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Abstract: We continue the study of a model for heat conduction [6] consisting of a
chain of non-linear oscillators coupled to two Hamiltonian heat reservoirs at different
temperatures. We establish existence of a Liapunov function for the chain dynamics and
use it to show exponentially fast convergence of the dynamics to a unique stationary
state. Ingredients of the proof are the reduction of the infinite dimensional dynamics to
a finite-dimensional stochastic process as well as a bound on the propagation of energy
in chains of anharmonic oscillators.

1. Introduction

In its present state, non-equilibrium statistical mechanics is lacking the firm theoretical
foundations that equilibrium statistical mechanics has. This is due, perhaps, to the ex-
tremely great variety of physical phenomena that non-equilibrium statistical mechanics
describes. We will concentrate here on a system which is maintained, by suitable forces,
in a state far from equilibrium. In such an idealization, the non-equilibrium phenomena
can be described by stationary non-equilibrium states (SNS), which are the analog of
canonical or microcanonical states of equilibrium.

Recently many works have been devoted to the rigorous study of SNS. Two main
streams are emerging. In the first approach, foropen systems, a system is driven out
of equilibrium by interacting with several reservoirs at different temperatures. In the
second approach, forthermostated systems, a system is driven out of equilibrium by non-
Hamiltonian forces and constrained to a compact energy surface by Gaussian (or other)
thermostats [9,24]. One should view both approaches as two different idealizations of the
same physical situation, in the same spirit as the equivalence of ensembles in equilibrium
statistical mechanics. But for the moment, the extent to which both approaches are
equivalent remains a largely open problem.

We consider here an open system, a model of heat conduction consisting of a finite-
dimensional classical Hamiltonian model, a one-dimensional finite lattice of anharmonic
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oscillators (referred to as the chain), coupled, at the boundaries only, to two reservoirs
of classical non-interacting phonons at positive and different temperatures. We believe
this model to be quite realistic, in particular it is completely Hamiltonian and non-linear.

This model goes back (in the linear case) to [8] (see also [23,26]). First rigorous
results for anharmonic models appear [6] and go further in [7,5]. Similar models in
classical and quantum mechanics have attracted attention in the last few years, mostly
for systems coupled to a single reservoir at zero or positive temperature, i.e., for systems
near thermal equilibrium (see e.g. [12,13,3,15,25]. In our case, with two reservoirs, no
Gibbs Ansatz is available and in general, even the veryexistenceof a (non-equilibrium)
stationary state is a mathematically challenging question which requires a sufficiently
deep understanding of the dynamics. For the model at hand, conditions for theexistence
of the SNS have been given in [6] and generalized in [5]. Theuniquenessof the SNS as
well as the strict positivity ofentropy production(or heat flux) have been proved in [7].
The leading asymptotics of the invariant measure (for low temperatures) are studied in
[21] and shown to be described by a variational principle.

Under suitable assumptions on the chain interactions and its interactions with the
reservoirs, we establish the existence of a Liapunov function for the chain dynamics.
We then use this Liapunov function to establish that the relaxation to the SNS occurs
at anexponentialrate, and finally we prove that the system has aspectral gap(using
probabilistic techniques developed by Meyn and Tweedie in [18]).

The Hamiltonian of the model has the form

H = HB +HS +HI . (1)

The two reservoirs of free phonons are described by wave equations inRd with the
Hamiltonian

HB = H(ϕL, πL)+H(ϕR, πR),

H(ϕ, π) = 1

2

∫
dx(|∇ϕ(x)|2 + |π(x)|2),

whereL andR stand for the “left” and “right” reservoirs, respectively. The Hamiltonian
describing the chain of lengthn is given by

HS(p, q) =
n∑

i=1

p2
i

2
+ V (q1, . . . , qn),

V (q) =
n∑

i=1

U(1)(qi)+
n−1∑
i=1

U(2)(qi − qi+1),

where(pi, qi) ∈ Rd × Rd are the coordinates and momenta of theith particle of the
chain. The phase space of the chain isR2dn. The interaction between the chain and the
reservoirs occurs at the boundaries only and is of dipole-type

HI = q1 ·
∫

dx∇ϕL(x)ρL(x)+ qn ·
∫

dx∇ϕR(x)ρR(x),

whereρL andρR are coupling functions (“charge densities”) which we will assume
spherically symmetric.
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Our assumptions on the anharmonic lattice described byHS(p, q) are the following:

• H1 Growth at infinity. The potentialsU(1)(x)andU(2)(x)areC∞ and grow at infinity
like ‖x‖k1 and‖x‖k2: There exist constantsCi , Di , i = 1,2 such that

lim
λ→∞ λ−kiU(i)(λx) = a(i)‖x‖ki , (2)

lim
λ→∞ λ−ki+1∇U(i)(λx) = a(i)ki‖x‖ki−2x, (3)

‖∂2U(i)(x)‖ ≤ (Ci +DiV (x))
1− 2

ki , (4)

where‖ · ‖ in Eq. (4) denotes some matrix-norm.
Moreover we will assume that

k2 ≥ k1 ≥ 2,

so that, for large‖x‖ the interaction potentialU(2) is “stiffer” than the one-body
potentialU(1). It follows from Eqs. (2) and (3) that the critical set ofV (q), i.e., the
set{q : ∇V (q) = 0} is a compact set.

• H2 Non-degeneracy. The coupling potential between nearest neighborsU(2) is non-
degenerate in the following sense. Forx ∈ Rd andm = 1,2, · · · , letA(m)(x) : Rd →
Rdm denote the linear maps given by

(
A(m)(x)v

)
l1l2···lm =

d∑
l=1

∂m+1U(2)

∂x(l1) · · · ∂x(lm)∂x(l) (x)vl.

We assume that for eachx ∈ Rd there existsm0 such that

Rank
(
A(1)(x), · · ·A(m0)(x)

) = d.

In particular this condition is satisfied, form0 = 1, ifU(2) is strictly convex. Ifd = 1, this
condition means that for anyx, there existsm0 = m0(x) ≥ 2 such that∂m/∂U(2)(x) �= 0.
In other words the potentialU(2) has no flat piece or infinitely degenerate points.

The class of coupling functionsρi , i ∈ {L,R} we can allow is relatively restrictive:

• H3 Rationality of the coupling. Let ρ̂i denote the Fourier transform ofρi . We assume
that

|k|d−1|ρ̂i (k)|2 = 1

Qi(k2)
,

whereQi , i ∈ {L,R} are polynomials with real coefficients and no roots on the real
axis. In particular, ifk0 is a root ofQi , then so are−k0, k0 and−k0.

Under these conditions we have the following result (a more detailed and precise
statement will be given in the next section). LetF(p, q) be an observable on the phase
space of the chain, for example any function with at most polynomial growth (no smooth-
ness is required). We denote as(p(t), q(t)) the solution of the Hamiltonian equation of
motion with Hamiltonian (1) and initial conditions(p, q). Of course(p(t), q(t)) de-
pends also on the variables of the reservoirs, though only through their initial conditions
(πL, ϕL, πR, ϕR). We introduce the temperature by making the assumption that the
initial conditions of the reservoirs are distributed according to thermal equilibrium at
temperatureTR andTL respectively and we denote〈·〉LR as the corresponding average.
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Theorem 1.1. Under ConditionsH1–H3, there is a measureν(dp, dq) with a smooth
everywhere positive density such that the Law of Large Numbers holds:

lim
T→∞

1

T

∫ T

0
F(p(t), q(t))dt =

∫
Fdν

for almost all initial conditions(πL, ϕL, πR, ϕR) of the reservoirs andfor all initial
conditions(p, q) of the chain. Moreover there exist a constantr > 1 and a function
C(p, q) with

∫
Cdν < ∞ such that∣∣∣∣〈F(p(t), q(t))〉LR −

∫
Fdν

∣∣∣∣ ≤ C(p, q)r−t

for all initial conditions(p, q). That is, if we average over the initial conditions of the
reservoirs the convergence isexponential.

Note that the ergodic properties stated in Theorem 1.1 hold not only forν-almost
every initial condition(p, q), but in fact for every(p, q).

The existence of a (unique) stationary state was proved for (exactly solvable) quadratic
harmonic potentialsV (q) in [26], for k1 = k2 = 2 (i.e., for potential which are quadratic
at infinity) in [6,7] and generalized to the casek2 > k1 ≥ 2 in [5]. What is really new
here is that we prove that the convergence occursexponentially fastand we also weaken
slightly the conditions on the potential (in particular the casek1 = k2 is allowed and our
Condition H2 onU(2) is weaker than the one used in [6,7,5]). Our methods also differ
notably from those used in [6,5]; in fact we reprove the existence of the SNS (with a
shorter and more constructive proof than in [6,5]) and, at the same time, we prove much
stronger ergodic properties.

We devote the rest of this section to a brief discussion of the Assumptions H1–H3.
Since the reservoirs are free phonon gases and since we make a statistical assumption on
the initial condition of the reservoirs, one can integrate out the variables of the reservoirs
yielding random integro-differential equations for the variables(p, q). Our Assumption
H3 of rational coupling is, in effect, a Markovian assumption: with such coupling one
can eliminate the memory terms by adding a finite number of auxiliary variables to
obtain a system of Markovianstochasticdifferential equations on the extended phase
space consisting of the dynamical variables(p, q) together with the auxiliary variables.
The main (new) ingredient in our proof is then the construction of aLiapunov function
for the system, which implies, using probabilistic methods developed in [1,20,18], the
exponential convergence towards the stationary state.

To explain the construction of a Liapunov function, note that the dynamics of the chain
in the bulk is simply Hamiltonian, while at the boundaries the action of the reservoirs
results into two distinct forces. There aredissipativeforces which correspond to the
fact that the energy of the chain dissipates into the reservoirs. This force isindependent
of the temperature. On the other hand since the reservoirs are infinite and at positive
temperatures, they exert (random) forces at the boundaries of the chain and these forces
turn out to be proportional to the temperatures of the reservoirs.

The construction of the Liapunov function proceeds in two steps. In a first step we
neglect completely the random force, only dissipation acts.This corresponds to dynamics
at temperature zero, and one can prove that the energy decreases and that the system
relaxes to a (local) equilibrium of the HamiltonianH(p, q). We establish therate at
which this relaxation takes place (at sufficiently high energies). In the second step we
consider the complete dynamics and we show that for energies which are much higher
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than the temperatures of the reservoirs, the random force is essentially negligible with
respect to the dissipation. This means that except for (exponentially) rare excursions the
system spends most of its time in a compact neighborhood of the equilibrium points.
On the other hand, in this compact set, i.e., at energies of order of the temperatures of
the reservoirs, the dynamics is essentially determined by the fluctuations and to prove
exponential convergence to a SNS one has to show that the fluctuations are such that
every part of the phase space is visited by the dynamics. To summarize, we control the
dynamics at any temperature by the dynamics at zero temperature.

This allows one to understand the meaning of our assumptions on the potentialV (q).
If we suppose that the energy has an infinite number of local minima tending to infinity,
the zero temperature (long-time) dynamics isnot confined to a compact energy domain
and our argument fails. With regard to the conditionk2 ≥ k1 in Condition H1 on the
exponents of the potentials, since the results of [27] and the rigorous proofs of [17,2],
it is known that stable (in the sense of Nekhoroshev) localized states exist in non-linear
lattices. Consider, for example, an infinite chain of oscillators (without reservoirs). Nu-
merically and in certain cases rigorously [17], one can show the existence ofbreathers,
i.e., of solutions which are spatially (exponentially) localized and time-periodic. Al-
though the breathers occur both fork1 > k2 andk2 ≥ k1 they behave differently at high
energies. Fork1 > k2, the higher the energy, the more localized the breathers get (hard
breathers), while fork2 ≥ k1, as the energy gets bigger the breathers become less and
less localized (soft breathers). In fact a key point of our analysis is to show that at high
energy, if the energyE of the initial condition is localized away from the boundary, then
after a time of order one, the oscillators at the boundaries carry at least an energy of
orderE2/k2 so that the chain system energy can relax into the reservoirs.

Although we believe that the existence of a SNS probably may not depend too much
on these localization phenomena, the rate of convergence to the SNS presumably does.
Our approach of controlling the dynamics by the zero-temperature dynamics may not
be adequate if Condition H1 fails to hold and so more refined estimates on the dynamics
are needed to show that these localized states might be in fact destroyed by the coupling
to the reservoirs.

As regards the organization of this paper, Sect. 2 presents the effective stochastic
differential equations for the chain, a discussion of allowable interactions between the
reservoirs and the chain and a concise statement, Theorem 2.1, of the exponential con-
vergence. In Sect. 3 we discuss the dissipative deterministic system (corresponding to
reservoirs at temperature 0), Theorem 3.3, and then we show the extent to which the
random paths follow the deterministic ones, Proposition 3.7. We give a lower bound on
the random energy dissipation, Corollary 3.8. We then conclude Sect. 3 by providing
the Liapunov function, Theorem 3.10, and bounds on the exponential hitting times on
(sufficiently large) compact sets, Theorem 3.11. In Sect. 4 we prove that the random
process has a smooth law and at most one ergodic component, improving slightly results
of [6,7,5]. Finally in Sect. 5 we conclude the proof of Theorem 2.1 by invoking results
of [18] on the ergodic theory of the Markov processes.

2. Effective Equations

We first give a precise description of the reservoirs and of their coupling to the system
and derive the stochastic equations which we will study. A free phonon gas is described
by a linear wave equation inRd , i.e., by the pair of real fieldsφ(x) = (ϕ(x), π(x)),
x ∈ Rd . We define the norm‖φ‖ by‖φ‖2 ≡ ∫ dx(|∇φ(x)|2+|π(x)|2) and denote〈·, ·〉
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the corresponding scalar product. The phase space of the reservoirs at finite energy is
the real Hilbert space of functionsφ(x) such that the energyHB(φ) = ‖φ‖2/2 is finite
and the equations of motion are

φ̇(t, x) = Lφ(t, x), L =
(

0 1
−, 0

)
.

In order to describe the coupling of the reservoir to the system, let us consider first
a single confined particle inRd with HamiltonianHS(p, q) = p2/2 + V (q). As the
Hamiltonian for the coupled system particle plus one single reservoir, we have

H(φ, p, q) = 1

2
‖φ‖2 + p2 + V (q)+ q ·

∫
dx∇ϕ(x)ρ(x)

= HB(φ)+HS(p, q)+ q · 〈φ, α〉,
whereρ(x) is a real rotation invariant function andα = (α(1), · · · , α(d)) is, in Fourier
space, given by

α̂(i) =
(−ik(i)ρ̂(k)/k2

0

)
.

We introduce the covariance matrixC(ij)(t) = 〈exp(Lt)α(i), α(j)〉. A simple computa-
tion shows that

C(ij)(t) = 1

d
δij

∫
dk|ρ(k)|2ei|k|t ,

and we define a coupling constantλ by puttingλ2 = C(ii)(0) = 1
d

∫
dk|ρ(k)|2. The

equations of motion of the coupled system are

q̇(t) = p(t),

ṗ(t) = −∇V (q(t))− 〈φ, α〉,
φ̇(t, k) = L (φ(t, k)+ q(t) · α(k)) . (5)

With the change of variablesψ(k) = φ(k)+ q · α(k), Eqs. (5) become

q̇(t) = p(t),

ṗ(t) = −∇Veff(q(t))− 〈ψ, α〉,
ψ̇(t, k) = Lψ(t, k)+ p(t) · α(k), (6)

whereVeff(q) = V (q) − λ2q2/2. Integrating the last of Eqs. (6) with initial condition
ψ0(k) one finds

ψ(t, k) = eLtψ0(k)+
∫ t

0
dseL(t−s)α(k) · p(s),

and inserting into the second of Eqs. (6) gives

q̇(t) = p(t),

ṗ(t) = −∇Veff(q(t))−
∫ t

0
dsC(t − s)p(s)− 〈ψ0, e

−Lt α〉. (7)
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If we now assume that, at timet = 0, the reservoir is at temperatureT , thenψ0 is
distributed according to the Gaussian measure with covarianceT 〈· , ·〉 and thenξ(t) ≡
〈ψ0, e

−Lt α〉 is ad-dimensional stationary Gaussian process with mean 0 and covariance
T C(t − s). Note that the covariance itself appears in the deterministic memory term on
the r.h.s. of Eq. (7) (fluctuation-dissipation relation).

By Assumption H3 there is a polynomialp(u) which is a real function ofiu and
which has its roots in the lower half plane such that

C(ii)(t) =
∫ ∞

−∞
du

1

|p(u)|2e
iut .

Note that this is a Markovian assumption [4]:ξ(t) is Markovian in the sense that we have
the identityp(−id/dt)ξ(t) = ω̇(t), whereω̇(t) is a white noise, i.e., the joint motion
of dmξ(t)/dtm , 0≤ m ≤ degp − 1 is a (Gaussian) Markov process. This assumption
together with the fluctuation-dissipation relation permits, by extending the phase space
with a finite number of variables, to rewrite the integro-differential equations (7) as a
Markov process. Note thatξ(t) can be written as [4]

ξ(t) =
∫ ∞

−∞
k(t − t ′)dω(t ′), k(t) =

∫
dueiutp(u)−1

with k(t) = 0 for t ≤ 0. For example ifp(u) ∝ iu + γ thenC(ii)(t) = λ2e−γ |t |.
Introducing the variabler defined by

λr(t) =
∫ t

0
dsC(t − s)p(s)+

∫ t

−∞
k(t − t ′)dω(t ′),

we obtain from Eqs. (7) the set of Markovian differential equations:

q̇(t) = p(t),

ṗ(t) = −∇Veff(q(t))− λr(t),

dr(t) = (−γ r(t)+ λp(t))dt + (2T γ )1/2dω(t). (8)

If p(u) ∝ (iu+ γ + iσ )(iu+ γ − iσ ), thenC(t) = λ2 cos(σ t)e−γ |t | and introducing
the two auxiliary variablesr ands defined by

λr(t) = λ2
∫ t

0
ds cos(σ (t − s))e−γ |t−s|p(s)

+ (T λ2γ )1/2
∫ t

−∞
cos(σ (t − s))e−γ |t−s|dω(s),

λs(t) = λ2
∫ t

0
dt sin(σ (t − s))e−γ |t−s|p(s)

+ (T λ2γ )1/2
∫ t

−∞
dt sin(σ (t − s))e−γ |t−s|dω(s),

we obtain then the set of Markovian differential equations:

q̇(t) = p(t),

ṗ(t) = −∇Veff(q(t))− λr(t),

dr(t) = (−γ r(t)− σs(t)+ λp(t))dt + (2T γ )1/2dω(t),

ṡ(t) = −γ s(t)+ σr(t). (9)
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Obviously other similar sets of equations can be derived for an arbitrary polynomial
p(u).

Another coupling which we could easily handle with our methods occurs in the
following limiting case, see [8]. Formally one wants to takeC(ii)(t) = η2δ(t). Note
that this corresponds to a coupling function with|ρ(k)|2 = 1 in which caseλ2 = ∞.
A possible limiting procedure consists in taking a sequence of covariances tending to a
delta function and at the same time suitably rescaling the coupling (see [8]). In this case
one obtains the Langevin equations which serve as the commonly-used model system
with reservoir in the physics literature,

q̇(t) = p(t),

dp(t) = (−∇Veff(q(t))− η2p(t))dt + (2T η2)1/2dω(t). (10)

The derivation of the effective equations for the chain is a straightforward gener-
alization of the above computations. Our techniques apply equally well to any of the
couplings above. However, for simplicity, we will only consider the case where the cou-
plings to both reservoirs satisfy|ρi(k)|2 ∝ k2+ γ 2, i = L,R. For notational simplicity
we setT1 = TL andTn = TR, we denoter1 andrn as the two auxiliary variables and we
will use the notationsr = (r1, rn), andx = (p, q, r) ∈ X = R2d(n+1). In this case we
obtain the set of Markovian stochastic differential equations given by

q̇1 = p1,

ṗ1 = −∇q1Veff(q)− λr1,

dr1 = (−γ r1 + λp1)dt + (2T1γ )
1/2dω1,

q̇j = pj , j = 2, . . . , n− 1,

ṗj = −∇qj Veff(q), j = 2, . . . , n− 1,

q̇n = pn,

ṗn = −∇qnVeff(q)− λrn,

drn = (−γ rn + λpn)dt + (2Tnγ )
1/2dωn, (11)

whereVeff(q) = V (q)− λ2q2
1/2− λ2q2

n/2. From now on, for notational simplicity we
will suppress the index “eff” and considerV = Veff as our potential energy.

It will be useful to introduce the following notation. We define the linear maps: :
Rdn → R2d by :(x1, . . . , xn) = (λx1, λxn) andT : R2d → R2d by T (x, y) =
(T1x, Tny). With this we can rewrite Eqs. (11) in the compact form

q̇ = p,

ṗ = −∇qV −:∗r,
dr = (−γ r +:p)dt + (2γ T )1/2dω. (12)

The solutionx(t) of Eqs. (12) is a Markov process. We denoteT t as the associated
semigroup,

T tf (x) = Ex[f (x(t)],
with generator

L = γ (∇rT∇r − r∇r )+
(
:p∇r − r:∇p

)+ (p∇q − (∇qV (q))∇p

)
, (13)
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andPt(x, dy) as the transition probability of the Markov processx(t). There is a natural
energy function which is associated to Eq. (12), given by

G(p, q, r) = r2

2
+H(p, q).

A straightforward computation shows that in the special caseT1 = Tn = T ,

Z−1e−G(p,q,r)/T

is an invariant measure for the Markov processx(t).
Given a functionW : X → R satisfyingW ≥ 1 we consider the following weighted

total variation norm‖ · ‖W given by

‖π‖W = sup
|f |≤W

∣∣∣∣
∫

f dπ

∣∣∣∣ , (14)

for any (signed) measureπ . We introduce norms‖ · ‖θ and Banach spacesL∞θ (X) given
by

‖f ‖θ = sup
x∈X

|f (x)|
eθG(x)

, L∞θ (X) = {f : ‖f ‖θ < ∞}, (15)

and write‖K‖θ for the norm of an operatorK : L∞θ (X) → L∞θ (X).
Theorem 1.1 is a direct consequence of the following result:

Theorem 2.1. Assume that ConditionsH1 andH2 hold. The Markov processx(t) which
solves (12) has smooth transition probability densities,Pt(x, dy) = pt (x, y)dy, with
pt (x, y) ∈ C∞((0,∞) × X × X). The Markov processx(t) has a unique invariant
measureµ, andµ has aC∞ everywhere positive density. For anyθ with 0 < θ <

(max{T1, Tn})−1 there exist constantsr = r(θ) > 1 andR = R(θ) < ∞ such that

‖Pt(x, ·)− µ‖exp(θG) ≤ Rr−t exp(θG(x)), (16)

for all x ∈ X, (exponential convergence to the SNS) or equivalently

‖T t − µ‖θ ≤ Rr−t ,

(spectral gap). Furthermore for all functionsf , g with f 2, g2 ∈ L∞θ (X) and all t > 0
we have ∣∣∣∣

∫
gT tf dµ−

∫
f dµ

∫
gdµ

∣∣∣∣ ≤ Rr−t‖f 2‖1/2
θ ‖g2‖1/2

θ ,

(exponential decay of correlations in the SNS).

The convergence in the weighted variation norm, Eq. (16), implies that the Law of
Large Numbers holds [10,18].

Corollary 2.2. Under AssumptionsH1andH2x(t) satisfies the Law of Large Numbers:
For all initial conditionsx ∈ X and allf ∈ L1(X, dµ),

lim
T→∞

1

T

∫ T

0
f (x(t))dt =

∫
f dµ

almost surely.
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The convergence of the transition probabilities as given in (16) is shown in [18] to
follow from the following properties:

• Strong Feller property. The diffusion process is strong Feller, i.e., the semigroupT t

maps bounded measurable functions into continuous functions.

This is a consequence of the hypoellipticity of the diffusionx(t), which follows from
Condition H2, see Sect. 4.

• Small-time open set accessibility. For all t > 0, all x ∈ X and all open setA ⊂ X

we havePt(x,A) > 0.

This means that the Markov process is “strongly aperiodic”. In particular, combined with
the strong Feller property it implies uniqueness of the invariant measure. This property
is discussed in Sect. 4 using the support theorem of [28] and explicit computations. This
generalizes (slightly) the result obtained in [7].

• Liapunov function and hitting times. Fix s > 0 arbitrary. SetW = exp(θG) and
chooseθ with 0 < θ < (max{T1, Tn})−1. ThenW is a Liapunov function for the
Markov chain{x(ns)}n≥0: W > 1,W has compact level sets and there is a compact
setU , (depending ons andθ ) and constantsκ < 1 andb < ∞, (both depending on
U , s andθ ) such that

T sW(x) ≤ κW(x)+ b1U(x), (17)

where1U denotes the indicator function of the setU . In addition the constantκ in
Eq. (17) can be chosen arbitrarily small by choosing the setU sufficiently large.

The existence of a Liapunov function is the main technical result of this paper (see
Sect. 3) and the Condition H1 is crucial to obtain it. Note that the time derivative of the
(averaged) energy

d

dt
Ex[G(x(t))] = γEx[Tr(T)− r2(t)],

is not necessarily negative. But it is the case, as follows from our analysis below that,
for t > 0, Ex[G(x(t))−G(x)] < −cG(x)2/k2 for x sufficiently large.

A nice interpretation of a Liapunov bound of the form (17) is in terms of hitting times.
Let τU denote the first time the diffusionx(t) hits the setU ; then Eq. (17) implies that
τU is exponentially bounded. We will show that for anya > 0, no matter how large, we
can find a compact setU = U(a) such that

Ex[eaτU ] < ∞,

for all x ∈ X. So except for exponentially rare excursions the Markov processx(t) lives
on the compact setU . Combined with the fact that the process has a smooth law, this
provides an intuitive picture of the exponential convergence result of Theorem 2.1.
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3. Liapunov Function and Hitting Times

3.1. Scaling and deterministic energy dissipation.We first consider the question of
energy dissipation for the following deterministic equations:

q̇ = p,

ṗ = −∇qV (q)−:∗r,
ṙ = −γ r +:p, (18)

obtained from Eq. (12) by settingT1 = Tn = 0, corresponding to an initial condition of
the reservoirs with energy 0. A simple computation shows that the energyG(p, q, r) is
non-increasing along the flowx(t) = (p(t), q(t), r(t)) given by Eq. (18):

d

dt
G(p(t), q(t), r(t)) = −γ r2(t) ≤ 0.

We now show by a scaling argument that for any initial condition with sufficiently high
energy, after a small time, a substantial amount of energy is dissipated.

At high energy, the two-body interactionU(2) in the potential dominates the term
U(1) sincek2 ≥ k1 and so for an initial condition with energyG(x) = E, the natural
time scale – essentially the period of a single one-dimensional oscillator in the potential
|q|k2 – isE1/k2−1/2. We scale a solution of Eq. (18) with initial energyE as follows

p̃(t) = E− 1
2p
(
E

1
k2
− 1

2 t
)
,

q̃(t) = E
− 1

k2 q
(
E

1
k2
− 1

2 t
)
,

r̃(t) = E
− 1

k2 r
(
E

1
k2
− 1

2 t
)
. (19)

Accordingly the energy scales asG(p, q, r) = EG̃E(p̃, q̃, r̃), where

G̃E(p̃, q̃, r̃) = E
2
k2
−1 r̃

2

2
+ p̃2

2
+ ṼE(q̃),

ṼE(q̃) =
n∑

i=1

Ũ (1)(q̃i )+
n−1∑
i=1

Ũ (2)(q̃i − q̃i+1),

Ũ (i)(x̃) = E−1Ũ (i)
(
E

1
k2 x
)
, i = 1,2.

The equations of motion for the rescaled variables are

˙̃q = p̃,

˙̃p = −∇q̃ ṼE(q̃)− E
2
k2
−1

:∗r,
˙̃r = −E

1
k2
− 1

2γ r̃ +:p̃. (20)

By Assumption H1, asE →∞ the rescaled energy becomes

G̃∞(p̃, q̃, r̃) ≡ lim
E→∞ G̃E(p̃, q̃, r̃)

=


p̃2/2+ Ṽ∞(q̃) k1 = k2 > 2 or k2 > k1 ≥ 2

r̃2/2+ p̃2/2+ Ṽ∞(q̃) k1 = k2 = 2
,
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where

V∞(q̃) =


∑

a(1)‖q̃i‖k2 +∑ a(2)‖q̃i − q̃i+1‖k2 k1 = k2 ≥ 2∑
a(2)‖q̃i − q̃i+1‖k2 k2 > k1 ≥ 2

.

The equations of motion scale in this limit to

˙̃q = p̃,

˙̃p = −∇q̃ Ṽ∞(q̃),

˙̃r = :p̃, (21)

in the casek2 > 2, while they scale to

˙̃q = p̃,

˙̃p = −∇q̃ Ṽ∞(q̃)−:∗r,
˙̃r = −γ r +:p̃, (22)

in the casek1 = k2 = 2.

Remark 3.1.The scaling for thep andq is natural due to the Hamiltonian nature of the
problem, but the scaling ofr has a certain amount of arbitrariness. SinceG is quadratic
in r, it might appear natural to scaler with a factorE−1/2 instead ofE−1/k2 as we do.
On the other hand, the very definition ofr as an integral ofp suggests thatr should scale
asq, as we have chosen.

Remark 3.2.Had we supposed, instead of H1, thatk1 > k2, then the natural time scale
at high energy would beE1/k1−1/2. Scaling the variables (withk2 replaced byk1 would
yield the limiting Hamiltonianp̃2/2+∑ a(1)‖q̃i‖k1, i.e., the Hamiltonian ofnuncoupled
oscillators. So in this case, at high energy, essentially no energy is transmitted through
the chain. While this does not necessarily preclude the existence of an invariant measure,
we expect in this case the convergence to a SNS to be much slower. In any case even the
existence of the SNS in this case remains an open problem.

Theorem 3.3. Givenτ > 0 fixed there are constantsc > 0 andE0 < ∞ such that for
anyx with G(x) = E > E0 and any solutionx(t) of Eq. (18) withx(0) = x we have
the estimate, fortE = E1/k2−1/2τ ,

G(x(tE))− E ≤ −cE
3
k2
− 1

2 . (23)

Remark 3.4.In view of Eq. (23), this shows thatr is at least typicallyO(E1/k2) on the
time interval[0, E1/k2−1/2τ ].
Proof. Given a solution of Eq. (18) with initial conditionx of energyG(x) = E, we
use the scaling given by Eq. (19) and we obtain

G(x(tE))− E = −γ

∫ tE

0
dtr2(t) = −γE

3
k2
− 1

2

∫ τ

0
dt r̃2(t), (24)

where r̃(t) is the solution of Eq. (20) with initial conditioñx of (rescaled) energy
G̃E(x̃) = 1. By Assumption H2 we may chooseE0 so large that forE > E0 the
critical points ofG̃E are contained in, say, the set{G̃E ≤ 1/2}.
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For a fixedE andx with G(x) = E, we show that there is a constantcx,E > 0 such
that ∫ τ

0
dt r̃2(t) ≥ cx,E. (25)

The proof is by contradiction, cf. [21]. Suppose that
∫ τ

0 dt r̃2(t) = 0, then we havẽr(t) =
0, for all t ∈ [0, τ ]. From the third equation in (20) we conclude thatp̃1(t) = p̃n(t) = 0
for all t ∈ [0, τ ], and so from the first equation in (20) we see thatq̃1(t) andq̃n(t) are
constant on[0, τ ]. The second equation in (20) gives then

0 = ˙̃p1(t) = −∇q̃1Ṽ (q̃(t)) = −∇q̃1Ũ
(1)(q̃1(t))− ∇q̃1Ũ

(2)(q̃1(t)− q̃2(t)),

together with a similar equation foṙpn. By our Assumption H1 the map∇Ũ (2) has a
right inverseg locally bounded and measurable and thus we obtain

q̃2(t) = q̃1(t)− g(Ũ (1)(q̃1(t))).

Sinceq̃1 is constant, this implies that̃q2 is also constant on[0, τ ]. Similarly we see
that q̃n−1 is constant on[0, τ ]. Using again the first equation in (20) we obtain now
p̃2(t) = p̃n−1(t) = 0 for all t ∈ [0, τ ]. Inductively one concludes thatr̃ = 0 implies
p̃ = 0 and∇q̃ Ṽ = 0 and thus the initial conditioñx is a critical point ofG̃E . This
contradicts our assumption and Eq. (25) follows.

Now for givenE, the energy surfacẽGE is compact. Using the continuity of the
solutions of O.D.E. with respect to initial conditions we conclude that there is a constant
cE > 0 such that

inf
x̃∈{G̃E=1}

∫ τ

0
dt r̃2(t) ≥ cE.

Finally we investigate the dependence onE of cE . We note that forE = ∞, G̃∞
has a well-defined limit given by Eq. (21) and the rescaled equations of motion, in the
limit E → ∞, are given by Eqs. (21) in the casek2 > 2 and by Eq. (22) in the case
k1 = k2 = 2. Except in the casek1 = k2 = 2 the energy surface{G̃∞ = 1} is not
compact. However, in the casek1 = k2 > 2, the HamiltonianG̃∞ and the equation of
motion are invariant under the translationr �→ r + a, for anya ∈ R2d . And in the case
k2 > k1 > 2 the HamiltonianG̃∞ and the equation of motion are invariant under the
translationr �→ r + a q �→ q + b, for anya ∈ R2d andb ∈ Rdn. The quotient of the
energy surface{G̃∞ = 1} by these translations, is compact.

Note that for a giveñx ∈ {G̃∞ = 1} a similar argument as above show that
∫ τ

0 dt (r̃+
a)2 > 0, for anya > 0 and since this integral clearly goes to∞ asa →∞ there exists
a constantc∞ > 0 such that

inf
x̃∈{G̃∞=1}

∫ τ

0
r̃2(t)dt > c∞.

Using again that the solution of O.D.E. depends smoothly on its parameters, we obtain

inf
E>E0

inf
x̃∈{G̃E=1}

∫ τ

0
dt r̃2(t) > c.

This estimate, together with Eq. (24) gives the conclusion of Theorem 3.3. !
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3.2. Approximate deterministic behavior of random paths.In this section we show that at
sufficiently high energies, the overwhelming majority of the random pathsx(t) = x(t, ω)

solving Eqs. (12) follows very closely the deterministic pathsxdet solving Eqs. (18). As
a consequence, for most random paths the same amount of energy is dissipated into the
reservoirs as for the corresponding deterministic ones. We need the followinga priori
“no-runaway” bound on the growth ofG(x(t)).

Lemma 3.5. Let θ ≤ (max{T1, Tn})−1. ThenEx[exp(θG(x(t)))] is well-defined and
satisfies the bound

Ex[exp(θG(x(t)))] ≤ exp(γTr(T )θt)exp(θG(x)). (26)

Moreover for anyx with G(x) = E and anyδ > 0 we have the estimate

Px

{
sup

0≤s≤t
G(x(s)) ≥ (1+ δ)E

}
≤ exp(γTr(T )θt)exp(−δθE). (27)

Remark 3.6.The lemma shows that forE sufficiently large, with very high probability,
G(x(t)) = O(E) if G(x) = E. The assumption onθ here arises naturally in the proof,
where we need(1− θT ) ≥ 0, cf. Eq. (28).

Proof. For θ ≤ (max{T1, Tn})−1 we have the bound (the generatorL is given by Eq.
(13))

Lexp(θG(x)) = γ θ exp(θG(x)) (Tr(T )− r(1− θT )r)

≤ γ θTr(T )exp(θG(x)), (28)

so that for the functionW(t, x) = exp(−γ θTr(T )t)exp(θG(x))we have the inequality
(∂t + L)W(t, x) ≤ 0. We denoteσR as the exit time from the set{G(x) < R}, i.e.,
σR = inf {t ≥ 0,G(x(t)) ≥ R}. If the initial conditionx satisfiesG(x) = E < R, we
denotexR(t) the process which is stopped when it exits{G(x) < R}, i.e.,xR(t) = x(t)

for t < σR andxR(t) = x(σR) for t ≥ σR. We setσR(t) = min{σR, t} and applying
Ito’s formula with stopping time to the functionW(t, x) we obtain

Ex

[
exp(θG(x(σR(t))))exp(−γ θTr(T )σR(t))

]− exp(θG(x)) ≤ 0,

thus

Ex

[
exp(θG(x(σR(t))))

] ≤ exp(γ θTr(T )t)exp(θG(x)). (29)

Since

Ex

[
exp(θG(x(σR(t))))

] ≥ Ex

[
exp(θG(x(σR(t))))1σR<t

]
= Px{σR < t}exp(θR),

we obtain the bound

Px{σR < t} ≤ exp(γ θTr(T )t)exp(θ(E − R)).

As a consequencePx{σR < t} → 0 asR → ∞ and thus the Markov processx(t) is
non-explosive.
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It follows thatG(xR(t)) → G(x(t)) almost surely asR → ∞, so by the Fatou
lemma we obtain from Eq. (29) the bound Eq. (26). The bound Eq. (27) is obtained by
noting that the left side is equal to

Px{σE(1+δ) < t} ≤ exp(γ θTr(T )t)exp(−δθE),

and this concludes the proof of Lemma 3.5.
We have the following “tracking” estimates to the effect that the random path closely

follows the deterministic one at least up to timetE for a set of paths which have nearly
full measure. We set,x(t) ≡ x(t, ω)−xdet(t) = (,r(t),,p(t),,q(t)) with bothx(t)
andxdet(t) having initial conditionx. Let

S(x,E, t) = {x(·);G(x) = E and sup
0≤s≤t

G(x(s)) < 2E}.

By Lemma 3.5,P{S(x,E, t)} ≥ 1− exp(γ θTr(T )t − θE).

Proposition 3.7. There exist constantsE0 < ∞ andc > 0 such that for pathsx(t, ω) ∈
S(x,E, tE) with tE = E1/k2−1/2τ andE > E0 we have

sup
0≤t≤tE


 ‖,q(t)‖
‖,p(t)‖
‖,r(t)‖


 ≤ c sup

0≤t≤tE
‖√2γ T ω(t)‖


 E

2
k2
−1

E
1
k2
− 1

2

1


 . (30)

Proof. We write differential equations for,x(t) again assuming both the random and
deterministic paths start at the same pointx with energyG(x) = E. These equations
can be written in the somewhat symbolic form:

d,q = ,pdt,

d,p =
(
O(E1−2/k2),q −:∗,r

)
dt,

d,r = (−γ,r +:,p) dt +√2γ T dω. (31)

TheO(E1−2/k2) coefficient refers to the difference between forces,−∇qV (·) evalu-
ated atx(t) andxdet(t); we have thatG(x(t)) ≤ 2E, so that∇qV (q) − ∇qV (qdet) =
O(∂2V ),q = O(E1−2/k2),q. For later purposes we pick a constantc′ so large that

ρ = ρ(x) = c′E1− 2
k2 ≥ sup

i

∑
j

sup
{q:V (q)≤2E}

∣∣∣∣∂2V (q)

∂qi∂qj

∣∣∣∣
for all sufficiently largeE.

In order to estimate the solutions of Eqs. (31), we consider the 3× 3 matrix which
bounds the coefficients in this system, and which is given by

M =

 0 1 0
ρ 0 λ

0 λ γ


 . (32)
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We have the following estimate on powers ofM: For ,X(0) = (0,0,1)T , we set
,X(m) ≡ Mm,X(0). For α = max(1, γ + λ), we obtain,X(1) ≤ α(0,1,1)T ,
,X(2) ≤ α2(1,1,1)T , and, form ≥ 3,

,X(m) ≡

 u(m)

v(m)

w(m)


 ≤ αm2m−2


ρ

m−2
2

ρ
m−1

2

ρ
m−2

2


 ,

where the inequalities are componentwise. From this we obtain the bound

etM


0

0
1


 ≤


 1

2(αt)
2e
√
ρ2αt

αte
√
ρ2αt

1+ αt + 1
2(αt)

2e
√
ρ2αt


 . (33)

If 0 ≤ t ≤ tE we have
√
ρt <

√
c′. Then the exponentials in the above equation are

bounded, and

etM


0

0
1


 ≤ c


 1/ρ

1/
√
ρ

1


 , (34)

for some constantc.
Returning now to the original differential equation system Eq. (31), we write this

equation in the usual integral equation form:
,q(t)

,p(t)

,r(t)


 =

∫ t

0


 ,p(s)

−∇qV (q(s, ω))ds + ∇qV (qdet(s))−:∗,r(s)

−γ,r(s)+:,p(s)




+

 0

0√
2γ T ω(t)


 . (35)

From this we obtain the bound
 ‖,q(t)‖
‖,p(t)‖
‖,r(t)‖


 ≤

∫ t

0
M


 ‖,q(t)‖
‖,p(t)‖
‖,r(t)‖


 ds +


 0

0
ωmax


 ,

whereM is the matrix given by Eq. (32), andωmax = supt≤tE ‖
√

2γ T ω(t)‖. Note that
the solution of the integral equation

,X(t) =
∫ t

0
dsM,X(s)+


 0

0
ωmax


 , (36)

is ,X(t) = exp(tM)(0,0, ωmax)
T . We can solve both Eq. (35) and Eq. (36) by

iteration. Let,xm(s), ,Xm(s) denote the respectivemth iterates (with,x0(s) =
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(0,0,
√

2γ T ω(s))T , and,X0(s) = (0,0, ωmax)
T , 0 ≤ s ≤ tE). The ,Xm’s are

monotone increasing inm. Then it is easy to see that
 ‖,qm(t)‖
‖,pm(t)‖
‖,rm(t)‖


 ≤ ,Xm(t) ≤ ,X(t),

for each iterate. By Eqs. (33), (34), and the definition ofρ the conclusion Eq. (30)
follows.  !

As a consequence of Theorem 3.3 and Proposition 3.7 we obtain

Corollary 3.8. Let L(E) = Eα with α < 1/k2 and assume thatw(t) is such that
sup0≤t≤tE ‖

√
2γ T ω(t)‖ ≤ L(E) andx(·, ω) ∈ S(x,E, tE). Then there are constants

c > 0 andE0 < ∞ such that all pathsx(t, w) with initial conditionx with G(x) =
E > E0 satisfy the bound ∫ tE

0
r2(s)ds ≥ cE

3
k2
− 1

2 . (37)

Remark 3.9.For large energyE, pathsnot satisfying the hypotheses of the corollary
have measure bounded by

Px{ sup
0≤s≤tE

‖√2γ T ω‖ > L(E)} + P{S(x,E, tE)
C}

≤ a

2
exp

(
− L(E)2

bγ TmaxtE

)
+ exp(θ(γTr(T )tE − E))

≤ a exp

(
− L(E)2

bγ TmaxtE

)
, (38)

wherea andb are constants which depend only on the dimension ofω. Here we have used
the reflection principle to estimate the first probability and Eq. (27) and the definition
of S to estimate the second probability. ForE large enough, the second term is small
relative to the first.

Proof. It is convenient to introduce theL2-norm on functions on[0, t], ‖f ‖t ≡(∫ t

0 ‖f (s)‖2ds
)1/2

. By Theorem 3.3, there are constantsE1 andc1 such that forE > E1

the deterministic pathsxdet(s) satisfy the bound

‖rdet‖2
tE
=
∫ tE

0
r2
det(s)ds ≥ c1E

3
k2
− 1

2 .

By Proposition 3.7, there are constantsE2 andc2 such that‖,r(s)‖ ≤ c2L(E), uni-
formly in s, 0≤ s ≤ tE , and uniformly inx with G(x) > E2. So we have

‖r‖tE ≥ ‖rdet‖tE − ‖,r‖tE ≥
(
c1E

3
k2
− 1

2

)1/2

− c2L(E)

(
E

1
k2
− 1

2

)1/2

.

But the last term isO(Eα−1/4+1/2k2), which is of lower order than the first sinceα <

1/k2, so the corollary follows, for an appropriate constantc andE sufficiently large.
 !
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3.3. Liapunov function and exponential hitting times.With the estimates we prove now
our main technical result.

Theorem 3.10. Lets > 0 andθ < θ0 ≡ (max{T1, Tn})−1. Then there are a compact set
U = U(s, θ) and constantsκ = κ(U, s, θ) < 1 andL = L(U, s, θ) < ∞ such that

T s exp(θG)(x) ≤ κ exp(θG)(x)+ L1U(x), (39)

where1U is the indicator function of the setU . The constantκ can be made arbitrarily
small by choosingU large enough.

Proof. For any compact set U and for anyt , T s exp(θG)(x) is a bounded function,
uniformly on[0, t]. So, in order to prove Eq. (39), we only have to prove that there exist
a compact setU andκ < 1 such that

sup
x∈UC

Ex

[
exp(θ(G(x(s))−G(x)))

] ≤ κ < 1.

Using Ito’s Formula to computeG(x(s)) − G(x) in terms of a stochastic integral we
obtain

Ex

[
exp(θ(G(x(s))−G(x)))

]
= exp(θγTr(T )s)Ex

[
exp

(
−θ

∫ s

0
γ r2dt + θ

∫ s

0

√
2γ T rdω(t)

)]
. (40)

For anyθ < θ0, we choosep > 1 such thatθp < θ0. Using Hölder inequality we obtain,

Ex

[
exp

(
−θ

∫ s

0
γ r2dt + θ

∫ s

0

√
2γ T rdω(t)

)]

= Ex

[
exp

(
−θ

∫ s

0
γ r2dt + pθ2

2

∫ s

0

(√
2γ T r

)2
dt

)

×exp

(
−pθ2

2

∫ s

0

(√
2γ T r

)2
dt + θ

∫ s

0

√
2γ T rdω(t)

)]

≤ Ex

[
exp

(
−qθ

∫ s

0
γ r2dt + qpθ2

2

∫ s

0

(√
2γ T r

)2
dt

)]1/q

× Ex

[
exp

(
−p2θ2

2

∫ s

0

(√
2γ T r

)2
dt + θp

∫ s

0

√
2γ T rdω(t)

)]1/p

= Ex

[
exp

(
−qθ

∫ s

0
dtγ r2 + qpθ2

2

∫ s

0
dt
(√

2γ T r
)2)]1/q

.

Here, in the next to last line, we have used the fact that the second factor is the expectation
of a martingale (the integrand is non-anticipating) with expectation 1. Finally we obtain
the bound

Ex

[
exp(θ(G(x(s))−G(x)))

]
≤ exp(θγTr(T )s)Ex

[
exp

(
−qθ(1− pθTmax)

∫ s

0
dtγ r2

)]1/q

. (41)
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In order to proceed we need to distinguish two cases according to whether 3/k2 −
1/2 > 0 or 3/k2− 1/2 ≤ 0 (see Corollary 3.8). In the first case we letE0 be defined by
s = E

1/k2−1/2
0 τ . ForE > E0 we break the expectation Eq. (41) into two parts according

to whether the paths satisfy the hypotheses of Corollary 3.8 or not. For the first part we
use Corollary 3.8 and that

∫ s

0 r2(s)ds ≥ ∫ tE
0 r2(s) ≥ cE3/k2−1/2; for the second part we

use estimate (38) in Remark 3.9 on the probability of unlikely paths together with the
fact that the exponential under the expectation in Eq. (41) is bounded by 1. We obtain
for all x with G(x) = E > E0 the bound

Ex

[
exp(θ(G(x(s))−G(x)))

] ≤ exp
(
θγTr(T )tE0

)
×
[
exp

(
−qθ(1− pθTmax)cE

3
k2
− 1

2

)
+ a exp

(
−L(E)2θ0

bγ tE

)]1/q

. (42)

Choosing the setU = {x;G(x) ≤ E1} with E1 large enough we can make the term in
Eq. (42) as small as we want.

If 3/k2 − 1/2 ≤ 0, for a givens and a givenx with G(x) = E we split the time
interval[0, s] intoE1/2−1/k2 pieces[tj , tj+1], each one of size of orderE1/k2−1/2s. For
the “good” paths, i.e., for the pathsx(t) which satisfy the hypotheses of Corollary 3.8
on each time interval[tj , tj+1], the tracking estimates of Proposition 3.7 imply that
G(x(t)) = O(E) for t in each interval.Applying Corollary 3.8 and using thatG(x(tj )) =
O(E) we conclude that

∫ s

0 r2(s)ds is at least of orderE3/k2−1/2×E1/2−1/k2 = E2/k2.
The probability of the remaining paths can be estimated, using Eq. (38), not to exceed

1−
(

1− a exp

(
−L2

maxθ0

bγ tE

))E
1
2− 1

k2

.

The remainder of the argument is essentially as above, Eq. (42) and this concludes the
proof of Theorem 3.10.  !

The existence of the Liapunov function given by Eq. (39) can be interpreted in terms
of hitting times. LetτU be the time for the diffusionx(t) to hit the setU .

Theorem 3.11. Assume thatθ < (max{T1, Tn})−1. For any (arbitrarily large)a > 0
there exists a constantE0 = E0(a) > 0 such that forU = {x;G(x) ≤ E0} andx ∈ UC

we have

Ex

[
eaτU

]
< ea + (ea − 1)exp(θ(G(x)− E0)). (43)

Proof. Let s = 1 andθ < θ0 be given, we setκ = exp(−a)/2 and takeU to be the set
given by Theorem 3.10. LetXn be the Markov chain defined byXn = x(n) andNU be
the least integer such thatXNU

∈ U . Then

Ex[eaτU ] ≤ Ex[eaNU ], (44)

so that to estimate the exponential hitting time, it suffices to estimate the exponential
“step number”.
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Using Chernov’s inequality we obtain

Px{NU > n} = Px{−
n∑

j=1

(G(Xj )−G(Xj−1) < G(x)− E0, Xj ∈ Uc}

≤ eθ(G(x)−E0)Ex


 n∏
j=1

eθ(G(Xj )−G(Xj−1)), Xj ∈ Uc




≤ eθ(G(x)−E0)Ex


n−1∏
j=1

eθ(G(Xj )−G(Xj−1))

× EXn−1

[
eθ(G(Xn)−G(Xn−1)

]
, Xj ∈ Uc




≤ eθ(G(x)−E0) sup
y∈Uc

Ey[eθ(G(X1)−G(y))]

× Ex


n−1∏
j=1

eθ(G(Xj )−G(Xj−1)), Xj ∈ Uc




≤ · · · ≤ eθ(G(x)−E0)

(
sup
y∈Uc

Ey[eθ(G(X1)−G(y))]
)n

.

By Theorem 3.10 we have

sup
x∈Uc

Ex[eθ(G(X1)−G(x))] < κ,

and therefore we have geometric decay ofP>n ≡ Px{NU > n} in n, P>n ≤ κn

exp(θG(x)− E0). Summing by parts we obtain

Ex

[
eaNU

] = ∞∑
n=1

eanPx{τU = n}

= lim
M→∞

[
M∑
n=1

P>n(e
a(n+1) − ean)+ eaP>0 − ea(M+1)P>M

]
,

which, together with Eq. (44) gives Eq. (43). !

4. Accessibility and Strong Feller Property

In this section we prove that the Markov process is strong Feller and moreover we show
that it is strongly aperiodic in the sense that for allt > 0, all x ∈ X and all open sets
A ⊂ X we havePt(x,A) > 0. Both results imply immediately thatx(t) has at most one
invariant measure: Since the process is strong Feller the invariant measure (if it exists) has
a smooth density which is everywhere positive by the property of aperiodicity. Obviously
no two different such measures can exist.
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The strong Feller property is an immediate consequence of the hypoelliptic properties
of the generatorL of the diffusion. The result is an easy consequence of the estimates
in [7,5], since there much stronger global hypoelliptic estimates are proven (though
under stronger conditions on the potentialU(2)). We present here the argument for
completeness.

The generator of the Markov processx(t) can be written in the form

L =
2d∑
i=1

X2
i +X0.

If the Lie algebra generated by the set of commutators

{Xi}2di=1, {[Xi,Xi]}2di,j=0, {[[Xi,Xj ], Xk]}2di,j,k=0, · · · (45)

has rank dim(X) at every pointx ∈ X, then the Markov process has aC∞ law. In
particular it is strong Feller. This is a consequence of the Hörmander Theorem [11,16]
or it can be proved directly using Malliavin Calculus developed by Malliavin, Bismut,
Stroock and others (see e.g. [19]).

Proposition 4.1. If H2 holds then the generatorL given by Eq. (13) satisfies the rank
condition (45).

Proof. This is a straightforward computation. The vector fieldsXi , i = 1, · · ·2d give
∂
r
(j)
i

, i = 1, n, j = 1, · · · , d. The commutators

[
∂
r
(j)
1
, X0

]
= γ ∂

r
(j)
1
− λ∂

p
(j)
1
,[[

∂
r
(j)
1
, X0

]
, X0

]
= γ 2∂

r
(j)
1
− γ λ∂

p
(j)
1
− λ∂

q
(j)
1
,

yield the vector fields∂
p
(j)
1

and∂
q
(j)
1

. Further

[
∂
q
(j)
1
, X0

]
=

d∑
l=1

∂2V

∂
q
(j)
1
∂
q
(l)
1

(q)∂
p
(l)
1
+

d∑
l=1

∂2U(2)

∂
q
(j)
1
∂
q
(l)
2

(q1 − q2)∂p(l)
2
.

If U(2) is strictly convex, this yields∂
p
(j)
2

while in the general case we need to consider

further the commutators[
∂
q
(j1)
1

,

[
· · · ,

[
∂
q
(jm−1)
1

,

d∑
l=1

∂2U(2)

∂
q
(jm)
1

∂
q
(l)
2

(q1 − q2)∂p(l)
2

]]]

=
d∑

l=1

∂m+1U(2)

∂
q
(j1)
1

· · · ∂
q
(jm)
1

∂
q
(l)
1

(q1 − q2)∂p(l)
2
.

Condition H3 means that we can write∂
p
(j)
2

as a linear combination of these commutators

for everyx ∈ X. The other basis elements of the tangent space are obtained inductively
following the same procedure. !
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We now prove the strong aperiodicity of the processx(t). This is based on the support
theorem of Stroock and Varadhan [28]. The support of the diffusion processx(t) with
initial conditionx on the time interval[0, t], is by definition the smallest closed subset
Sx,t of C([0, t]) such thatPx[x(t, ω) ∈ Sx,t ] = 1. The support can be studied using the
associated control system, i.e., the ordinary differential equation where the white noise
ω̇(t) is replaced by a controlu(t) ∈ L1([0, T ]): For our problem we have the control
system

q̇ = p,

ṗ = −∇qV +:∗r,
ṙ = (−γ r +:p)+ u, (46)

and we denotexu(t) the solution of this control system with initial conditionx and
control u. The support theorem asserts that the support of the diffusionSx,t is the
closure of the set{xu; u ∈ L1([0, t])}. As a consequence suppPt(x, ·), the support
of the transition probabilities is equal to the closure of the set of accessible points
{y; ∃u ∈ L1([0, t]) s.t. xu(t) = y}.
Proposition 4.2. If ConditionH2 holds then for allt > 0, all x ∈ X,

suppPt(x, ·) = X. (47)

Proof. This result is proved in [7] under the additional condition that the interaction
potentialU(2) is strictly convex, in particular∇U(2) is a diffeomorphism. Our Condi-
tion H2 implies that∇U(2) is surjective. We can choose an inverseg : Rd → Rd which
is locally bounded. From this point the proof proceeds exactly as in Theorem 3.2 of [7]
and we will not repeat it here. !

5. Proof of Theorem 2.1

The proof of Theorem 2.1 is a consequence of the theory linking the ergodic properties
of the Markov process with existence of Liapunov functions, a theory which has been
developed over the past twenty years. The proof of these ergodic properties relies on
the intuition that the compact setU together with a Liapunov function plays much
the same role as an atom in, say, a countable state space Markov chain. The technical
device to implement this idea was invented in [1,20], and is calledsplitting. It consists
in constructing a new Markov chain with state spaceX0 ∪X1, whereXi are two copies
of the original state spaceX. The new chain possesses an atom and has a projection
which is the original chain. The ergodic properties of a chain with an atom are then
analyzed by means ofrenewal theoryand acoupling argumentis applied to the return
times to the atom. A complete account of this theory for a discrete time Markov process
is developed in the book of Meyn and Tweedie [18], from which the result needed here
is taken (Chapter 15).

For a givens > 0 consider the discrete time Markov chainXj = x(js)with transition
probabilitiesP(x, dy) ≡ Ps(x, dy) and semigroupP j ≡ T js . By the results of Sect. 4,
the Markov chain is strongly aperiodic, i.e.,P(x,A) > 0 for any open setA and for any
x and it is strong Feller. The exponential bound on the hitting time given in Theorem
3.11 implies in particular thatEx[τU ] is finite for allx ∈ X and thus we have an invariant
measureµ (for hypoelliptic diffusions this is established in [14]). By aperiodicity and
the strong Feller property, this invariant measure is unique.
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The following theorem is proved in [18]:

Theorem 5.1. If the Markov chain{Xj } is strong Feller and strongly aperiodic and if
there are a functionW > 1, a compact setU , and constantsκ < 1 andL < ∞ such
that

PW(x) ≤ κW(x)+ L1U(x), (48)

then there exist constantsr > 1 andR < ∞ such that, for any x,∑
n

rn‖P(x, ·)− µ‖W ≤ RW(x),

where the weighted variation norm‖ · ‖W is defined in Eq. (14).

By Theorem 3.10 the assumptions of Theorem 5.1 are satisfied withW = exp(θG)

and θ < (max{T1, Tn})−1. For the semigroupT t we note that we have the apriori
estimateT t exp(θG)(x) ≤ exp(γ θTr(T )t)exp(θG)(x), cf. Lemma 3.5, which shows
thatT t is a bounded operator onL∞θ (X) defined in Eq. (15). Settingt = ns + u with
0 ≤ u < s, and using the invariance ofµ one obtains

‖T t − µ‖θ ≤ ‖T nτ − µ‖θ‖T s‖θ ≤ R̃r̃−t , (49)

for somer̃ > 1 andR̃ < ∞ or equivalently∫ ∞

0
r̃ t‖Pt(x, ·)− µ‖exp(θG) ≤ R̃ exp(θG(x)).

As a consequence, for anys > 0, T s has 1 as a simple eigenvalue and the rest of the
spectrum is contained in a disk of radiusρ < 1. The exponential decay of correlations
in the stationary states follows from this.

Corollary 5.2. There exist constantsR < ∞ andr > 1 such that for allf , g with f 2,
g2 ∈ L∞θ (X), we have∣∣∣∣

∫
f T tgdµ−

∫
f dµ

∫
gdµ

∣∣∣∣ ≤ R‖f 2‖1/2
θ ‖g2‖1/2

θ r−t .

Proof. If f 2 ∈ L∞θ , we have|f (x)| ≤ ‖f 2‖1/2
θ exp(θG(x)/2) and similarly forg.

Further if Eq. (49) holds withW = exp(θG) it also holds for exp(θG/2), and thus for
someR1 < ∞ andr1 > 1 we have∣∣∣∣T tg(x)−

∫
gdµ

∣∣∣∣ ≤ R1r
−t
1 ‖g2‖1/2

θ exp

(
θG(x)

2

)
.

Therefore we obtain∣∣∣∣
∫

f T tgdµ−
∫

f dµ

∫
gdµ

∣∣∣∣ ≤
∫
|f (x)|

∣∣∣∣T tg(x)−
∫

gdµ

∣∣∣∣ dµ
≤
(∫

exp(θG)dµ

)
R1r

−t
1 ‖f 2‖1/2

θ ‖g2‖1/2
θ .
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To conclude we need to show that
∫

exp(θG)dµ < ∞. This follows from Eq. (48)
which we rewrite as

ε exp(θG(x)) ≤ exp(θG(x))− P exp(θG(x))+ L1U(x),

with ε = 1− κ. From this we obtain

ε
1

N

N∑
k=1

exp(θG(Xk)) ≤ 1

N
exp(θG(x))+ L

1

N

N∑
k=1

1U(Xk). (50)

By the Law of Large Numbers the r.h.s of Eq. (50) converges toLµ(U) which is finite,
and thus

∫
exp(θG)dµ is finite, too.  !

This concludes the proof of Theorem 2.1.

Note added in proof. Stronger spectral properties as well as a fluctuation theorem for
the entropy production are proved in [22].

Acknowledgement.We would like to thank Pierre Collet, Jean-Pierre Eckmann, Servet Martinez and Claude-
Alain Pillet for their comments and suggestions as well as Martin Hairer for useful comments on the control-
lability issues discussed in Sect. 4. L. E. Thomas is supported in part by NSF Grant 980139.

References

1. Athreya, K.B., Ney, P.: A new approach to the limit theory of recurrent Markov chains. Trans. Am. Math.
Soc.245, 493–501 (1978)

2. Bambusi, D.: Exponential stability of breathers in Hamiltonian networks of weakly coupled oscillators.
Nonlinearity9, 433–457 (1996)

3. Bach, V., Fröhlich, J., Sigal, I.M.: Quantum electrodynamics of confined nonrelativistic particles. Adv.
Math.137, 299–395 (1998)

4. Dym, H., McKean, H.P.:Gaussian processes, function theory, and the inverse spectral problem. Proba-
bility and Mathematical Statistics, Vol.31. New York–London: Academic Press, 1976

5. Eckmann, J.-P., Hairer, M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of
oscillators. Commun. Math. Phys.212, 105–164 (2000)

6. Eckmann, J.-P., Pillet C.-A., Rey-Bellet, L.: Non-equilibrium statistical mechanics of anharmonic chains
coupled to two heat baths at different temperatures. Commun. Math. Phys.201, 657–697 (1999)

7. Eckmann, J.-P., Pillet, C.-A., Rey-Bellet, L.: Entropy production in non-linear, thermally driven Hamil-
tonian systems. J. Stat. Phys.95, 305–331 (1999)

8. Ford, G.W., Kac, M., Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys.
6, 504–515 (1965)

9. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys.80, 931–970
(1995)

10. Has’minskii, R.Z.: Stochastic stability of differential equations. Alphen aan den Rijn–Germantown:
Sijthoff and Noordhoff, 1980

11. Hörmander, L.:The Analysis of linear partial differential operators. Vol. III. Berlin: Springer, 1985
12. Jakši´c, V., Pillet, C.-A.: Ergodic properties of classical dissipative systems. I. Acta Math.181, 245–282

(1998)
13. Jakši´c, V., Pillet, C.-A.,: On a model for quantum friction. III. Ergodic properties of the spin-boson

system. Commun. Math. Phys.178, 627–651 (1996)
14. Kliemann, W.: Recurrence and invariant measures for degenerate diffusions. Ann. of Prob.15, 690–702

(1987)
15. Komech, A., Spohn, H., Kunze, M.: Long-time asymptotics for a classical particle interacting with a

scalar wave field. Comm. Partial Differ. Eq.22, 307–335 (1997)
16. Kunita, H.: Supports of diffusion processes and controllability problems. In:Proc. Intern. Symp. SDE

Kyoto 1976. New York: Wiley, 1978, pp. 163–185
17. MacKay, R.S., Aubry, S.: Proof of existence of breathers for time-reversible or Hamiltonian networks of

weakly coupled oscillators. Nonlinearity7, 1623–1643 (1994)



Exponential Convergence to Non-Equilibrium Stationary States 329

18. Meyn, S.P., Tweedie, R.L.:Markov Chains and Stochastic Stability.Communication and Control Engi-
neering Series, London: Springer-Verlag London, 1993

19. Norriss, J.: Simplified Malliavin Calculus. In:Séminaire de probabilités XX. Lectures Note in Math.
1204, Berlin: Springer, 1986, pp. 101–130

20. Nummelin, E.: A splitting technique for stationary Markov Chains. Z. Wahrscheinlichkeitstheorie Verw.
Geb.43, 309–318 (1978)

21. Rey-Bellet, L., Thomas, L.E.: Asymptotic behavior of thermal non-equilibrium steady states for a driven
chain of anharmonic oscillators. Commun. Math. Phys.215, 1–24 (2000)

22. Rey-Bellet, L., Thomas, L.E.: Fluctuations of the entropy production in an harmonic chains. Preprint
2001

23. Rieder, Z., Lebowitz, J.L., Lieb, E.: Properties of a harmonic crystal in a stationary non-equilibrium state.
J. Math. Phys.8, 1073–1085 (1967)

24. Ruelle, D.: Smooth dynamics and new theoretical ideas in non-equilibrium statistical mechanics. J. Stat.
Phys.95, 393–468 (1999)

25. Ruelle, D.: Natural non-equilibrium states in quantum statistical mechanics. J. Stat. Phys.98, 57–75
(2000)

26. Spohn, H., Lebowitz, J.L.: Stationary non-equilibrium states of infinite harmonic systems. Commun.
Math. Phys.54, 97–120 (1977)

27. Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett.61, 970–973
(1988)

28. Stroock, D.W., Varadhan, S.R.S.: On the support of diffusion processes with applications to the strong
maximum principle. In:Proc. 6th Berkeley Symp. Math. Stat. Prob., Vol. III. Berkeley: Univ. California
Press, 1972, pp. 361–368

Communicated by H. Spohn


