let g :1→ R be a bounded observable. The transfer operator Lg is defined by

(Lgϕ)(x)≡ L0(e
gϕ)(x)=

∑
y:Fy=x

eg(y)

J F(y)
ϕ(y).

In the study of large deviations of Sng =
∑n−1

i=0 g ◦ F i , the family of transfer operators Lθg

parametrized by θ ∈ R is relevant for the following reasons. Let µ= h dm where L0h = h,
and consider the moment generating function

e(θ)= lim
n→∞

1
n

log µ(eθ Sn g).

Using the identity Ln
g(ϕ)= L0(eSn gϕ), we have

e(θ)= lim
n→∞

1
n

log m(L0(e
θ Sn gh))= lim

n→∞

1
n

log m(Ln
θgh).

From this relation it follows that the existence and smoothness properties of e(θ) are
related to the spectral properties of the family of transfer operators Lθg . On the other hand,
the existence and smoothness of e(θ) lead to large deviation results via the Gartner–Ellis
theorem [18]; see §4.

One way to show the analyticity of e(θ) is to prove that Lθg has a spectral gap. The
fact, however, is that the space X is too small for Lθg to have a spectral gap; we need
to consider a larger Banach space as in [43]. Equivalently, this can be accomplished by
changing the potential, which is what we will do. Let γ be as in (A2). We fix 0 ≤ γ1 < γ ,
and let v :1→ R be the function given by v(x)= elγ1 if x ∈1l . We define

Pγ1,g(ϕ)≡ v−1Lg(vϕ)=

∑
y:F(x)=y

eg(y)

Ĵ F(y)
ϕ(y)

where Ĵ F is defined as follows:
• if x /∈ F−1(10), Ĵ F(x)= eγ1 ;
• if x ∈1∗

l, j , Ĵ F(x)= J F(x)e−lγ1 .
In particular, P0,g = Lg . Note that, for γ1 < γ , Pγ1,g(ϕ) is well defined for all bounded ϕ
because ∑

y:F(y)=x

1

Ĵ F(y)
≤ C

∑
l, j

m(1∗

l, j )

m(10)
elγ1 ≤

C D

m(10)

∑
l

el(γ1−γ ) <∞,

and the distortion estimate (1) in (A3) is unchanged. Moreover, we have ( Ĵ F)n(x)=

J Fn(x) for all x ∈10 ∩ {R = n} by construction.
We will work with Pγ1,θg for a suitably chosen 0< γ1 < γ (instead of Lθg) as operators

acting on the Banach space X . This is similar to studying the operatorsLθg on the weighted
Banach space used in [43]. The choice of γ1 is discussed in Proposition 2.5. Elsewhere we
regard it as fixed, and simply write Pg . Let us also drop the hat in Ĵ F .

Two standing assumptions through the end of §4 are (i) g is real-valued and (ii) g ∈ X.
We remark that for our purposes it suffices to prove a spectral gap for Pθg with θ ∈ R;
results for nearby complex θ will be obtained by perturbation.
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2.3. Pressure and spectral radius.

LEMMA 2.1. (Lasota–Yorke type estimates) There exists a constant C1 > 0 such that, for
any ϕ ∈ X and n ≥ 1, we have

|Pn
gϕ(x)| ≤ |Pn

g 1(x)| |ϕ|∞, (2)

|Pn
gϕ|h ≤ |Pn

g 1|∞{βn
|ϕ|h + C1|ϕ|∞}. (3)

It follows immediately from (2) and (3) that

‖Pn
gϕ‖ ≤ |Pn

g 1|∞(β
n
‖ϕ‖ + (C1 + 1)|ϕ|∞). (4)

Proof. The proof of (2) is immediate:

|Pn
gϕ(x)| =

∣∣∣∣ ∑
y:Fn(y)=x

eSn g(y)

J Fn(y)
ϕ(y)

∣∣∣∣ ≤ |ϕ|∞

∑
y:Fn(y)=x

eSn g(y)

J Fn(y)
.

To prove (3), we note that for any y1, y2 with s(y1, y2)≥ n (see (A1)) and x1 = Fn(y1),
x2 = Fn(y2), we have ∣∣∣∣ J Fn(y1)

J Fn(y2)
− 1

∣∣∣∣ ≤ Cd(x1, x2), (5)

and ∣∣∣∣eSn g(y1)

eSn g(y2)
− 1

∣∣∣∣ ≤ C ′d(x1, x2). (6)

The estimate (5) is an immediate consequence of (A3). The estimate (6) follows from∣∣∣∣log
eSn g(y1)

eSn g(y2)

∣∣∣∣ =

∣∣∣∣n−1∑
i=0

g(F i (y1))− g(F i (y2))

∣∣∣∣ ≤ |g|hd(x1, x2)

n−1∑
i=0

βn−i .

In the last inequality we have used d(F i (y1), F i (y2))= d(x1, x2)β
n−i , for i =

0, . . . , n − 1.
For x1, x2 ∈1l, j , we denote by y1, y2 the (paired) preimages of x1, x2 and by ‘

∑
br’

the sum over the inverse branches of Fn . Then

|Pn
g ϕ(x1)− Pn

gϕ(x2)|

d(x1, x2)
≤

∑
br

|(eSn g(y1)/J Fn(y1))ϕ(y1)− (eSn g(y2)/J Fn(y2))ϕ(y2)|

d(x1, x2)

≤ βn
∑

br

eSn g(y1)

J Fn(y1)

|ϕ(y1)− ϕ(y2)|

d(y1, y2)
(7)

+

∑
br

|(J Fn(y2)eSn g(y1)/J Fn(y1)eSn g(y2))− 1|

d(x1, x2)

eSn g(y2)

J Fn(y2)
|ϕ(y2)|

≤ βn
|Pn

g 1|∞|ϕ|h + (C + C ′)|Pn
g 1||ϕ|∞. (8)

This concludes the proof of Lemma 2.1. 2

We introduce next a notion of pressure.

Definition 2.1. Assuming the limit exists, the pressure P(g) is defined to be

P(g)= lim
n→∞

1
n

log |Pn
g 1|∞.
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LEMMA 2.2. P(g) is well defined, and is related to σ(Pg), the spectral radius of Pg , by

σ(Pg)= eP(g).

Proof. Using the estimate (2) we have

|Pn+m
g 1|∞ = |Pn

g (Pm
g 1)|∞ ≤ |Pn

g 1|∞|Pm
g 1|∞,

so that the sequence log |Pn
g 1|∞ is subadditive. Thus the pressure P(g) is well defined. To

prove the formula for the spectral radius, note first that

σ(Pg)= lim
n→∞

‖Pn
g ‖

1/n
≥ lim

n→∞
(|Pn

g 1|∞)
1/n

= eP(g).

For the reverse inequality, for any ε > 0, we have |Pn
g 1|∞ < en(P(g)+ε) for n sufficiently

large. It then follows from Lemma 2.1 that

‖Pn
gϕ‖ ≤ en P(g)eεn(βn

‖ϕ‖ + C |ϕ|∞).

This implies that σ(Pg)≤ eP(g)+ε . Since ε is arbitrary, the assertion is proved. 2

2.4. Condition for quasi-compactness. We introduce next the notion of tail pressure,
and relate it to the essential spectral radius of Pg . For a function ϕ on 1, we denote
by ϕ≤k

≡ ϕχ⋃
l≤k 1l the function obtained by annihilating ϕ on all floors greater than k.

Similarly, we define ϕ>k
≡ ϕ − ϕ≤k

= ϕχ⋃
l>k 1l .

Definition 2.2. The tail pressure P](g) is given by

P](g)= lim sup
n→∞

1
n

log
{

inf
k>0

|(Pn
g 1)>k

|∞

}
.

THEOREM 2.3. For any τ >max{eP](g), βeP(g)
} and N = N (τ ) sufficiently large, there

exists a finite rank operator Q such that

‖PN
g −Q‖ ≤ τ N .

In particular, if P](g) < P(g), then Pg is quasi-compact and its essential spectral radius
is no greater than τ .

Proof. For N ∈ Z+, we denote by MN =
∨N

i=0 F−iM the refinement of the partition
M=M0, by MN (x) the element of MN containing the point x ∈1, and by EN [ϕ] the
corresponding conditional expectation with respect to m, i.e.

EN [ϕ](x)≡
1

m(MN (x))

∫
MN (x)

ϕ dm.

For an integer N to be specified, we construct the operator Q in two steps. First, we
truncate the tail of the tower, i.e. for some integer k we set

Qk(ϕ)≡ PN
g (ϕ

≤k).

Then we average on the elements of the partitionMN , letting

Q̂k(ϕ)≡Qk(EN (ϕ))= PN
g (EN (ϕ

≤k)).
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SinceM has finitely many elements on each level, the operator Q̂k has finite rank. Then

‖(PN
g − Q̂k)(ϕ)‖ ≤ ‖(PN

g −Qk)(ϕ)‖ + ‖(Qk − Q̂k)(ϕ)‖

= ‖PN
g (ϕ

>k)‖ + ‖Qk(ϕ − EN (ϕ))‖

≡ I + I I.

(i) Estimating term II. Note that for any A ∈MN and x, y ∈ A, we have s(x, y)≥ N .
Thus

|ϕ − EN [ϕ]|∞ ≤ sup
A∈MN

sup
x,y∈A

|ϕ(x)− ϕ(y)| ≤ βN
|ϕ|h .

This estimate substituted into (4) gives

‖PN
g (ϕ − EN (ϕ))‖ ≤ |PN

g 1|∞β
N (2 + C1)|ϕ|h .

Fix arbitrary β̃ > β. Choosing ε so that βeε < β̃ and N sufficiently large, we obtain

‖Qk(ϕ − EN (ϕ))‖ ≤ ‖PN
g (ϕ − EN (ϕ))‖ ≤ β̃N eN P(g)

‖ϕ‖.

(ii) Estimating |PN
g (ϕ

>k)|∞ in term I. We will show that given any ε, ε′ > 0, we have

|PN
g (ϕ

>k)|∞ ≤ (eN (P](g)+ε)
+ ε′)|ϕ|∞

for all N , k sufficiently large, N chosen first, and k depending on N . Since
|PN

g (ϕ
>k)(x)| ≤ PN

g (1
>k)(x)|ϕ|∞, this boils down to estimating |PN

g (1
>k)|∞.

By the definition of P](g), given any ε > 0, we can first choose N and then k0 ≥ N
so that

|(PN
g 1)>k0 |∞ ≤ eN (P](g)+ε).

Let k ≥ k0 − N and consider separately the following three cases.
(a) If x ∈1l with N ≤ l ≤ k0, then PN

g (1
>k)(x)= 0.

(b) If x ∈1l with l > k0, then PN
g (1

>k)(x)≤ (PN
g 1)(x)= (PN

g 1)>k0(x)≤ eN (P](g)+ε).
(c) If x ∈1l with l < N , let

0k,i =

{
y ∈

⋃
l>k

1l : F N y = x, F i y ∈10 and F j y 6∈10 for 0 ≤ j < i

}
.

Then

PN
g (1

>k)(x)=

N−l∑
i=1

∑
y∈0k,i

eSN g(y)

J F N (y)
≤

N−l∑
i=1

∑
y∈0k,i

eSi g(y)

J F i (y)
|PN−i

g 1|∞.

With N held fixed, we have supi≤N |P i
g1|∞ <∞, and also that

N−l∑
i=1

∑
y∈0k,i

eSi g(y)

J F i (y)

is arbitrarily small (uniformly in x) as k tends to infinity. Thus, in case (c), we have
PN

g (1
>k)(x) < ε′ for large enough k.
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(iii) Estimating |PN
g (ϕ

>k)|h in term I. As in Lemma 2.1, see equation (8), we obtain

|P N
g ϕ

>k(x1)− PN
g ϕ

>k(x2)|

d(x1, x2)
≤ βN

∑
br

eSN g(y1)

J F N (y1)

|ϕ>k(y1)− ϕ>k(y2)|

d(y1, y2)

+

∑
br

|(J F N (y2)eSN g(y1)/J F N (y1)eSN g(y2))− 1|

d(x1, x2)

eSN g(y2)

J F N (y2)
|ϕ>k(y2)|.

The first term on the right-hand side is bounded by βN
|PN

g 1|∞|ϕ|h and is treated as in (i).
The second term is bounded by (C + C ′)|PN

g (ϕ
>k)|∞ and is estimated as in (ii). 2

We end this section with a concrete (but by no means optimal) condition on g which
ensures that the tail pressure is strictly smaller than the pressure. Let γ be as in
condition (A2), and for 0< γ1 < γ recall the meaning of Pg = Pγ1,g as defined in §2.2.
We consider first the special case where g is identically zero.

LEMMA 2.4. For g ≡ 0, we have P](0)= −γ1 and P(0)= 0.

Proof. It is easy to see that P](0)= −γ1. For x ∈1k, k > n, there is a unique y such that
Fn(y)= x . This implies Pn

0 1(x)= 1/J Fn(y)= e−nγ1 .
To show P(0)≥ 0, note that P∗

0 (vm)= vm where P∗

0 is the dual of P0 and v is
the change of coordinates that connect P0 and L0. This is because, for all ϕ ∈ X ,
m(vP0ϕ)= m(L0(vϕ))= m(vϕ). It follows that the spectral radius of P∗

0 , and thus that
of P0, is at least 1, i.e. P(0)≥ 0. To complete the proof, assume P(0) > 0. Since P0

is quasi-compact, by Theorem 2.3 there exists ψ ∈ X such that P0ψ = λψ with |λ|> 1.
But this is impossible, for m(v|P0ψ |)≤ m(vP0|ψ |)= m(v|ψ |), i.e. P0 is a contraction on
L1(vm). 2

Define the range of g,

ρ(g)≡ max
x

g(x)− min
x

g(x).

PROPOSITION 2.5. Assume ρ(g) < γ1 < γ . Then P](g) < P(g).

Proof. Consider first the case where 0 ≤ g ≤ ρ(g). The same argument as above gives
P](g)≤ ρ(g)− γ1 < 0. On the other hand, we have P(g)≥ P(0) since∑

y:Fn(y)=x

eSn g(y)

J Fn(y)
≥

∑
y:Fn(y)=x

1
J Fn(y)

,

and P(0)= 0 by Lemma 2.4. Hence P](g) < P(g).
The general result is easily deduced from the special case above using the fact that, for

c ∈ R, we have P(g + c)= P(g)+ c and P](g + c)= P](g)+ c. 2

3. A Ruelle–Perron–Frobenius theorem
3.1. Statement of results. Let X∗ denote the dual space of X . The main results of this
section are the following theorem and proposition.
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THEOREM 3.1. Assume P](g) < P(g). Then:
(i) the spectrum of Pg =60 ∪ {eP(g)

} where sup{|z|; z ∈60}< eP(g); eP(g) is a simple
eigenvalue with a one-dimensional generalized eigenspace;

(ii) there exist ϕg ∈ X and νg ∈ X∗ such that
(a) ϕg is real-valued, greater than 0, and satisfies Pgϕg = eP(g)ϕg ,
(b) P∗

gνg = eP(g)νg , and νg is a positive Borel measure with supp(νg)=1,
(c) νg(ϕg)= 1;

(iii) the Borel probability measure µg = ϕgνg is F-invariant.

From Theorem 3.1 one deduces the following proposition.

PROPOSITION 3.2. Assuming P](g) < P(g), there exist constants C2 <∞ and τ < 1
such that, for any ϕ1, ϕ2 ∈ X, we have

|µg((ϕ1 ◦ Fn)ϕ2)− µg(ϕ1)µg(ϕ2)| ≤ C2τ
n
‖ϕ1‖‖ϕ2‖

for any n ≥ 1, i.e. the correlations decay exponentially with time.

Remark on the case g = 0. From Theorem 3.1 and Lemma 2.4, we deduce that µ0 is
the unique F-invariant measure that is absolutely continuous with respect to the reference
measure m. We will refer to µ≡ µ0 as the SRB measure (see §5). The existence of this
invariant measure and its correlation decay properties were proved in [43].

Without loss of generality, we may assume that the spectral radius of the operator in
question is equal to one by considering P = e−P(g)Pg . We will work with P in the rest of
§3. Many of the arguments in this section are not new. However, we know of no suitable
reference(s) that contain all the needed results in our particular setup. We will follow
closely parts of [3, 23, 32], noting that most of the arguments in fact date back earlier (see
also the monograph [21]).

3.2. Eigenfunctions with eigenvalue one. Lemma 3.3 contains a general result that holds
for all positive quasi-compact operators. The argument below is due to Ruelle [32]. We
have included it for completeness.

LEMMA 3.3. There exists ϕ ∈ X, real-valued and greater than or equal to 0, such that
Pϕ = ϕ.

Proof. Since P is quasi-compact and its spectral radius is one, there is at least one and
at most finitely many eigenvalues of modulus one. We label them λ j , j = 1, 2, . . . , j0,
counted with multiplicity. Let

1 = ψ +

∑
j

ψ j (9)

be the decomposition of the constant function 1 with ψ j in the generalized eigenspace of
the eigenvalue λ j . Since

lim
n→∞

1
n

log ‖P(1)‖ = 1,

at least one of the ψ j is not identically equal to zero (abbreviated ψ j 6≡ 0). For each j such
that ψ j 6≡ 0, writing the restriction of P to the generalized eigenspace corresponding to λ j
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in Jordan normal form, we see that there exists an integer k( j) such that

lim
n→∞

1

λn
j n

k( j)
Pnψ j = ϕ j (10)

for some ϕ j ∈ X with ϕ j 6≡ 0 and Pϕ j = λ jϕ j . Let k = max j k( j). Writing

Pn1
nk =

Pnψ

nk +

( ∑
j :k( j)<k

Pnψ j

nk

)
+

( ∑
j :k( j)=k

Pnψ j

nk

)
and noticing that the first two quantities on the right-hand side tend to 0 as n → ∞, we
define

εn =
Pnψ

nk +

∑
j :k( j)<k

Pnψ j

nk +

∑
j :k( j)=k

λn
j

(
Pnψ j

λn
j n

k − ϕ j

)
.

From (10), it follows that εn → 0 as n → ∞. We claim that εn is real: since P is a real
operator, the eigenvalues are either real or they occur in complex conjugate pairs; in the
latter case, the corresponding eigenfunctions and generalized eigenfunctions also occur in
complex conjugate pairs. It follows that in the decomposition (9), if ψ j 6≡ 0, then there
exists i such that λi = λ j , ψi = ψ j , ϕi = ϕ j and k( j)= k(i). Hence

∑
j λ

n
jϕ j is real.

Combining this with the fact that Pn1/nk
≥ 0, we obtain∑

j :k( j)=k

λn
jϕ j ≥ −εn . (11)

Let us denote by 〈an〉 = limn→∞(1/n)
∑n−1

j=0 a j the Cesaro limit of a sequence an if

such a limit exists. Since 〈einξ
〉 = 1 when ξ = 0 and = 0 for all other values of ξ , we

obtain 〈 ∑
j :k( j)=k

λn
jϕ j

〉
=

∑
j∈E

ϕ j ≥ 0 where E = { j : k( j)= k, λ j = 1}.

If E 6= ∅, then
∑

j∈E ϕ j is a candidate eigenfunction. We claim that
∑

j∈E ϕ j 6≡ 0,
otherwise by linear independence ϕ j ≡ 0 for all j ∈ E , which is impossible. To show
E 6= ∅, note that (11) implies that, for any real number a,〈

(1 ± sin(na))
∑

j :k( j)=k

λn
jϕ j

〉
≥ −〈(1 ± sin(na))εn〉 = 0

and 〈
(1 ± cos(na))

∑
j :k( j)=k

λn
jϕ j

〉
≥ −〈(1 ± cos(na))εn〉 = 0.

If E = ∅, it would follow that〈
sin(na)

∑
j :k( j)=k

λn
jϕ j

〉
=

〈
cos(na)

∑
j :k( j)=k

λn
jϕ j

〉
= 0,

and hence 〈
eina

∑
j :k( j)=k

λn
jϕ j

〉
= 0

for all real a. For each λ, by choosing eia
= λ, we conclude that

∑
j;k( j)=k,λ j =λ

ϕ j = 0.
As before, this implies all the ϕ j involved are ≡ 0, which is a contradiction. 2
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We prove next the following lemma.

LEMMA 3.4.
(a) If ϕ ∈ X is such that Pϕ = ϕ and ϕ ≥ 0, then either ϕ > 0 or ϕ ≡ 0.
(b) The subspace {ϕ ∈ X; Pϕ = ϕ} has dimension at most one.

Proof. (a) Suppose Pϕ = ϕ, ϕ ≥ 0, and ϕ(x)= 0 at some x . Then, for any n ≥ 1,

0 = ϕ(x)= Pnϕ(x)=

∑
y:Fn(y)=x

eSn g(y)

J Fn(y)
ϕ(y).

Therefore, ϕ(y)= 0 for every y ∈
⋃

n≥1{F−n(x)}. By irreducibility, this set is dense and
thus ϕ ≡ 0.

Lemma 3.3 tells us, therefore, that there exists ϕ ∈ X with ϕ > 0 and P(ϕ)= ϕ.
(b) Let ψ be another eigenfunction with eigenvalue one. We may assume ψ is real (by

taking its real or imaginary part) but do not know if it is non-negative. Since both ϕ and
ψ are continuous and 10 is compact, we know that for small enough t > 0, ϕ − tψ > 0
on 10. Let t0 = sup{t; ϕ − tψ ≥ 0}, and let 0 = ϕ − t0ψ . Then 0 ≥ 0 on 10, and since
P(0)= 0, it follows that 0 ≥ 0 on all of1. By definition, 0(x)= 0 for some x ∈10. The
argument in (a) then implies that 0 ≡ 0, i.e. ϕ = t0ψ . 2

From Lemmas 3.3 and 3.4, it follows that the subspace {ϕ ∈ X; Pϕ = ϕ} has dimension
exactly equal to one. Moreover, there exists eigenfunctions ϕ that are real-valued and
strictly positive. We fix one such ϕ and call it ϕg .

3.3. Spectral gaps and invariant measures.

LEMMA 3.5. There exists νg ∈ X∗ such that:
(i) P∗νg = νg;
(ii) νg is a positive finite Borel measure on 1 with supp(ν)=1; and
(iii) νg(ϕg)= 1.

Proof. Let K be the order of the pole at one of the resolvents of P . We decompose P as

P = (E + N )+R,

where E is the projection onto the generalized eigenspace of the eigenvalue one and
N = (P − I )E is the nilpotent part. It follows that N K

= 0 but N K−1
6= 0.

By Lemmas 3.3 and 3.4(b), the range of E N K−1 is one-dimensional. Hence there is a
bounded linear functional ν ∈ X∗ such that, for any ψ ∈ X ,

E N K−1ψ = ν(ψ)ϕg.

This functional satisfies P∗ν = ν, for

(P∗ν)(ψ)ϕg = ν(Pψ)ϕg = E N K−1(E + N +R)ψ = E N K−1ψ = ν(ψ)ϕg.

To prove (ii), first we show that E N K−1 is a positive operator. For t < 1, consider the
resolvent (I − tP)−1. Using its Laurent expansion one finds

(I − tP)−1
=

∞∑
n=0

tnPn
=

K∑
k=1

tk−1

(1 − t)k
E N k−1

+ S(t),
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where S(t) is a bounded operator for t close to one. Since P is a positive operator, so is
(I − tP)−1. Thus

E N K−1
= lim

t→1−

(1 − t)K

t K−1 (1 − tPg)
−1

is also a positive operator.
Define ν(Z)≡ ν(IZ ) for cylinders Z ∈Mn . Since ν(Z)=

∑
Z ′∈Mn+1,Z ′⊂Z ν(Z

′), ν
extends uniquely to a finitely additive non-negative set function on the algebra generated
by the cylinders. Since all cylinders are compact, ν is continuous at ∅. Thus it defines a
countably additive measure on the σ -algebra generated by cylinders, i.e. the Borel sets.

It remains to show that the support of ν is all of1. A simple but crucial observation here
is that if A ⊂1 and ψ is a function with inf ψ |A > 0, then ν(ψ IA)= 0 implies ν(A)= 0.
Let Z ∈Mn be an arbitrary cylinder set. We will show that ν(Z) 6= 0. Suppose it is equal
to 0. Then ν(P(IZ ))= ν(IZ )= 0. Since inf(eg/J F)|Z > 0, it follows that ν(F(Z))= 0.
By irreducibility, this argument iterated infinitely many times gives ν(1)= 0, which is
impossible.

Finally, νg is obtained by normalizing ν. 2

LEMMA 3.6.
(a) The eigenvalue one is semi-simple, i.e. its Jordan block is one-dimensional.
(b) Other than one, P has no eigenvalue λ with |λ| = 1.

Proof. (a) We will show that all eigenvalues λ of modulus one are semisimple. Suppose
not. Then there exist ϕ, ψ ∈ X , ϕ 6≡ 0, such that, for any n ≥ 1,

Pnϕ = λnϕ and Pnψ = λnψ + nλn−1ϕ.

Since |Pϕ| ≤ P|ϕ|, we have

νg(|Pϕ|)≤ νg(P|ϕ|)= νg(|ϕ|). (12)

Using the fact that supp νg =1, we have

0< νg(|ϕ|)=
1
n
νg(|Pnψ − λnψ |)≤

2
n
νg(|ψ |),

which gives a contradiction as n → ∞.
To prove (b), we observe from (12) that P can be seen as an operator acting on L1(νg),

and that, as such, it is a contraction. We claim that, as an operator on X and on L1(νg),
the two sets of eigenvalues of P of modulus one are identical. To prove this, it suffices to
show that any eigenfunction ϕ ∈ L1(νg) corresponding to an eigenvalue λ of modulus one
actually belongs to X . By the semisimplicity of λ, Eλ,n ≡ (1/n)

∑n−1
j=0(λ

−1P) j converges
in the norm of X to Eλ, the projection onto the (finite-dimensional) eigenspace of λ. Since
both operators P and Eλ,n extend to contractions on L1(νg), Eλ,n converges strongly in
L1(νg). Thus Eλ extends to a projection on L1(νg) whose image is contained in X .

By [33, Proposition 4.6, Ch. V], the set of eigenvalues λ of modulus one of P acting
on the Banach lattice L1(νg) is fully cyclic. They are, therefore, roots of unity. If among
these eigenvalues there is a kth root of unity with k > 1, then, as an eigenvalue of Pk , one
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has multiplicity strictly greater than one. The aperiodicity assumption (A4) together with
Lemma 3.4 applied to Pk says this is impossible. 2

Proof of Theorem 3.1. Parts (i) and (ii) follow from the quasi-compactness of P together
with Lemmas 3.3–3.6. To prove (iii), note the simple relation P((ϕ ◦ F)ψ)= ϕP(ψ). The
F-invariance of µg follows from

µg(ϕ ◦ F)= νg((ϕ ◦ F)ϕg)= νg(P((ϕ ◦ F)ϕg))= νg(ϕP(ϕg))= νg(ϕϕg)= µg(ϕ).

This completes the proof of Theorem 3.1. 2

Proof of Proposition 3.2. By the spectral decomposition of P , we have Pn(ϕ)=

νg(ϕ)ϕg +Rn(ϕ) whereR has spectral radius τ̂ < 1. For any τ > τ̂ we have

|µg((ϕ1 ◦ Fn)ϕ2)− µg(ϕ1)µg(ϕ2)|

= |νg(P((ϕ1 ◦ Fn)ϕ2ϕg))− νg(ϕ1ϕgνg(ϕ2ϕg))| = |νg(ϕ1[Pn(ϕ2ϕg)− νg(ϕ2ϕg)ϕg])|

≤ |ϕ1|∞|Rn(ϕ2ϕg)|∞ ≤ Cτ n
|ϕ1|∞‖ϕ2ϕg‖ ≤ (2C‖ϕg‖)τ

n
‖ϕ1‖‖ϕ2‖

where in the last inequality we have used the fact that ‖ϕψ‖ ≤ 2‖ϕ‖‖ψ‖. 2

4. Moment generating function and limit theorems
The results of this section apply to all F :1→1 satisfying (A1)–(A4) and real
observables g ∈ X .

4.1. Analyticity of logarithmic moment generating functions. First, we prove the
following general result which holds for all θ ∈ C. We showed in §2.1 that Pθg is a
bounded operator on X for all such θ .

LEMMA 4.1. The map θ 7→ Pθg is analytic.

Proof. We claim that if Qn is the operator on X defined by Qn(ϕ)= P0(ϕgn), then the
series

∑
n≥0(θ

n/n!)Qn converges in operator norm to Pθg . The convergence is due to

‖θnP0(g
nϕ)‖ ≤ |θ |n‖P0‖‖gnϕ‖ ≤ 2‖P0‖‖ϕ‖(2|θ |‖g‖)n .

Knowing that the limit exists, we now identify it as Pθg . For any ϕ ∈ X and x ∈1,(∑
n≥0

θn

n!
Qnϕ

)
(x)=

∑
y:Fy=x

(∑
n≥0

[θg(y)]n

n!

)
ϕ(y)

J F(y)
= Pθgϕ(x).

This proves the analyticity of Pθg as an operator-valued function. 2

Next let θmax be a real number less than γ /ρ(g). We pick γ1 such that θmaxρ(g) < γ1 <

γ , and for simplicity write Pθ ≡ Pγ1,θg . By Proposition 2.5 and Theorem 3.1, Pθ has a
spectral gap for θ ∈ [−θmax, θmax]. We write P(θ)≡ P(θg), ϕθ ≡ ϕθg , νθ ≡ νθg , and so
on. By analytic perturbation theory [22] we have the following corollary.

COROLLARY 4.2. The map θ 7→ P(θ) is analytic in a complex neighborhood of
[−θmax, θmax].
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Our main result is the following theorem.

THEOREM 4.3. For any θmax < γ/ρ(g), there exists ωmax > 0 such that for any complex
θ in the strip

{θ ∈ C; |Re θ | ≤ θmax, |Im θ | ≤ ωmax},

the logarithmic moment generating function

e(θ)= lim
n→∞

1
n

log µ(eθ Sn g)

is well defined and is an analytic function. Restricted to real θ , e(θ) is either strictly
convex or purely linear, the latter occurring if and only if g can be written in the form
g = h ◦ F − h + C for some h ∈ X and C ∈ R. The formulas for e′(θ) and e′′(θ) are

e′(θ)= µθ (g),

e′′(θ)= µθ (g
2
− µθ (g)

2)+ 2
∞∑
j=1

µθ (g ◦ F j g − µθ (g)
2). (13)

Proof. We consider first real θ with |θ | ≤ θmax. By Theorem 3.1, Pθ is quasi-compact and
we have the spectral decomposition

Pn
θ (ϕ)= en P(θ)ϕθνθ (ϕ)+Rn

θ (ϕ),

where the spectral radius of Rθ is strictly smaller than eP(θ). The SRB measure is given
by µ= ϕ0ν0 where ϕ0 and ν0 are the eigenfunctions for the eigenvalue one of P0 and P∗

0 ,
respectively. Thus

e(θ) = lim
n→∞

1
n

log µ(eθ Sn g)= lim
n→∞

1
n

log ν0(ϕ0eθ Sn g)= lim
n→∞

1
n

log ν0(Pn
θ (ϕ0))

= lim
n→∞

1
n

log(en P(θ)ν0(ϕθ )νθ (ϕ0)+ ν0(Rn
θ (ϕ0)))= P(θ), (14)

where in the last inequality we have used the fact that both νθ (ϕ0) and ν0(ϕθ ) are positive.
From Lemma 4.1, analytic perturbation theory [22], and Theorem 3.1, the limit in e(θ)

exists also for complex θ with |Im θ | ≤ ωmax for sufficiently small ωmax.
We first compute the derivatives of e(θ) at θ = 0. The sequence {(1/n) log µ(eθ Sn g)}

is uniformly bounded for θ in a complex neighborhood of the origin. Thus by the Vitali
convergence theorem we can freely exchange derivative and limits. That

e′(0)= lim
n→∞

1
n
µ(Sng)= µ(g) (15)

is straightforward. For the second derivative, setting ḡ = g − µ(g) we have

e′′(0) = lim
n→∞

1
n
(µ((Sng)2)− µ(Sng)2)= lim

n→∞

1
n
µ((Sn ḡ)2)

= µ(ḡ2)+ 2 lim
n→∞

µ

(n−1∑
j=1

(
1 −

j

n

)
ḡ ◦ F j ḡ

)

= µ(ḡ2)+ 2
∞∑
j=1

µ(ḡ ◦ F j ḡ). (16)
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The last equality follows from Proposition 3.2, the summability of the correlations, and
dominated convergence.

In order to compute e′(κ) and e′′(κ) at κ 6= 0, let

eκ(θ)≡ lim
n→∞

1
n

log µκ(eθ Sn g),

i.e. eκ is the moment generating function for the F-invariant state µκ . Note that

µκ(e
θ Sn g)= νκ(e

θ Sn gϕκ)= νκ(e
−n P(κ)Pn

κ (e
θ Sn gϕκ))= e−n P(κ)νκ(Pn

κ+θ (ϕκ)).

Using the spectral decomposition of Pκ+θ and proceeding as in the computation of e(θ) in
equation (14), we find that

eκ(θ)= P(θ + κ)− P(κ)= e(θ + κ)− e(κ),

i.e. eκ(θ) is the translated pressure. Differentiating with respect to θ gives e′(κ)= e′
κ(0)

and e′′(κ)= e′′
κ(0). Computing e′

κ(0) and e′′
κ(0) as in equations (15) and (16) we obtain

(13).
To prove the statement about strict convexity we note that if g = h ◦ F − h + C ,

then e(θ)= θC for all θ . Conversely, let us assume that e′′(κ)= 0 for some κ . Let
ḡ = g − µκ(g) and

hκ ≡

∞∑
j=1

e− j P(κ)P j
κ ḡ.

This sum is easily seen to converge in X by Theorem 3.1. Define

f ≡ ḡ − hκ ◦ F + hκ .

A simple computation shows that e−P(κ)Pκ( f ϕκ)= 0. Thus, for any j ≥ 1,

µκ( f ◦ F j f )= νκ( f e− j P(κ)P j
κ ( f ϕκ))= 0. (17)

We have e( f )(θ)≡ limn→∞(1/n) log µ(eθ Sn f )= e(θ)− θµκ(g). Therefore, if e′′(κ)= 0,
then e( f )′′(κ)= 0. Applying (13) to f and equation (17) gives µκ( f 2)= 0. Since µκ
assigns positive measure to every cylinder and f is continuous, f must be identically
zero. 2

4.2. Fluctuations of trajectory averages. A number of limit theorems follow
immediately from Theorem 4.3, in particular from the smoothness of e(θ) for θ in suitable
regions of the complex plane. To avoid triviality we assume σ 2

= e′′(0) > 0.
Our first result is about the fluctuations of Sng of order n.

THEOREM 4.4. (Large deviations) Let I (t) be given by

I (t)= sup
−θmax≤θ≤θmax

(θ t − e(θ)).

Then for any interval [a, b] ⊂ [e′(−θmax), e′(θmax)] we have

lim
n→∞

1
n

log µ
{

x;
Sng

n
∈ [a, b]

}
= − inf

t∈[a,b]
I (t).
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Proof. This is an immediate consequence of the Gartner–Ellis theorem [18], and the
existence and smoothness of e(θ) for real θ with |θ | ≤ θmax. 2

Our second result is about fluctuations of Sng of order
√

n, i.e. the central limit theorem.
Note that the central limit theorem is valid under weaker conditions than stated here; see
e.g. [44].

THEOREM 4.5. (Central limit theorem) For any interval [a, b] ⊂ R we have

lim
n→∞

µ

{
x;

Sng − nµ(g)
√

n
∈ [a, b]

}
=

∫ b

a

1
√

2π
e−x2/2σ 2

dx .

Proof. This is an immediate consequence of the existence of e(θ) in a complex
neighborhood of the origin, see e.g. [8]. 2

Our final result is about the so-called moderate fluctuations of order Sng, i.e. the
fluctuations of order larger than

√
n but smaller than n. These fluctuations, suitably scaled,

satisfy a large deviation principle with a rate function that is always quadratic.

THEOREM 4.6. (Moderate deviations) Let an be a positive increasing sequence such that
limn→∞ an/

√
n = +∞ and limn→∞ an/n = 0. Let

J (t)=
t2

2σ 2 .

Then, for any interval [a, b] ⊂ R, we have

lim
n→∞

1

a2
n/n

log µ
{

x;
Sng − nµ(g)

an
∈ [a, b]

}
= − inf

t∈[a,b]
J (t).

Proof. This is also an application of the Gartner–Ellis theorem; see e.g. [17, 18, 41].

Remark. (Refinements of limit theorems) Using our spectral results one can obtain further
refinements of the large deviation principle. For example, for non-lattice functions g, one
can prove that for any a with a = e′(θ) and 0< θ < θmax we have

lim
n→∞

Jnµ

{
x;

Sng

n
≥ a

}
= 1

where Jn = θ
√

e′′(θ)2πnenI (a). This and other results (for lattice functions) can be found
in [2, 10, 18]. Applications to piecewise expanding maps in one dimension are given in [7]
and to Markov chains in [25, 26].

Remark. (Large deviations for empirical measures: comparison with Markov chains)
It is natural to ask if there is a large deviation principle for the empirical measures
(1/n)

∑n−1
j=0 δF j (x) (Level II large deviation). The answer is in general no, as one can

see by considering the following simple Markov chain. The state space is the set of non-
negative integers {0, 1, 2, . . .}, the transition probabilities are given by

Pi0 = p, Pi,i+1 = 1 − p,

and the stationary distribution µ is a geometric distribution. This Markov chain satisfies
the Doeblin condition, and it is a special example of the tower model considered here:
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1l corresponds to the state l, with locally constant Jacobians. It is not difficult to see that
the empirical measures for this Markov chain do not satisfy a large deviation principle [4].

To obtain a large deviation principle for empirical measures one needs, in general, very
strong estimates (see e.g. [20, 26, 40]). In the context of this paper it essentially amounts
to requiring that the tail pressure P](g)= 0 for a sufficiently large class of observables g.

One can also ask for a weaker property, namely whether one can, for a fixed observable
g, obtain large deviation estimates which hold for all intervals in R (and not only in a
sufficiently small interval containing the mean as in Theorem 4.4). This question is not
easily answered. For Markov chains Xn on a countable state space which satisfy the
Doeblin condition, one has, on the one hand, large deviation estimates on any interval for
bounded observables provided Xn starts in some fixed but arbitrary state [29]. On the other
hand, there are examples of stationary Markov chains for which the logarithmic moment
generating functions do no exist past certain critical values [9].

5. Application to dynamical systems
5.1. Markov tower extensions: a review. A main assumption in Theorems A, B, and
C is that the dynamical system f admits a Markov tower extension as defined in [43].
We do not repeat the setup in [43] here, but review in paragraphs (a)–(d) below the basic
idea of a Markov tower extension, focusing on facts directly pertinent to the present paper
and referring the reader to [43] for the complete treatment. In paragraph (e), a slight
modification of the construction in [43] involving measure zero sets is discussed.

(a) Conditions (P1)–(P5) in [43]. Let f be a C1+ε diffeomorphism, possibly with
discontinuities or singularities, of a finite-dimensional Riemannian manifold M . The
metric on M is denoted by d(·, ·).

In §§1.1 and 1.2 of [43], positive-measure horseshoes with infinitely many branches
and variable return times are introduced. This object can be described roughly as
follows. One starts with a compact set 3⊂ M with a hyperbolic product structure, i.e.
3= (

⋃
γ u) ∩ (

⋃
γ s) where {γ u

} is a family of unstable disks, {γ s
} is a family of stable

disks, and each γ u meets each γ s transversally in exactly one point. The positivity of the
measure refers to the requirement that if mu denotes the induced Riemannian measure on
γ u-leaves, then mu(γ u

∩3) > 0 for every γ u (or equivalently for some γ u). A u-subset of
3 is a Borel subset of3 obtained by intersecting a subfamily of {γ u

} with the entire family
of {γ s

}; s-subsets are defined similarly. The ‘horseshoe’ structure refers to the following.
There are pairwise disjoint s-subsets 3i ⊂3, i = 1, 2, . . . , and Ri ∈ Z+ such that, for
each i , f Ri maps 3i onto a u-subset of 3. Moreover, mu(γ u

∩ (3 \
⋃

i 3i ))= 0. This is
described in (P1) and (P2).

There is a notion of separation time s0(·, ·) which depends on the system in question.
Typical examples of ‘separation’ are when two points move a certain distance apart, or
when they land on opposite sides of a discontinuity curve, or when their derivatives cease
to be comparable. In the abstract model, we assume s0(x, y) is a notion for γ s-leaves,
i.e. s0(x, y)= s0(x ′, y′) if x ′

∈ γ s(x) and y′
∈ γ s(y). With regard to the horseshoe 3, we

assume (i) for x, y ∈3i , s0(x, y) > Ri , i.e. all points 3i must stay together through their
return to3, and (ii) for x ∈3i , y ∈3 j , i 6= j but Ri = R j , we assume s0(x, y) < Ri − 1,
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i.e. points in different branches must first separate if they return at the same time.
Conditions (P3)–(P5) contain analytic estimates on hyperbolic behavior expressed in

terms of s0(·, ·). (P3) and (P4)(a), for example, state that there exist C > 0 and α ∈ (0, 1)
such that for all x, y ∈3 and n ≥ 0:

(P3) d( f n x, f n y)≤ Cαn for y ∈ γ s(x);
(P4)(a) d( f n x, f n y)≤ Cαs0(x,y)−n for y ∈ γ u(x).

The meaning of (P4)(a) will become clear in paragraph C.
In paragraphs (b) and (c), two other dynamical systems associated with the horseshoe

structure will be introduced. These three systems are related by

F̃ : 1̃→ 1̃

π̄

��?
??

??
??

??
??

π

����
��

��
��

��
��

f : M → M F̄ : 1̄→ 1̄

The system F̃ : 1̃→ 1̃ is called an extension of f : M → M in the sense that F̃ and f
are related by π ◦ F̃ = f ◦ π . By the same token, F̄ : 1̄→ 1̄ is a quotient of F̃ : 1̃→ 1̃

as F̃ and F̄ are related by π̄ ◦ F̃ = F̄ ◦ π̄ . Since the purpose of this section is to justify
passing between these systems, let us be pedantic with notation, using tildes and bars to
indicate where the various objects belong. The system F̄ : 1̄→ 1̄ will eventually be the
reduced tower system studied in §§2–4.

(b) Construction of Markov extension F̃ : 1̃→ 1̃. Markov extensions are introduced in
§1.3 of [43]. Here 1̃=

⋃
∞

l=0 1̃l is a disjoint union where, for each l, 1̃l is an (isometric)
copy of f l({R > l}) and π̃ |1̃l

is the isometry. We think of 1̃ as a tower, and 1̃l as the lth

floor of the tower. The map F̃ is defined as follows. For each x ∈ 1̃0 such that π(x) ∈3i ,
F̃ j (x) ∈ 1̃ j for j < Ri , i.e. under F̃ it moves up the tower until it reaches 1̃Ri −1, and
F̃ Ri (x) is the point in 1̃0 with π(F̃ Ri (x))= f Ri (π(x)).

The main object of interest for this extension of f is the countable Markov partition
M̃ on 1̃. Each element of M̃ lies in some 1̃l , and each 1̃l contains a finite number of
partition elements. The following hold for each A ∈ M̃|1̃l

:

(i) π(A)=
⋃

i∈I(A) f l(3i ) for some I(A)⊂ Z+;
(ii) s0(x, y) > l for x, y ∈

⋃
i∈I(A) 3i ;

(iii) Ri = l + 1 for at most one i ∈ I(A);
(iv) F̃(A) is the union of some elements in M̃|1̃l+1

and possibly a u-subset of 1̃0.

Associated with M̃ is the following notion of separation time on 1̃. For x, y ∈ 1̃,
we let s̃(x, y)= 0 if x, y are in different elements of M̃, otherwise we let s̃(x, y) be the
largest n for which F̃ i x and F̃ i y stay in the same element of M̃ for all i ≤ n. From (ii)
above and (P4)(a), it follows that, for all x, y ∈ 1̃,

d(π(x), π(y))≤ Cαs̃(x,y).

That is to say, the right-hand side can be thought of as a symbolic distance on the set of
stable leaves in 1̃.
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We note that even though [43] began with the simpler horseshoe description, the idea of
a Markov tower extension is more central to the method of study proposed. The analysis
of the abstract model in Part I of [43] is based on Markov extensions. For the concrete
examples studied in Part II, it is also Markov extensions that are constructed; (P1)–(P5) are
deduced from them.

(c) Reduced tower models. To bring to bear ideas related to the transfer operator, we
quotient out the stable manifolds in 1̃. Let 1̄= 1̃/∼ where x ∼ y if y ∈ γ s(x). It is easy
to see that the map F̃ , the partition M̃, and the separation time s̃ all pass to this quotient;
we call them F̄ , M̄, and s̄, respectively, and for simplicity write s = s̄ = s̃.

In §3.1 of [43], a differential structure is shown to exist for F̄ R
: 1̄0 → 1̄0 where F̄ R

is the return map to 1̄0. More precisely, it is shown that there is a reference measure m̄ on
1̄0 (related to the measure mu) such that, with respect to m̄, F̄ R is absolutely continuous,
and its Jacobian J F̄ has a distortion estimate of the form∣∣∣∣ J F̄ R(x)

J F̄ R(y)
− 1

∣∣∣∣ ≤ C ′α
1
2 s(F̄ R x,F̄ R y).

From the information above, one deduces easily the description of reduced towers in §2.1

with β ≥ α
1
2 .

(d) Invariant measures. We now assume
∫

R dmu <∞, noting that this assumption is well
defined as the measures mu on different γ u are uniformly equivalent.

In §2 of [43], it is shown that there is an F̃-invariant probability measure µ̃ on 1̃ with
the properties that: (i) µ= π∗(µ̃) is an SRB measure of the original system f : M → M ,
i.e. µ is an f -invariant Borel probability measure with absolutely continuous conditional
measures on unstable manifolds; and (ii) µ̄= π̄∗(µ̃) is a F̄-invariant measure absolutely
continuous with respect to m̄.

This completes our brief summary of the relevant setup from [43].

(e) A modification on measure zero sets. In [43], the only measure class of interest is that
of Lebesgue, or mu . That is why in the horseshoe construction in paragraph (a) there was
no need to specify the dynamics on 3 \ (

⋃
i 3i ). While the large deviation results proved

in this paper are also with respect to SRB measures, we have seen in §2.1 that one way to
prove analyticity of the logarithmic moment generating function is via transfer operators
associated with more general potentials. This takes us outside of the Lebesgue measure
class.

For definiteness, let 3∗
=

⋂
n≥0( f R)−n(

⋃
i 3i ). One can verify easily that 3∗ is an

s-subset of3 and, for each i , f Ri (3i ∩3∗) is a u-subset of3∗. A Markov tower extension
1̃∗ and a reduced tower 1̄∗ are then built over 3∗. Note that these are full µ̃- and
µ̄-measure subsets of 1̃ and 1̄, respectively. Moreover, the maps F̃ and F̄ are now defined
everywhere, and all orbits return to the base of the towers infinitely often. We assume this
modification throughout, and drop the asterisk for notational simplicity.

5.2. Proofs of theorems. As in §4, Theorems B and C follow from Theorem A by
applying the Gartner–Ellis theorem. We focus therefore on the proof of Theorem A. Our
strategy is to lift the problem to the Markov extension F̃ : 1̃→ 1̃, pass it to the reduced
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tower F̄ : 1̄→ 1̄, solve the problem there, and hopefully bring the result back to the
original system.

Let g : M → R be a Hölder continuous observable, i.e. there exist K > 0 and η ∈ (0, 1]

such that g satisfies |g(x)− g(y)| ≤ K d(x, y)η for all x, y ∈ M . Define g̃ : 1̃→ R by
g̃(x)= g(π(x)). Lemma 5.1 contains a result that is standard for finite shifts which says
that g̃ differs from a function constant on γ s-leaves by a coboundary.

LEMMA 5.1. There exists a bounded function u on 1̃ such that

ḡ(x)≡ g̃(x)− u(x)+ u(F̃(x)) (18)

is constant on γ s-leaves and satisfies

|ḡ(x)− ḡ(y)| ≤ constant · α
1
2 ηs(x,y). (19)

Proof. We mimic an argument in [6]. On 1̃0, fix an arbitrary γ u-leaf; call it γ̂ u . For
x ∈ 1̃0, let x̂ be the unique point in γ s(x) ∩ γ̂ u . For x ∈ 1̃l , l > 0, let x−l = F̃−l x , and
define x̂ = F̃ l(x̂−l). Let

u(x)=

∞∑
j=0

{g̃(F̃ j x)− g̃(F̃ j x̂)}. (20)

By (P3), d(π(F̃ j x), π(F̃ j x̂))≤ Cα j , so u is well defined and uniformly bounded. From
(18) and (20), it follows that

ḡ(x)= g̃(x̂)+

∞∑
j=0

g̃(F̃ j (F̃ x̂))−

∞∑
j=0

g̃(F̃ j (
̂̃Fx)).

Note that the right-hand side of this formula depends only on x̂ and ̂̃Fx , and not on the
specific location of x in γ s(x). In fact, for x such that F̃ x 6∈ 1̃0, we have ḡ(x)= g̃(x̂).

To verify (19), let k be an integer ≈
1
2 s(x, y). Then

|ḡ(x)− ḡ(y)| ≤

∣∣∣∣ k∑
i=0

{g̃(F̃ i x̂)− g̃(F̃ i ŷ)}

∣∣∣∣ +

∣∣∣∣k−1∑
i=0

{
g̃(F̃ i (

̂̃Fx))− g̃(F̃ i (
̂̃F y))

}∣∣∣∣
+

∣∣∣∣ ∞∑
i=k

{
g̃(F̃ i (F̃ x̂))− g̃(F̃ i (

̂̃Fx))

}∣∣∣∣ +

∣∣∣∣ ∞∑
i=k

{
g̃(F̃ i (F̃ ŷ))− g̃(F̃ i (

̂̃F y))

}∣∣∣∣.
By (P4)(a), the first term is at most

∑k
i=0 K (Cαs(x,y)−i )η ≤ K ′α

1
2 ηs(x,y), and similarly for

the second term. Since F̃(x̂) and ̂̃Fx belong to the same stable leaf, by (P3), each of the

last two terms is at most
∑

∞

k K (Cαi )η ≤ K ′α
1
2 ηs(x,y). 2

Proof of Theorem A. Let µ be the ergodic SRB measure given by the Markov extension,
and let g be as above. The objects of interest here are

en(θ)=
1
n

log µ(eθ Sn g) and e(θ)= lim
n→∞

en(θ)
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if the limit in e(θ) exists. Let g̃ be the lift of g to 1̃, and let µ̃ be the measure on 1̃ that
projects to µ. Then clearly

ẽn(θ)≡
1
n

log µ̃(eθ Sn g̃)= en(θ),

and ẽ(θ)= e(θ) when it makes sense. Passing to the quotient F̄ : 1̄→ 1̄ is a little less
straightforward. Let ḡ be given by Lemma 5.1. Thinking of ḡ as defined on 1̄ (as well as
1̃), we define

ēn(θ)≡
1
n

log µ̄(eθ Sn ḡ) and ē(θ)≡ lim
n→∞

ēn(θ)

if the limit in ē(θ) exists. To relate these quantities back to e(θ), observe that from (18) we
have that, for x ∈ 1̃,

n−1∑
i=0

ḡ(F̄ i (π̄x))=

n−1∑
i=0

ḡ(F̃ i (x))=

(n−1∑
i=0

g̃(F̃ i (x))

)
− u(x)+ u(F̃n(x)). (21)

Thus

µ̄(eθ Sn ḡ)= µ̃(eθ{(Sn g̃)−u+u◦F̃n
}).

Since u is bounded, it follows that if ēn(θ) converges, then ẽn(θ) also converges to the
same limit, and thus we have e(θ)= ẽ(θ)= ē(θ). That is to say, the problem boils down
to proving the convergence of ēn(θ) as n → ∞ to an analytic function on a set of θ of the
form specified in the statement of Theorem A.

To do this, we go to §§2–4, and seek to apply the results there to the system F̄ : 1̄→ 1̄

with observable ḡ. By construction, F̄ is a reduced tower map. With β = α
1
2 η, Lemma 5.1

tells us that ḡ is Lipschitz with respect to the metric defined using β. To apply Theorem 4.3,
we need to check that the range of ḡ, ρ(ḡ), is at most ρ(g). This is not quite true in general,
but using (21) we have the following bounds. For x ∈ 1̄,

e−2|u|∞

( ∑
y:F̄n y=x

en min g

J F̄n(y)

)
≤

∑
y:F̄n y=x

eSn ḡ(y)

J F̄n(y)
≤ e2|u|∞

( ∑
y:F̄n y=x

en max g

J F̄n(y)

)
.

These estimates show that if γ1 is chosen as in §4.1, i.e. with θmaxρ(g) < γ1 < γ , then
we have P](θ ḡ) < P(θ ḡ) for |θ | ≤ θmax. Thus Theorem 4.3 applies to give the desired
analyticity properties of ē(θ).

It remains to check that µ̄(ḡ)= µ(g) and σ 2(ḡ)= σ 2(g). The first follows fromµ(g)=

µ̃(g̃)= µ̃(ḡ + u − u ◦ F̃)= µ̄(ḡ). The second follows from the fact that the distributions
of {(1/

√
n)Sn ḡ} with respect to µ̄ are asymptotically close to those of {(1/

√
n)Sn g̃} with

respect to µ̃; see (21). 2
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