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Abstract: We continue the study of a model for heat conduction [6] consisting of a
chain of non-linear oscillators coupled to two Hamiltonian heat reservoirs at different
temperatures. We establish existence of a Liapunov function for the chain dynamics and
use it to show exponentially fast convergence of the dynamics to a unique stationary
state. Ingredients of the proof are the reduction of the infinite dimensional dynamics to
a finite-dimensional stochastic process as well as a bound on the propagation of energy
in chains of anharmonic oscillators.

1. Introduction

In its present state, non-equilibrium statistical mechanics is lacking the firm theoretical
foundations that equilibrium statistical mechanics has. This is due, perhaps, to the ex-
tremely great variety of physical phenomena that non-equilibrium statistical mechanics
describes. We will concentrate here on a system which is maintained, by suitable forces,
in a state far from equilibrium. In such an idealization, the non-equilibrium phenomena
can be described by stationary non-equilibrium states (SNS), which are the analog of
canonical or microcanonical states of equilibrium.

Recently many works have been devoted to the rigorous study of SNS. Two main
streams are emerging. In the first approach,dipen systemsa system is driven out
of equilibrium by interacting with several reservoirs at different temperatures. In the
second approach, ftimermostated systepessystem is driven out of equilibrium by non-
Hamiltonian forces and constrained to a compact energy surface by Gaussian (or other)
thermostats [9, 24]. One should view both approaches as two different idealizations of the
same physical situation, in the same spirit as the equivalence of ensembles in equilibrium
statistical mechanics. But for the moment, the extent to which both approaches are
equivalent remains a largely open problem.

We consider here an open system, a model of heat conduction consisting of a finite-
dimensional classical Hamiltonian model, a one-dimensional finite lattice of anharmonic
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oscillators (referred to as the chain), coupled, at the boundaries only, to two reservoirs
of classical non-interacting phonons at positive and different temperatures. We believe
this model to be quite realistic, in particular it is completely Hamiltonian and non-linear.

This model goes back (in the linear case) to [8] (see also [23,26]). First rigorous
results for anharmonic models appear [6] and go further in [7,5]. Similar models in
classical and quantum mechanics have attracted attention in the last few years, mostly
for systems coupled to a single reservoir at zero or positive temperature, i.e., for systems
near thermal equilibrium (see e.g. [12,13, 3,15, 25]. In our case, with two reservoirs, no
Gibbs Ansatz is available and in general, even the egistencef a (non-equilibrium)
stationary state is a mathematically challenging question which requires a sulfficiently
deep understanding of the dynamics. For the model at hand, conditions é&xistence
of the SNS have been given in [6] and generalized in [5]. Tiguenessf the SNS as
well as the strict positivity oéntropy productiorfor heat flux) have been proved in [7].

The leading asymptotics of the invariant measure (for low temperatures) are studied in
[21] and shown to be described by a variational principle.

Under suitable assumptions on the chain interactions and its interactions with the
reservoirs, we establish the existence of a Liapunov function for the chain dynamics.
We then use this Liapunov function to establish that the relaxation to the SNS occurs
at anexponentiakate, and finally we prove that the system hasgpactral gap(using
probabilistic techniques developed by Meyn and Tweedie in [18]).

The Hamiltonian of the model has the form

H = Hp + Hs+ H,. Q)

The two reservoirs of free phonons are described by wave equatid®$ with the
Hamiltonian

Hp = H(pp, L) + H(pg, TR),
1
H(p,7) = E/dx(IV(p(xﬂz + (),

whereL andR stand for the “left” and “right” reservoirs, respectively. The Hamiltonian
describing the chain of lengghis given by

noo 2
p.
Hs(p.q) = Zl o T V@ qn).
=
n n—1
Vig) =Y UP@)+Y UPi — g,

i—1 i—1
where(p;, gi) € R? x R? are the coordinates and momenta of itfeparticle of the

chain. The phase space of the chaiRf¢". The interaction between the chain and the
reservoirs occurs at the boundaries only and is of dipole-type

Hy =ql'/dXV¢L(x)PL(x)+Q;1 . /dewR(x)pR(x),

wherep; and pg are coupling functions (“charge densities”) which we will assume
spherically symmetric.
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Our assumptions on the anharmonic lattice describeld iy, q) are the following:

e H1Growthatinfinity. The potential&/ (V) (x) andtU @ (x) areC*> and grow at infinity
like ||lx[I** and | x||*2: There exist constants;, D;, i = 1, 2 such that

Jlim 2700 ) = a® e, )
Ali—>moo AT U D (x) = a@Ok; ||x )% 2, (3)
27) 1-¢
[0°U ()|l < (Ci + DV (x))™ &, (4)
where| - || in Eq. (4) denotes some matrix-norm.

Moreover we will assume that
ko> ki > 2,

so that, for large|x|| the interaction potential/® is “stiffer” than the one-body
potentialU . It follows from Egs. (2) and (3) that the critical set Big), i.e., the
set{g : VV(g) = 0} is a compact set.

e H2 Non-degeneracy. The coupling potential between nearest neighlsg? is non-
degenerate in the following sense. kot R? andm = 1,2, - - -, letA”™ (x) : R —
R“" denote the linear maps given by

o d gm+1lpr(2)
m —
(A" V) gy, = D D g Y

We assume that for eaahe R? there existsng such that
Rank A (x), --- A" (x)) = d.

In particular this condition is satisfied, fary = 1, if U@ is strictly convex. I = 1, this

condition means that for any there existsig = mo(x) > 2suchthad™/aU @ (x) # 0.

In other words the potentidl @ has no flat piece or infinitely degenerate points.
The class of coupling functions, i € {L, R} we can allow is relatively restrictive:

o H3Rationality of thecoupling. Let p; denote the Fourier transform pf. We assume
that

1
k1 Hpi ()2 = —-.
’ Qi (k?)
whereQ;, i € {L, R} are polynomials with real coefficients and no roots on the real
axis. In particular, ifg is a root of Q;, then so are-kg, kg and—kg.

Under these conditions we have the following result (a more detailed and precise
statement will be given in the next section). LEtp, ¢) be an observable on the phase
space of the chain, for example any function with at most polynomial growth (no smooth-
ness is required). We denote@sr), ¢ (¢)) the solution of the Hamiltonian equation of
motion with Hamiltonian (1) and initial conditiong, ¢). Of course(p(t), ¢(¢)) de-
pends also on the variables of the reservoirs, though only through their initial conditions
(7L, oL, TR, r). We introduce the temperature by making the assumption that the
initial conditions of the reservoirs are distributed according to thermal equilibrium at
temperaturd’g andT; respectively and we denoté; r as the corresponding average.
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Theorem 1.1. Under ConditiondH1-H3, there is a measure(dp, dg) with a smooth
everywhere positive density such that the Law of Large Numbers holds:

1T

lim — F(p(t),q(t))dt:/de
T—-oo T Jo
for almost all initial conditions(r;, ¢, mg, @r) Of the reservoirs andor all initial
conditions(p, g) of the chain. Moreover there exist a constant- 1 and a function
C(p. q) with [ Cdv < oo such that

‘(F(p(t),q(t))nze—/de <Cp,pr’

for all initial conditions (p, ¢). That is, if we average over the initial conditions of the
reservoirs the convergenceeasponential.

Note that the ergodic properties stated in Theorem 1.1 hold not only-&most
every initial condition(p, ¢), but in fact for every(p, ¢).

The existence of a (unique) stationary state was proved for (exactly solvable) quadratic
harmonic potential¥ (¢) in [26], fork; = ko = 2 (i.e., for potential which are quadratic
at infinity) in [6, 7] and generalized to the cage> k1 > 2 in [5]. What is really new
here is that we prove that the convergence ocexp®nentially fasand we also weaken
slightly the conditions on the potential (in particular the dase- & is allowed and our
Condition H2 onl/® is weaker than the one used in [6,7,5]). Our methods also differ
notably from those used in [6,5]; in fact we reprove the existence of the SNS (with a
shorter and more constructive proof than in [6,5]) and, at the same time, we prove much
stronger ergodic properties.

We devote the rest of this section to a brief discussion of the Assumptions H1-H3.
Since the reservoirs are free phonon gases and since we make a statistical assumption on
the initial condition of the reservoirs, one can integrate out the variables of the reservoirs
yielding random integro-differential equations for the varialjjesy). Our Assumption
H3 of rational coupling is, in effect, a Markovian assumption: with such coupling one
can eliminate the memory terms by adding a finite number of auxiliary variables to
obtain a system of Markoviastochasticdifferential equations on the extended phase
space consisting of the dynamical variablgsq) together with the auxiliary variables.

The main (new) ingredient in our proof is then the construction labpunov function
for the system, which implies, using probabilistic methods developed in [1,20, 18], the
exponential convergence towards the stationary state.

To explain the construction of a Liapunov function, note that the dynamics of the chain
in the bulk is simply Hamiltonian, while at the boundaries the action of the reservoirs
results into two distinct forces. There adessipativeforces which correspond to the
fact that the energy of the chain dissipates into the reservoirs. This faraejgendent
of the temperature. On the other hand since the reservoirs are infinite and at positive
temperatures, they exert (random) forces at the boundaries of the chain and these forces
turn out to be proportional to the temperatures of the reservoirs.

The construction of the Liapunov function proceeds in two steps. In a first step we
neglect completely the random force, only dissipation acts. This corresponds to dynamics
at temperature zero, and one can prove that the energy decreases and that the system
relaxes to a (local) equilibrium of the Hamiltonidti(p, ¢). We establish theate at
which this relaxation takes place (at sufficiently high energies). In the second step we
consider the complete dynamics and we show that for energies which are much higher



Exponential Convergence to Non-Equilibrium Stationary States 309

than the temperatures of the reservoirs, the random force is essentially negligible with
respect to the dissipation. This means that except for (exponentially) rare excursions the
system spends most of its time in a compact neighborhood of the equilibrium points.
On the other hand, in this compact set, i.e., at energies of order of the temperatures of
the reservoirs, the dynamics is essentially determined by the fluctuations and to prove
exponential convergence to a SNS one has to show that the fluctuations are such that
every part of the phase space is visited by the dynamics. To summarize, we control the
dynamics at any temperature by the dynamics at zero temperature.

This allows one to understand the meaning of our assumptions on the pot&gtial
If we suppose that the energy has an infinite number of local minima tending to infinity,
the zero temperature (long-time) dynamiceds confined to a compact energy domain
and our argument fails. With regard to the condition> k7 in Condition H1 on the
exponents of the potentials, since the results of [27] and the rigorous proofs of [17,2],
it is known that stable (in the sense of Nekhoroshev) localized states exist in non-linear
lattices. Consider, for example, an infinite chain of oscillators (without reservoirs). Nu-
merically and in certain cases rigorously [17], one can show the existemeaihers
i.e., of solutions which are spatially (exponentially) localized and time-periodic. Al-
though the breathers occur both far> k» andk, > k1 they behave differently at high
energies. Fok1 > kp, the higher the energy, the more localized the breathers get (hard
breathers), while foko > k1, as the energy gets bigger the breathers become less and
less localized (soft breathers). In fact a key point of our analysis is to show that at high
energy, if the energy of the initial condition is localized away from the boundary, then
after a time of order one, the oscillators at the boundaries carry at least an energy of
order E%/*2 so that the chain system energy can relax into the reservoirs.

Although we believe that the existence of a SNS probably may not depend too much
on these localization phenomena, the rate of convergence to the SNS presumably does.
Our approach of controlling the dynamics by the zero-temperature dynamics may not
be adequate if Condition H1 fails to hold and so more refined estimates on the dynamics
are needed to show that these localized states might be in fact destroyed by the coupling
to the reservoirs.

As regards the organization of this paper, Sect. 2 presents the effective stochastic
differential equations for the chain, a discussion of allowable interactions between the
reservoirs and the chain and a concise statement, Theorem 2.1, of the exponential con-
vergence. In Sect. 3 we discuss the dissipative deterministic system (corresponding to
reservoirs at temperature 0), Theorem 3.3, and then we show the extent to which the
random paths follow the deterministic ones, Proposition 3.7. We give a lower bound on
the random energy dissipation, Corollary 3.8. We then conclude Sect. 3 by providing
the Liapunov function, Theorem 3.10, and bounds on the exponential hitting times on
(sufficiently large) compact sets, Theorem 3.11. In Sect. 4 we prove that the random
process has a smooth law and at most one ergodic component, improving slightly results
of [6,7,5]. Finally in Sect. 5 we conclude the proof of Theorem 2.1 by invoking results
of [18] on the ergodic theory of the Markov processes.

2. Effective Equations

We first give a precise description of the reservoirs and of their coupling to the system
and derive the stochastic equations which we will study. A free phonon gas is described
by a linear wave equation iR?, i.e., by the pair of real field$ (x) = (¢(x), 7(x)),
x € RY. We define the normig|| by [|¢]1? = [ dx(|Vé(x)[>+ |7 (x)|?) and denote-, -)
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the corresponding scalar product. The phase space of the reservoirs at finite energy is
the real Hilbert space of functions(x) such that the energbiz (¢) = [|¢||%/2 is finite
and the equations of motion are

: 0 1
b(t, %) = Lo, ), c:(_A 0).

In order to describe the coupling of the reservoir to the system, let us consider first
a single confined particle iR? with Hamiltonian Hs(p, ¢) = p%/2 + V(q). As the
Hamiltonian for the coupled system particle plus one single reservoir, we have

1
H(p,p,.q) = §||¢>||2—i-p2 +Vg) +gq- /dwi(x)P(x)
= Hp(¢) + Hs(p,q) +q - (¢, a),

wherep(x) is a real rotation invariant function and= («@, - .. , «@) is, in Fourier
space, given by

NG <—ik(i)ﬁ(k)/k2>

o = O .

We introduce the covariance mat¥/) (1) = (exp(L)a®, «?). A simple computa-
tion shows that

.. 1 .
cil) = 35,-]- /dk|,o(k)|2e’|k|’,

and we define a coupling constanby puttinga? = C(0) = 1 [ dk|p(k)|?. The
equations of motion of the coupled system are

qt) = p(),
. p) =-=VV(g®) — (¢, a),
¢, k) = L(p(t, k) +q@) - (k). (5)
With the change of variableg (k) = ¢ (k) + g - «(k), Egs. (5) become
q(@t) = p(0),
. pt) = =VVeii(q()) — (¥, a),
Yt k) = LY, k) + p() - a(k), (6)

whereVeit(q) = V(¢) — 212¢?/2. Integrating the last of Eqgs. (6) with initial condition
Yo(k) one finds

t
Yt k) = e oK) + / dse™1Da (k) - p(s),
0
and inserting into the second of Eqgs. (6) gives
q(1) = p(1),
t
pt) = =VVeri(q (1)) —/O dsC(t — 5)p(s) — (Yo. e “a). )
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If we now assume that, at time= 0, the reservoir is at temperatufg thenr is
distributed according to the Gaussian measure with covarigiice) and thert (1) =
(Y0, e £'a) is ad-dimensional stationary Gaussian process with mean 0 and covariance
TC(t — s). Note that the covariance itself appears in the deterministic memory term on
the r.h.s. of Eq. (7) (fluctuation-dissipation relation).

By Assumption H3 there is a polynomial(x) which is a real function ofu and
which has its roots in the lower half plane such that

y 00 1 .
Ci) = / du et

oo Ip@)?
Note that this is a Markovian assumption [4{r) is Markovian in the sense that we have
the identityp(—id/dt)&(t) = w(r), wherew(t) is a white noise, i.e., the joint motion
of d"&(t)/dt™ ,0 < m < degp — 1is a (Gaussian) Markov process. This assumption
together with the fluctuation-dissipation relation permits, by extending the phase space
with a finite number of variables, to rewrite the integro-differential equations (7) as a
Markov process. Note thg{r) can be written as [4]

£(1) = / k(t —t)dw(t), k() = f due™ p(u)~*
—00
with k(r) = 0 fort < 0. For example ifp(u) « iu + y thenC () = r2e~7ll,
Introducing the variable defined by
t

t
Ar(t) = / dsC(t —s)p(s) +f k(t —thdo(t'),
0

—00

we obtain from Eqgs. (7) the set of Markovian differential equations:

qt) = p(1),
p(t) = =VVeii(q(t)) — Ar(z),
dr(t) = (—yr@t) + Ap(0)dt + RTy)Y2dw(1). (8)

If p(u)  (iu +y +io)(iu+y —io), thenC(r) = A2cogot)e """ and introducing
the two auxiliary variables ands defined by

t
Ar(t) = A2/ dscoo (t — s))e "5 p(s)
0

t

+ (Tx2y)1/2/ coSa (r — s)e " Sldw(s),

—00

t
As(t) = AZ/ disin(o (t — $))e” "5 p(s)
0

t
+ (szy)l/zf dtsin(o (t — s))e V" Sldw(s),

—0o0

we obtain then the set of Markovian differential equations:

q(t) = p(),

p(t) = =VVeit(q(1)) — Ar (1),
dr(t) = (=yr(t) — as(t) + Ap0)dt + Ty)Y2dw (1),

s(t) = —ys(t) +or(). (9)
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Obviously other similar sets of equations can be derived for an arbitrary polynomial
pu).

Another coupling which we could easily handle with our methods occurs in the
following limiting case, see [8]. Formally one wants to tak&” (r) = 125(r). Note
that this corresponds to a coupling function wiithk)|2 = 1 in which case.? = co.
A possible limiting procedure consists in taking a sequence of covariances tending to a
delta function and at the same time suitably rescaling the coupling (see [8]). In this case
one obtains the Langevin equations which serve as the commonly-used model system
with reservoir in the physics literature,

q@t) = p@),
dp(t) = (=VVeit (q(t)) — n?p(®))dt + (2Tn*)Y2dw(1). (10)

The derivation of the effective equations for the chain is a straightforward gener-
alization of the above computations. Our techniques apply equally well to any of the
couplings above. However, for simplicity, we will only consider the case where the cou-
plings to both reservoirs satisfy; (k)|> o« k? + y2,i = L, R. For notational simplicity
we setly = Tp andT,, = Tg, we denote andr, as the two auxiliary variables and we
will use the notations = (r1, r,), andx = (p, ¢, r) € X = R2@+D |n this case we
obtain the set of Markovian stochastic differential equations given by

g1 = p1,
P1 = —Vy, Vett(q) — Ary,
dr1 = (—yr1+ Ap1dt + 2T1y)dwy,

4j = Dpj, j=2...,n—1,

pj=—Vg;Veii(@), j=2,....,n—1

4n = Dn»

Pn = —an Vett (@) — Ary,
dry = (—yrn + App)dt + RT,y)Y?dw,, (11)

whereVett(q) = V(q) — 212¢2/2 — 22g?2/2. From now on, for notational simplicity we
will suppress the index “eff” and consid&r = Ve as our potential energy.

It will be useful to introduce the following notation. We define the linear maps
R — R% py A(x1,...,x,) = (Ax1,Ax,) andT : R¥ — R% by T'(x,y) =
(T1x, T, y). With this we can rewrite Egs. (11) in the compact form

q=rp,
p=-V,V—A"r,
dr = (—yr + Ap)dt + 2y T)Y?dw. (12)

The solutionx(¢) of Egs. (12) is a Markov process. We dendteas the associated
semigroup,

T'f(x) = Ex[f(x(D)],
with generator

L=y (V;TV: —rV,) + (ApV, —rAV,) + (pVy — (V4 V(@) V)) . (13)
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and P, (x, dy) as the transition probability of the Markov procegs). There is a natural
energy function which is associated to Eqg. (12), given by

2
,
G(p’qyr) = E+H(p79)~
A straightforward computation shows that in the special dase T, = T,
7-1,=G(p.q.n)/T
is an invariant measure for the Markov process.

Given a functionW : X — R satisfyingW > 1 we consider the following weighted
total variation norn| - ||w given by

(14)

Il = sup 'f fdr|.

[fl=w

for any (signed) measure. We introduce normg- || and Banach spacés®(X) given
by

Ifllo = Suplgc(;(,z)l, LX) ={f:1Ifllo < oo}, (15)

and write|| K || for the norm of an operatat : Ly°(X) — Lg°(X).
Theorem 1.1 is a direct consequence of the following result:

Theorem 2.1. Assume that Conditiort$1 andH2 hold. The Markov processt) which
solves (12) has smooth transition probability densitiegyx, dy) = p;(x, y)dy, with
pi(x,y) € C*((0,00) x X x X). The Markov process(z) has a unique invariant
measureu, and u has aC*> everywhere positive density. For afiywith 0 < 6 <
(max{T1, T,,}) 1 there exist constants= r(#) > 1andR = R(0) < oo such that

1P (x, ) — pllexpoc) < Rr~" exp(8G(x)), (16)
for all x € X, (exponential convergence to the SNS) or equivalently
IT" = pllo < R,

(spectral gap). Furthermore for all functiong, g with £2, g2 € L¥(X)andallr >0

we have
'ng’fdu—/fdu/gdu

(exponential decay of correlations in the SNS).

_ 1/2 1/2
o P e i

The convergence in the weighted variation norm, Eq. (16), implies that the Law of
Large Numbers holds [10, 18].

Corollary 2.2. Under Assumptiornid1 andH2 x (¢) satisfies the Law of Large Numbers:
For all initial conditionsx € X and all f € LY(X, d ),

: 1 (7
T'@(}()?/O f(X(t))dIZ/fdlt

almost surely.
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The convergence of the transition probabilities as given in (16) is shown in [18] to
follow from the following properties:

e Strong Feller property. The diffusion process is strong Feller, i.e., the semigrbup
maps bounded measurable functions into continuous functions.

This is a consequence of the hypoellipticity of the diffusiqm), which follows from
Condition H2, see Sect. 4.

e Small-time open set accessibility. For allt > 0, allx € X and all open sefA C X
we haveP;(x, A) > 0.

This means that the Markov process is “strongly aperiodic”. In particular, combined with
the strong Feller property it implies uniqueness of the invariant measure. This property
is discussed in Sect. 4 using the support theorem of [28] and explicit computations. This
generalizes (slightly) the result obtained in [7].

e Liapunov function and hitting times. Fix s > O arbitrary. SeWW = exp(#G) and
choosed with 0 < 6 < (max{T1, T,})~L. ThenW is a Liapunov function for the
Markov chain{x(ns)},>0: W > 1, W has compact level sets and there is a compact
setU, (depending or and®) and constants < 1 andb < oo, (both depending on
U, s and®) such that

T°W(x) <«W(x)+ bly(x), a7

wherel;; denotes the indicator function of the dét In addition the constant in
Eq. (17) can be chosen arbitrarily small by choosing thé/sstifficiently large.

The existence of a Liapunov function is the main technical result of this paper (see
Sect. 3) and the Condition H1 is crucial to obtain it. Note that the time derivative of the
(averaged) energy

d
EEX[G(X(t))] = yE«[Tr(T) — rP(v)],
is not necessarily negative. But it is the case, as follows from our analysis below that,
fort > 0,E<[G(x(1)) — G(x)] < —cG(x)%*2 for x sufficiently large.

A nice interpretation of a Liapunov bound of the form (17) is in terms of hitting times.
Let tyy denote the first time the diffusion(z) hits the setU; then Eq. (17) implies that
7y is exponentially bounded. We will show that for amy- 0, no matter how largewe
can find a compact sét = U (a) such that

E [e?"V] < oo,

forallx € X. So except for exponentially rare excursions the Markov pracgsdives
on the compact sdt. Combined with the fact that the process has a smooth law, this
provides an intuitive picture of the exponential convergence result of Theorem 2.1.
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3. Liapunov Function and Hitting Times

3.1. Scaling and deterministic energy dissipatidile first consider the question of
energy dissipation for the following deterministic equations:

q=r,
p=-V4V(g) — A*r,
F=—yr+ Ap, (18)

obtained from Eq. (12) by settirigy = 7,, = 0, corresponding to an initial condition of
the reservoirs with energy 0. A simple computation shows that the ed&tgyq, r) is
non-increasing along the flowz) = (p(¢), q(¢), r(¢)) given by Eqg. (18):

d 2
7,0, q@),r0) =—yrt@) = 0.

We now show by a scaling argument that for any initial condition with sufficiently high
energy, after a small time, a substantial amount of energy is dissipated.

At high energy, the two-body interactidii® in the potential dominates the term
UW sinceks > k1 and so for an initial condition with energy(x) = E, the natural
time scale — essentially the period of a single one-dimensional oscillator in the potential
lg|*2 —is EY/%2=1/2 e scale a solution of Eq. (18) with initial energyas follows

11
By = E-3p(E="71),

l_
t),

Rty = E‘ér(E%‘%;). (19)

Nl

1
G = E Tzq(ER

Accordingly the energy scales 65 p, ¢, r) = EGg(p, G, 7), where

~2 ~2
ir p c o~
> + =+ Ve(q),

- 2_
Ge(p.q,r) =E* 5

n n—1
Ve@ =Y U0PG)+ > 0PG —Git),
i=1 i=1
- L1
U9 = ETY0V(ERx), i=12
The equations of motion for the rescaled variables are
= p,
~ - l—l "
=—V;Ve(@) — E*2 “A'r,

e Qe

1_1

e

By Assumption H1, a¥ — oo the rescaled energy becomes
Goo(p,G,F) = lim Ge(p,q,F7)
E—o0
P2/2 + Voo (§) ki=ky>20rky > k1 > 2

F2/24 p?/2+ Voo(@) ki =ky=2
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where
Y aDgilke + 3 a@ g — Giral*2 k1 = ko > 2
> a@ |G — Gival*? kp > k1> 2

The equations of motion scale in this limit to

Voo(é) =

ESY
Il
<

—V; Voo (@),
Ap, (21)

p
F

in the casd, > 2, while they scale to

—V; Vo (§) — A*r,
—yr+ Ap, (22)

B}
I
ATl

P
F

in the case& = ky = 2.

Remark 3.1The scaling for the andg is natural due to the Hamiltonian nature of the
problem, but the scaling efhas a certain amount of arbitrariness. Siaces quadratic

in r, it might appear natural to scatewith a factorE~1/2 instead ofE ~1/2 as we do.
On the other hand, the very definition:oés an integral op suggests thatshould scale
asq, as we have chosen.

Remark 3.2Had we supposed, instead of H1, that> k2, then the natural time scale

at high energy would b&1/¥1-1/2_Scaling the variables (witky replaced by; would

yield the limiting Hamiltoniarp?/2+ 5" a™® | g; |*1, i.e., the Hamiltonian of uncoupled
oscillators. So in this case, at high energy, essentially no energy is transmitted through
the chain. While this does not necessarily preclude the existence of an invariant measure,
we expect in this case the convergence to a SNS to be much slower. In any case even the
existence of the SNS in this case remains an open problem.

Theorem 3.3. Givent > 0O fixed there are constants> 0 and Eg < oo such that for
anyx with G(x) = E > Eg and any solutiorx (z) of Eq. (18) withx (0) = x we have
the estimate, fory = EY/*k2=1/2¢

1

Gx(tp)) — E < —cE%2 2. (23)

Remark 3.41n view of Eq. (23), this shows thatis at least typicallyo (EY/*2) on the
time interval[0, EY/k2=1/2¢],

Proof. Given a solution of Eq. (18) with initial condition of energyG (x) = E, we
use the scaling given by Eg. (19) and we obtain

g 3 1 T
G(x(tg)) — E = —y/ dir?(r) = —yEE‘?/ diF?(1), (24)
0 0
vyheref(t) is the solution of Eqg. (20) with initial conditioR of (rescaled) energy
Geg(x) = 1. By~Assumption H2 we may choogéo so large that forE > Eg the
critical points of G g are contained in, say, the et < 1/2}.
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For a fixedE andx with G(x) = E, we show that there is a constantg > 0 such
that

f ' diF?(t) > ¢y k. (25)
0

The proofis by contradiction, cf. [21]. Suppose tﬁgatitfz(t) = 0,thenwe havé(r) =
0, forallz € [0, T]. From the third equation in (20) we conclude tipatr) = p,,(t) =0
forall ¢ € [0, =], and so from the first equation in (20) we see #dt) andg, (¢) are
constant ori0, 7]. The second equation in (20) gives then

0=p1(t) = V5 V(@G(0) = —V5 0P @Gr(0) — V5, 0P @Ga(t) — G2(1)),

together with a similar equation fgi,. By our Assumption H1 the mapU® has a
right inverseg locally bounded and measurable and thus we obtain

Go(t) = qa(t) — g(U P (Gr(0)).

Sinceg is constant, this implies thdk is also constant of0, z]. Similarly we see
thatg,—1 is constant ori0, t]. Using again the first equation in (20) we obtain now
p2(t) = py—1(t) = 0forallr € [0, t]. Inductively one concludes that= 0 implies
p = 0andV;V = 0 and thus the initial conditioi is a critical point ofGg. This
contradicts our assumption and Eq. (25) follows.

Now for given E, the energy surfacé ; is compact. Using the continuity of the
solutions of O.D.E. with respect to initial conditions we conclude that there is a constant
ce > 0 such that

T
inf /dtfz(t)zcg.
fe(Gr=1Jo

Finally we investigate the dependence Brof cx. We note that forE = oo, Goo
has a well-defined limit given by Eq. (21) and the rescaled equations of motion, in the
limit E — oo, are given by Egs. (21) in the cakg > 2 and by Eqg. (22) in the case
ki = ko = 2. Except in the cask; = k» = 2 the energy surfacBG,, = 1} is not
compact. However, in the case = k» > 2, the HamiltoniarG », and the equation of
motion are invariant under the translatior> r + a, for anya € R%. And in the case
ko > k1 > 2 the HamiltonianG o, and the equation of motion are invariant under the
translation: — r +a g — g + b, for anya € R% andb € R?". The quotient of the
energy surfacéG., = 1} by these translations, is compact.

Note that for a giveti € {Go, = 1} a similar argument as above show %ﬁtdt(ﬁr
a)? > 0, for anya > 0 and since this integral clearly goesstoasa — oo there exists
a constants, > 0 such that

T
inf / F2()dt > coo.
7e{Goo=1} JO
Using again that the solution of O.D.E. depends smoothly on its parameters, we obtain
T
inf inf / dti?(t) > c.
E>Eo xe{Gg=1} JO

This estimate, together with Eq. (24) gives the conclusion of Theorem &.3.
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3.2. Approximate deterministic behavior of random paththis section we show that at
sufficiently high energies, the overwhelming majority of the random paihs= x (¢, »)

solving Egs. (12) follows very closely the deterministic paths solving Egs. (18). As

a consequence, for most random paths the same amount of energy is dissipated into the
reservoirs as for the corresponding deterministic ones. We need the follavgrigri
“no-runaway” bound on the growth @f (x(z)).

Lemma35. Letd < (max(Ti, T,}) L. ThenE,[exp(0G(x(1)))] is well-defined and
satisfies the bound

Ex[exp(@G (x(1))] < exp(y Tr(T)61) exp(0 G (x)). (26)
Moreover for anyc with G(x) = E and anys > 0 we have the estimate
P, { sup G(x(s)) = (L+8)E ; <exp(yTr(T)0t) exp(—340E). 27)
O<s<t

Remark 3.6The lemma shows that fat sufficiently large, with very high probability,
G(x(t)) = O(E) if G(x) = E. The assumption ofs here arises naturally in the proof,
where we needl — 6T) > 0, cf. Eq. (28).

Proof. For# < (max{Ti, T,})~* we have the bound (the generafois given by Eq.
(13)

Lexp(0G(x)) = y0 exp(0G (x)) (Tr(T) —r(1—6T)r)
= yOTr(T) exp(6 G (x)), (28)

so that for the functioV (¢, x) = exp(—y0Tr(T)t) exp(0 G (x)) we have the inequality
(0; + LYW (t,x) < 0. We denoterg as the exit time from the s¢G(x) < R}, i.e.,
og = inf{t > 0, G(x(¢)) > R}. If the initial conditionx satisfiesG(x) = E < R, we
denotexg (7) the process which is stopped when it eXitix) < R}, i.e.,xg(t) = x(¢)
fort < og andxz(t) = x(op) fort > or. We setog(t) = min{og, t} and applying
Ito’s formula with stopping time to the functioW (¢, x) we obtain

E. [exp(0G (x(0r(1)))) exp(—yTr(T)or(1))] — exp(0G(x)) <O,

thus

Ex [exp(0G (x(or(1)))] < exp(yoTr(T)1) exp(6G (x)). (29)
Since

E. [exp(0G (x(or(1))))] = E. [eXxp(0G (x(0r (1)) Log<]

= Py{or < 1}exp(@R),
we obtain the bound
Pilor <1} = exp(y0Tr(T)t) exp(0(E — R)).

As a consequende,{og < t} - 0 asR — oo and thus the Markov processt) is
non-explosive.
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It follows that G(xz(#)) — G(x(¢)) almost surely aR — oo, so by the Fatou
lemma we obtain from Eq. (29) the bound Eq. (26). The bound Eg. (27) is obtained by
noting that the left side is equal to

PiloEats) <t} <exp(yoTr(T)t) exp(—80E),

and this concludes the proof of Lemma 3.5.

We have the following “tracking” estimates to the effect that the random path closely
follows the deterministic one at least up to timefor a set of paths which have nearly
full measure. We setx (¢) = x(¢, w) — xdet(t) = (Ar(t), Ap(t), Aq(t)) with bothx (¢)
andxget(t) having initial conditionx. Let

Sx,E,t)={x(-);G(x)=E and supG(x(s)) < 2E}.

O<s<t
By Lemma 3.5,P{S(x, E, )} = 1 — exp(y8Tr(T)t — OF).

Proposition 3.7. There exist constant8y < oo andc > 0such that for paths (¢, w) €
S(x, E,tg) withtg = EYk~Y27 and E > Eg we have

Z_1
lAg @)l E*2
sup | AP | ¢ sup IV2yToOI | gi-3 |- (30)
ost=ie \ | Ar ()] O<r<tp 1

Proof. We write differential equations fotx (¢) again assuming both the random and
deterministic paths start at the same painwith energyG(x) = E. These equations
can be written in the somewhat symbolic form:

dAg = Apdt,

dAp = (O(EH/"Z)Aq - A*Ar) dt,

dAr = (—yAr + AAp)dt + /2y Tdw. (32)
The O (E'~?/%2) coefficient refers to the difference between force®,, V() evalu-
ated atx (1) andxget(t); we have thatG(x(1)) < 2E, so thatV,V(q) — V,V (qdet) =
0(3%2V)Aq = O(EY2/*k2)Aq. For later purposes we pick a constahso large that
9%V ()
9qi0q;

_2
o=px) = JEY G > sup sup
i aVIQ=2E)}

for all sufficiently largeE.
In order to estimate the solutions of Eqgs. (31), we consider the83natrix which
bounds the coefficients in this system, and which is given by

010
M=|pOx]. (32)
Oxry
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We have the following estimate on powers &f: For AX© = (0,0, 1)7, we set
AX™ = M"AXO. Fora = max1,y + A), we obtainAX® < «(0,1, 1)7,
AXP < 21,1, 17, and, form > 3,

m—2

(m) 2

u p

AX™ = (v(m)) <aM2"n2 pnlil ,
ot

w(m) m—2

2

where the inequalities are componentwise. From this we obtain the bound

0 %(at)ZeﬁZat
Mo < ateVPat . (33)
1 1+ at + %(at)zeﬁz"”

If0 <t < tp we have,/pt < V¢'. Then the exponentials in the above equation are

bounded, and
0 1/p
Mo <e|lyyp . (34)
1 1
for some constant.

Returning now to the original differential equation system Eq. (31), we write this
equation in the usual integral equation form:

Aq(t) t Ap(s)
Ap(@) | = / —VyV(q(s, w)ds + V4V (qdet(s)) — A*Ar(s)
Ar (1) 0 —yAr(s) + AAp(s)

0
+ ( 0 ) . (35)
J2yTw(t)

From this we obtain the bound

1A¢0)] . (18q0] 0
12l | < / v 1apa) las+[ o |,
ar@l ) o \jaro] Omax

whereM is the matrix given by Eq. (32), anthax = SUR <, [lv/2y Tw(?)]. Note that
the solution of the integral equation

t 0
AX() = / dsMAX(s) + 0 s (36)
0 Wmax

is AX(t) = exp(tM)(0,0, wmay)’. We can solve both Eq. (35) and Eq. (36) by
iteration. Let Ax,,(s), AX,(s) denote the respective™ iterates (withAxg(s) =
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(0,0, /2yTw(s))T, and AXo(s) = (0,0, wman’, 0 < s < tg). The AX,,’s are
monotone increasing im. Then it is easy to see that

| Agm ()|l
AP DI | = AXp (1) = AX (1),

| Arm (]|

for each iterate. By Eqs. (33), (34), and the definitionoothe conclusion Eg. (30)
follows. O

As a consequence of Theorem 3.3 and Proposition 3.7 we obtain

Corollary 3.8. Let Q(E) = E“ with @ < 1/k2 and assume thai(¢) is such that
SURy</ <1, IV To ()| < Q(E) andx(-, w) € S(x, E, tg). Then there are constants
¢ > 0and Eg < oo such that all pathse (¢, w) with initial condition x with G(x) =

E > Eg satisfy the bound

3

lE
/ rz(s)ds >cE*R
0

_1
2

37)

Remark 3.9For large energye, pathsnot satisfying the hypotheses of the corollary
have measure bounded by

P.{ sup IV2yToll > QE)} +P{S(x, E, tg)}

O<s<tg
< Lex QE)” +exp(B(yTH(T)ts — E))
=5 p by Trad 2 p@(y E
Q(E)? )
<aexp| -———, 38
<a p( el (38)

wherea andb are constants which depend only on the dimensian éfere we have used
the reflection principle to estimate the first probability and Eq. (27) and the definition
of S to estimate the second probability. FBrlarge enough, the second term is small
relative to the first.

Proof. It is convenient to introduce thé&2-norm on functions on0, ¢], || f|l; =

1/2
(fé ||f(s)||2ds) . By Theorem 3.3, there are constafiisandc such that fol£ > E1
the deterministic pathsyet(s) satisfy the bound

e 3_1

2 _ 2 2

Irdetlly, = / réel(s)ds > c1ER " 2,
0

By Proposition 3.7, there are constaiits andc, such thatj Ar(s)|| < c2R(E), uni-
formly ins, 0 < s < tg, and uniformly inx with G(x) > E2. So we have

5 1\1/2 L \12
I7llzg = lrdetlsy — ATl = (ClEkz 2) — 2Q(E) (E"Z 2) :

But the last term i) (E2~1/4+1/22) which is of lower order than the first sinae<
1/k», so the corollary follows, for an appropriate constarand E sufficiently large.
O
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3.3. Liapunov function and exponential hitting timé&#ith the estimates we prove now
our main technical result.

Theorem 3.10. Lets > Oandf < 6g = (max{T1, T,,}) 1. Then there are a compact set
U =U(s,0)and constants =« (U, s,0) < landL = L(U, s, 8) < oo such that

T exp(0G)(x) < kexp(@G)(x) + L1y (x), (39)

wherely is the indicator function of the sét. The constark can be made arbitrarily
small by choosind/ large enough.

Proof. For any compact set U and for any7* exp(0G)(x) is a bounded function,
uniformly on[0, ¢]. So, in order to prove Eq. (39), we only have to prove that there exist
a compact selV and« < 1 such that

sup E, [exp(0(G(x(s)) — G(x))] <« < 1.

xeUC

Using Ito’'s Formula to comput& (x(s)) — G(x) in terms of a stochastic integral we
obtain

E. [exp(0(G (x(s)) — G(x)))]
=exp@yTr(T)s)E, |:exp<—9 /S yrdt +6 /S ,/2)/Trda)(t)):| . (40)
0 0

For anyd < 6p, we choos@ > 1suchthatp < 6p. Using Holder inequality we obtain,
E, [exp(—e f yridt + 6 / ,/zyTrdw(t)>]
0 0
K 5 p92 K 2
=E,|exp| -6 | yrodt+ = (v2yTr)“dt
0 0
92 s s
X exp<—p7/ (\/2yTr)2dt +9f w/2)/Trda)(t)>i|
0 0
K 92 s 1/q
<E, [exp(—qef yrédt + %/ (\/ZVTF)Zdt)i|
0 0
p292 s 2 s 1/p
x Ey [exp(—T/ (vV2yTr)“de +9p/ \/2yTrda)(t)>i|
0 0
K 92 K 1/q
=E, [exp(—qG/ diyr® + %/ dt(\/ZyTr)2>i|
0 0

Here, in the nextto last line, we have used the fact that the second factor is the expectation
of a martingale (the integrand is non-anticipating) with expectation 1. Finally we obtain
the bound

E. [exp(0(G(x(5)) — G(x)))]

K 1/q
< exp@yTr(T)s)E, [exp(—qe(l — pGTmax)/ dtyr2>i| . (42)
0
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In order to proceed we need to distinguish two cases according to whether-3
1/2 > 0or 3/k2 —1/2 < 0 (see Corollary 3.8). In the first case we it be defined by
s = Eé/szl/zr. ForE > Egwe break the expectation Eq. (41) into two parts according
to whether the paths satisfy the hypotheses of Corollary 3.8 or not. For the first part we
use Corollary 3.8 and tha§ r2(s)ds > [,* r?(s) = cE3/*2=%/2; for the second part we
use estimate (38) in Remark 3.9 on the probability of unlikely paths together with the
fact that the exponential under the expectation in Eq. (41) is bounded by 1. We obtain
for all x with G(x) = E > Eg the bound

Ex [eXp(0(G(x(s)) — G(x))] < exp(dy Tr(T)ig,)

31 Q(E)20\ 1
X |:exp<—q9(1— pQTm;,DOCE"?é %> +a exp(—%)} . (42)
VIE

Choosing the sd/ = {x; G(x) < E1} with E1 large enough we can make the term in
Eq. (42) as small as we want.

If 3/k; — 1/2 < 0, for a givens and a givenx with G(x) = E we split the time
interval[0, s] into EY/2~1/%2 pieced;, t; 1], each one of size of ordér/ *2=1/25. For
the “good” paths, i.e., for the pathgs) which satisfy the hypotheses of Corollary 3.8
on each time intervallt;, t;11], the tracking estimates of Proposition 3.7 imply that
G(x()) = O(E)forzineachinterval. Applying Corollary 3.8 and using thatc (1)) =
O(E) we conclude thafy 2(s)ds is at least of ordef 3/ k2=1/2 x g1/2-1/ke — p2/kz,
The probability of the remaining paths can be estimated, using Eq. (38), not to exceed

QZ
1-— (1 —a exp(—L’ﬁo))
bytg
The remainder of the argument is essentially as above, Eq. (42) and this concludes the
proof of Theorem 3.10. O

11
E? ko

The existence of the Liapunov function given by Eq. (39) can be interpreted in terms
of hitting times. Letry be the time for the diffusion (¢) to hit the setU.

Theorem 3.11. Assume thaf < (max{Ty, T,,}) . For any (arbitrarily large)a > 0
there exists a constattly = Eg(a) > Osuch thatfolU = {x: G(x) < Eg} andx € U®
we have

Ev[e“] < e” + (" — 1) exp(8(G(x) — Ep)). (43)
Proof. Lets = 1 andd < 6p be given, we set = exp(—a)/2 and takel to be the set

given by Theorem 3.10. LeX,, be the Markov chain defined by, = x(n) and Ny be
the least integer such thaty, € U. Then

E.[e“™] < E [eNV], (44)

so that to estimate the exponential hitting time, it suffices to estimate the exponential
“step number”.
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Using Chernov’s inequality we obtain

PNy > n} = Py{= > (G(X;) — G(Xj-1) < G(x) — Eo, X; € U}
j=1

n
< HOW-EIE | [T MO0 ) ¢ ye
/=1

[(n—1
eQ(G(X)—EO) E, l_[ eG(G(Xj)—G(Xj,l))

IA

=1
x Ex, [ CHn-00-0] x; € U°

< HGD=E0) gup E, [/ G(XD-G))

yeU¢
n—1
x Eq | ] #Con-005-0) x; € e
j=1
n
< ... < GW-Eo) (Sup Ey[ee(G(Xl)—G(y))]> .
yeU¢

By Theorem 3.10 we have

SUp E, [/ CXD-GON] _ .
xeU¢

and therefore we have geometric decayRyf, = P, {Ny > n}inn, P., < «"
exp(0G(x) — Eg). Summing by parts we obtain

o0
E.[e*M] = Ze“”Px{fU = n}

n=1
M
- Mlinoo |:Z P>n(ea(n+l) — ey 4 e Pog— et P>Mi| ,
n=1

which, together with Eq. (44) gives Eq. (43)0

4. Accessibility and Strong Feller Property

In this section we prove that the Markov process is strong Feller and moreover we show
that it is strongly aperiodic in the sense that forra# 0, all x € X and all open sets

A C X we haveP;(x, A) > 0. Both results imply immediately thatz) has at most one
invariant measure: Since the process is strong Feller the invariant measure (if it exists) has
a smooth density which is everywhere positive by the property of aperiodicity. Obviously
no two different such measures can exist.
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The strong Feller property is an immediate consequence of the hypoelliptic properties
of the generatoL of the diffusion. The result is an easy consequence of the estimates
in [7,5], since there much stronger global hypoelliptic estimates are proven (though
under stronger conditions on the potentta’?). We present here the argument for
completeness.

The generator of the Markov procesg) can be written in the form

2d
L= X2+ Xo.
i=1

If the Lie algebra generated by the set of commutators

X2y, (X, XY (X X1 X} o - (45)
has rank diniX) at every pointx € X, then the Markov process hasC& law. In
particular it is strong Feller. This is a consequence of the Hormander Theorem [11, 16]

or it can be proved directly using Malliavin Calculus developed by Malliavin, Bismut,
Stroock and others (see e.g. [19]).

Proposition 4.1. If H2 holds then the generatdr given by Eq. (13) satisfies the rank
condition (45).

Proof. This is a straightforward computation. The vector fiellsi = 1, - - - 2d give
d¢p,i=1n,j=1---,d. The commutators

[3r1j>, Xo] =v8,0 = A G,
[[ar{”’ Xo] : Xo] = Vzarin — YA, = A3 i,
yield the vector fieldﬁpu) andaq(,v). Further
1 1

2172

d
82V 0
[aqi‘”’ Xo] Z 3 <,>8 0 (61)3 o + Z (q1— 612)3 -

d (jo
=1 %\ 1=1 %¢\" %

If U is strictly convex, this yield@pm while in the general case we need to consider
2
further the commutators

d 277(2)
U
G| s |0 e ) (@1 —q2)0 o
|:qu1 |: |:q1! ! ;3(15/”1)3‘1;1) P2
d
=23 ( 91— 42)9,0.-

Condition H3 means that we can wr&em as alinear combination of these commutators

for everyx € X. The other basis elements of the tangent space are obtained inductively
following the same procedure.
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We now prove the strong aperiodicity of the procegs. This is based on the support
theorem of Stroock and Varadhan [28]. The support of the diffusion progessvith
initial conditionx on the time interval0, ¢], is by definition the smallest closed subset
Sy.r of C([0, ¢]) such thaP, [x(r, w) € Sy ;] = 1. The support can be studied using the
associated control system, i.e., the ordinary differential equation where the white noise
a(1) is replaced by a contral(r) € L1([0, T']): For our problem we have the control
system

q=p,
p=—V,V+A*r,
i = (=yr+Ap)+u, (46)

and we denote, (r) the solution of this control system with initial conditionand
control u. The support theorem asserts that the support of the diffuSjgnis the
closure of the sefx,;u € L1([0,])}. As a consequence supjix, -), the support

of the transition probabilities is equal to the closure of the set of accessible points
{y;3u € L1([0, 1]) st. x, () = y).

Proposition 4.2. If ConditionH2 holds then for alk > 0, all x € X,
suppp; (x, 1) = X. 47

Proof. This result is proved in [7] under the additional condition that the interaction
potential/ @ is strictly convex, in particulaV U @ is a diffeomorphism. Our Condi-
tion H2 implies thav U @ is surjective. We can choose an invegseR¢ — R? which

is locally bounded. From this point the proof proceeds exactly as in Theorem 3.2 of [7]
and we will not repeat it here.o

5. Proof of Theorem 2.1

The proof of Theorem 2.1 is a consequence of the theory linking the ergodic properties
of the Markov process with existence of Liapunov functions, a theory which has been
developed over the past twenty years. The proof of these ergodic properties relies on
the intuition that the compact sét together with a Liapunov function plays much
the same role as an atom in, say, a countable state space Markov chain. The technical
device to implement this idea was invented in [1,20], and is calfgidking. It consists
in constructing a new Markov chain with state spagJ X1, whereX; are two copies
of the original state spack. The new chain possesses an atom and has a projection
which is the original chain. The ergodic properties of a chain with an atom are then
analyzed by means oénewal theoryand acoupling argumenis applied to the return
times to the atom. A complete account of this theory for a discrete time Markov process
is developed in the book of Meyn and Tweedie [18], from which the result needed here
is taken (Chapter 15).

Foragivers > 0 consider the discrete time Markov chain = x(js) with transition
probabilitiesP (x, dy) = P(x, dy) and semigroug?/ = T/*. By the results of Sect. 4,
the Markov chain is strongly aperiodic, i.&.(x, A) > 0 for any open set and for any
x and it is strong Feller. The exponential bound on the hitting time given in Theorem
3.11 implies in particular thd, [ty ] is finite for allx € X and thus we have an invariant
measureu (for hypoelliptic diffusions this is established in [14]). By aperiodicity and
the strong Feller property, this invariant measure is unique.
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The following theorem is proved in [18]:

Theorem 5.1. If the Markov chain{X ;} is strong Feller and strongly aperiodic and if
there are a functioW > 1, a compact set/, and constants < 1andL < oo such
that

PW(x) <kW(x)+ Lly(x), (48)

then there exist constants> 1 and R < oo such that, for any x,
Y P, ) = pllw < RW (),
n
where the weighted variation norfn | w is defined in Eq. (14).

By Theorem 3.10 the assumptions of Theorem 5.1 are satisfieddvithexp(6 G)
andd < (max{Ti, T,})~ 1. For the semigroud@ we note that we have the apriori
estimateT’ exp@G)(x) < exp(ydTr(T)t) exp(0G)(x), cf. Lemma 3.5, which shows
that T’ is a bounded operator dif°(X) defined in Eq. (15). Setting= ns 4 u with
0 < u < s, and using the invariance of one obtains

IT" = wllg < IT"™ — plleIT* g < RF, (49)

for someF > 1 andR < oo or equivalently

o0
/0 FIIP(x, ) — mllexpoc) < Rexp(OG(x)).

As a consequence, for any> 0, T* has 1 as a simple eigenvalue and the rest of the
spectrum is contained in a disk of radips< 1. The exponential decay of correlations
in the stationary states follows from this.

Corollary 5.2. There exist constant®® < oo andr > 1 such that for allf, g with f2,
g% € L(X), we have

‘ [ r1san~ [ fau [ g

Proof. If f2 e L$°, we have|f(x)| < ||f2||;/2 expi@G(x)/2) and similarly forg.
Further if Eq. (49) holds withV = exp(6G) it also holds for exgd G/2), and thus for
someR; < oo andr; > 1 we have

1/2 1/2 _—
<RI 2182155

‘T’g(x) - /gdu

_ 1/2 0G(x)
< erlt||g2||9/ eXp(T>.

Therefore we obtain

' [ rrsan— [ rau [ g

S/If(x)l ‘Ttg(X)—/gdu‘dM

1/2

- ( / exp(@G)du) Rurf 2152622



328 L. Rey-Bellet, L. E. Thomas

To conclude we need to show thAexp(0G)du < oo. This follows from Eq. (48)
which we rewrite as

€exp(9G(x)) = exp(9G(x)) — P exp(0G(x)) + L1y (x),

with e = 1 — «. From this we obtain

1 N 1 1 N
€ 1; eXPOG (X)) < - eXPOG()) + L ; 1y (Xz). (50)

By the Law of Large Numbers the r.h.s of Eq. (50) convergdsitdU ) which is finite,
and thus/ exp(6G)d u is finite, too. O

This concludes the proof of Theorem 2.1.

Note added in proof. Stronger spectral properties as well as a fluctuation theorem for
the entropy production are proved in [22].
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