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Abstract: We consider a model of heat conduction introduced in [6], which consists of a
finite nonlinear chain coupled to two heat reservoirs at different temperatures. We study
the low temperature asymptotic behavior of the invariant measure. We show that, in this
limit, the invariant measure is characterized by a variational principle.The main technical
ingredients are some control theoretic arguments to extend the Freidlin–Wentzell theory
of large deviations to a class of degenerate diffusions.

1. Introduction

We consider a model of heat conduction introduced in [6]. In this model a finite non-
linear chain ofn d-dimensional oscillators is coupled to two Hamiltonian heat reser-
voirs initially at different temperaturesTL,TR, and each of which is described by a
d-dimensional wave equation. A natural goal is to obtain a usable expression for the
invariant (marginal) state of the chain analogous to the Boltzmann–Gibbs prescription
µ = Z−1 exp(−H/T ) which one has in equilibrium statistical mechanics. We show
here that the invariant stateµ describing steady state energy flow through the chain is
asymptotic to the expression exp(−W(η)/T ) to leading order in the mean temperature
T , T → 0, where the actionW(η), defined on phase space, is obtained from an explicit
variational principle. The actionW(η) depends on the temperatures only through the
parameterη = (TL − TR)(TL + TR). As one might anticipate, in the limitη → 0,W(η)

reduces to the chain Hamiltonian plus a residual term from the bath interaction, i.e.,
exp(−W(η)/T ) becomes the Boltzmann–Gibbs expression.

� Present address: Department of Mathematics, University of Virginia, Kerchof Hall, Charlottesville, VA
22903, USA.
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Turning to the physical model at hand, we assume that the HamiltonianH(p, q) of
the isolated chain is assumed to be of the form

H(p, q) =
n∑

i=1

p2
i

2
+

n∑
i=1

U(1)(qi) +
n−1∑
i=1

U(2)(qi − qi+1) ≡
n∑

i=1

p2
i

2
+ V (q), (1)

whereqi andpi are the coordinate and momentum of theith particle, and whereU(1)

andU(2) areC∞ confining potentials, i.e. lim|q|→∞ V (q) = +∞.
The coupling between the reservoirs and the chain is assumed to be of dipole ap-

proximation type and it occurs at the boundary only: the first particle of the chain is
coupled to one reservoir and thenth particle to the other heat reservoir. At timet = 0
each reservoir is assumed to be in thermal equilibrium, i.e., the initial conditions of
the reservoirs are distributed according to (Gaussian) Gibbs measure with temperature
T1 = TL andTn = TR respectively. Projecting the dynamics onto the phase space of the
chain results in a set of integro-differential equations which differ from the Hamiltonian
equations of motion by additional force terms in the equations forp1 andpn. Each of
these terms consists of a deterministic integral part independent of temperature and a
Gaussian random part with covariance proportional to the temperature. Due to the inte-
gral (memory) terms, the study of the long-time limit is a difficult mathematical problem
(see [13] for the study of such systems in the case of a single reservoir). But by a further
appropriate choice of couplings, the integral parts can be treated as auxiliary variables
r1 andrn, the random parts become Markovian. Thus we obtain (see [6] for details) the
following system of Markovian stochastic differential equations on the extended phase
spaceR2dn+2d : Forx = (p, q, r), we have

q̇i = pi, j = 1, . . . , n,

ṗi = −∇qi V (q) + δ1,i r1 + δn,irn, i = 1, . . . , n,

dri = −γ (ri − λ2qi)dt + (2γ λ2Ti)
1/2dwi, i = 1, n. (2)

In Eq. (2),w1(t) andwn(t) are independentd-dimensional Wiener processes, andλ2

andγ are coupling constants.
It will be useful to introduce a generalized HamiltonianG(p, q, r) on the extended

phase space, given by

G(p, q, r) =
∑
i=1,n

(
r2
i

2λ2 − riqi

)
+ H(p, q),

whereH(p, q) is the Hamiltonian of the isolated systems of oscillators given by (1). We
also introduce the parametersε = (T1 + Tn)/2 (the mean temperature of the reservoirs)
andη = (T1 + Tn)/(T1 − Tn) (the relative temperature difference). Then Eq. (2) takes
the form

q̇ = ∇pG,

ṗ = −∇qG,

dr = −γ λ2∇rGdt + ε1/2(2γ λ2D)1/2dw, (3)

wherep = (p1, . . . , pn), q = (q1, . . . , qn), r = (r1, rn) and whereD is the 2d × 2d
matrix given byD = diag(1 + η,1 − η).
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The functionG is a Liapunov function, non-increasing in time, for the deterministic
part of the flow (3). If the system is in equilibrium, i.e, ifT1 = Tn = ε andη = 0, it is
not difficult to check that the generalized Gibbs measure

µε = Z−1 exp(−G(p, q, r)/ε),

is an invariant measure for the Markov process solving Eq. (3).
If the temperatures of the reservoirs are not identical, no explicit formula for the

invariant measureµT1,Tn can be given, in general. It is the goal of this paper to provide
a variational principle for the leading asymptotic form forµT1,Tn , at low temperature,
ε → 0. To suggest whatµT1,Tn looks like, we observe that a typical configuration of a
reservoir has infinite energy, therefore the reservoir does not only act as a sink of energy
but true fluctuations can take place. The physical picture is as follows: the system spends
most of the time very close to the critical set ofG (in fact close to a stable equilibrium)
and very rarely (typically after an exponential time) an excursion far away from the
equilibria occurs. This picture brings us into the framework of rare events, hence into
the theory of large deviations and more specifically the Freidlin–Wentzell theory [8] of
small random perturbations of dynamical systems.

In the following we employ notation which is essentially that of [8]. LetC([0, T ]) de-
note the Banach space of continuous functions (paths) with values inR2d(n+1) equipped
with the uniform topology. We introduce the following functionalI

(η)
x,T on the set of paths

C([0, T ]): If φ(t) = (p(t), q(t), r(t)) has oneL2-derivative with respect to time and
satisfiesφ(0) = x we set

I
(η)
x,T (φ) = 1

4γ λ2

∫ T

0
(ṙ + γ λ2∇rG)D−1(ṙ + γ λ2∇rG)dt, (4)

if

q̇(t) = ∇pG(φ(t)), ṗ(t) = −∇qG(φ(t)), (5)

andI (η)x,T (φ) = +∞ otherwise. Notice thatI (η)x,T (φ) = 0 if and only ifφ(t) is a solution

of Eq. (3) with the temperatureε set equal to zero. The functionalI
(η)
x,T is called a rate

function and it describes, in the sense of large deviations, the probability of the pathφ.
Roughly speaking, asε → 0, the asymptotic probability of the pathφ is given by

exp
(
−I

(η)
x,T (φ)/ε

)
.

Forx, y ∈ R2d(n+1) we defineV (η)(x, y) as

V (η)(x, y) = inf
T>0

inf
φ:φ(T )=y

I
(η)
x,T (φ), (6)

and for any setsB, C ∈ R2d(n+1) we set

V (η)(B,C) = inf
x∈B;y∈C V (η)(x, y). (7)

The functionV (η)(x, y) represents the cost to bring the system fromx to y (in an
arbitrary amount of time). We introduce an equivalence relation on the phase space
R2d(n+1): we sayx ∼ y if V (η)(x, y) = V (η)(y, x) = 0. We divide the critical set
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K = {x; ∇G(x) = 0} (about which the invariant measure concentrates) according to
this equivalence relation: we haveK = ∪iKi with x ∼ y if x ∈ Ki, y ∈ Ki andx �∼ y

if x ∈ Ki, y ∈ Kj , i �= j .
Our first assumption is on the existence of an invariant measure, the structure of the

setK and the dynamics near temperature zero. Letρ > 0 be arbitrary and denoteB(ρ)

theρ-neighborhood ofK and letτρ be the first time the Markov processx(t) which
solves (3) hitsB(ρ).

K1 The processx(t) has an invariant measure. Theω-limit set of the deterministic part
of the flow (3) (which turns out to be the set of critical values of the HamiltonianG)
can be decomposed into a finite number of inequivalent compact setsKi . Finally, for
anyε0 > 0, the expected hitting timeEx(τρ) of the diffusion with initial condition
x is bounded uniformly for 0≤ ε ≤ ε0 and uniformly inx on any compact set.

Remark 1. The assumptionK1 ensures that the dynamics is sufficiently confining in
order to apply large deviations techniques to study the invariant measure.

Remark 2. The assumptions used in [6,5] to prove the existence of an invariant measure
imply the assumption made on the structure of the critical setA. But it is not clear that they
imply the assumptions made on the hitting time. We will merely assume the validity of
conditionK1 in this paper. Its validity can be established by constructing Liapunov-like
functions for the model. Such methods allow as well to prove a fairly general theorem on
the existence of invariant measures for Hamiltonian systems coupled to heat reservoirs
and will be the subject of a separate publication [19].

Our second condition is identical to conditionH2 of [6,5].

K2 The 2-body potentialU(2)(q) is strictly convex.

Remark 3. The conditionK2 will be important to establish various regularity proper-
ties ofV (η)(x, y). It will imply several controllability properties of the control system
associated with the stochastic differential equations (3).

Following [8], we consider graphs on the set{1, . . . , L}.A graph consisting of arrows
m → n, (m ∈ {1, . . . , L} \ {i}, m ∈ {1, . . . , L}), is called a{i}-graph if

1. Every pointj , j �= i is the initial point of exactly one arrow.
2. There are no closed cycles in the graph.

We denoteG{i} the set of{i}-graphs. The weight of the setKi is defined by

W(η)(Ki) = min
g∈G({i})

∑
m→n∈g

V (η)(Km,Kn). (8)

Our main result is the following:

Theorem 1. Under the conditions K1 and K2 the invariant measure µT1,Tn = µε,η of
the Markov process (3) has the following asymptotic behavior: For any open set D with
compact closure and sufficiently regular boundary

lim
ε→0

ε logµε,η(D) = − inf
x∈DW(η)(x),
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where

W(η)(x) = min
i

(
W(η)(Ki) + V (η)(Ki, x)

)
− min

j
W(η)(Kj ). (9)

In particular, if η = 0, then

W(0)(x) = G(x) − min
x

G(x). (10)

The function W(η)(x) satisfies the bound, for η ≥ 0,

(1 + η)−1
(
G(x) − min

x
G(x)

)
≤ W(η)(x) ≤ (1 − η)−1

(
G(x) − min

x
G(x)

)
, (11)

and a similar bound for η ≤ 0.

Remark 4. Equations (10) and (11) imply thatµε,η reduces to the Boltzmann–Gibbs
expressionµε ∼ exp(−G/ε) for η → 0 in the low temperature limit. Of course, at
η = 0, they are actually equal at all temperaturesε. Moreover these equations imply that
the relative probabilityµε,η(x)/µε,η(y) is (asymptotically) bounded above and below
by

exp−
[

G(x)

ε(1 ± η)
− G(y)

ε(1 ∓ η)

]
,

so that no especially hot or cold spots develop forη �= 0.

The theorem draws heavily from the large deviations theory of Freidlin–Wentzell [8].
That theory was developed for stochastic differential equations with a non-degenerate
(elliptic) generator; but for Eq. (3) this is not the case since the random force acts
only on 2d of the 2d(n + 1) variables. A large part of this paper is devoted to simply
developing the control theory necessary to extend Freidlin–Wentzell theory to a class of
Markov processes containing our model. Diffusions with hypoelliptic generators have
been considered in the literature, e.g. [3,2]. But these works assume in effect everywhere
small-time controllability which is too strong for our purposes. Once the control theory
estimates have been established, our proof follows rather closely the proof of Freidlin–
Wentzell [8] and the presentation of it given in [3] with suitable technical modifications.
We also note that the use of Freidlin–Wentzell theory in non-equilibrium statistical
mechanics has been advocated in particular by Graham (see [10] and references therein).
In these applications to non-equilibrium statistical mechanics, as in [10], the models are
mostly taken as mesoscopic: the variables of the system describe some suitably coarse-
grained quantities, which fluctuate slightly around their average values. In contrast to
these models, ours is entirely microscopic and derived from first principles and the
small-noise limit is seen as a low-temperature limit.

We note that the variational principle forW(η) here certainly can be formulated
analogously for more complicated arrays of oscillators, plates with multiple thermo-
coupled baths, etc.

We conjecture that generically there is an onset of non-smooth behavior inW(η) as
a function ofx for η �= 0 in the case whereG has multiple critical sets, but this sort
of critical behavior, as well as other physical phenomena to be deduced fromW(η) are
questions which remain to be elucidated.
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Finally we note that the action functionalI
(η)
x,T can be related to an entropy production.

As in [7] the entropy production can be defined as0 = −F1/T1 − Fn/Tn, whereF1
andFn are energy flows from the chain to the respective reservoirs. For a given pathφ

with φ(0) = x andφ(T ) = y we noteφ̃ the time reversed path with̃φ(0) = Jy and
φ̃(T ) = Jx, whereJ (p, q, r) = (−p, q, r). A simple computation shows that for any
pathφ we haveI (η)x,T (φ) = I

(η)
Jy,T (φ̃)+R(y)−R(x)−∫ T

0 3(φ(s))ds, where0 = ε−13

andR(x) = (1+η)−1(λ−1r1−λq1)
2+(1−η)−1(λ−1rn−λqn)

2. Up to the boundary term
R the weight of a given path is the weight of the time reversed path times the exponential
of minus the entropy production along the path. In the case of equilibrium this reduces
to the usual detailed balanceI (0)x,T (φ) = I

(0)
Jy,T (φ̃)+G(y)−G(x). These identities are an

asymptotic version of identities needed for the proof of the Gallavotti-Cohen fluctuation
theorem [4,9] for stochastic dynamics [15,16,18].

The paper is organized as follows: In Sect. 2 we recall the large deviation principle for
the paths of Markovian stochastic differential equations and using methods from control
theory we prove the required regularities properties of the functionV (η)(x, y) defined
in Eq. (6). Section 3 is devoted to an extension of Freidlin–Wentzell results to a certain
class of diffusions with hypoelliptic generators (Theorem 3): we give a set of conditions
under which the asymptotic behavior of the invariant measure is proved. The result of
Sect. 2 implies that our model, under AssumptionsK1 andK2, satisfies the conditions
of Theorem 3. In Sect. 4 we prove the equality (10) and the bound (11) which depend
on the particular properties of our model.

2. Large Deviations and Control Theory

In this section we first recall a certain number of concepts and theorems which will be
central in our analysis: The large deviation principle for the sample path of diffusions
introduced by Schilder for the Brownian motion [20] and generalized to arbitrary dif-
fusions by [8,1,23] (see also [3]), and the relationship between diffusion processes and
control theory, exemplified by the Support Theorem of Stroock and Varadhan [22]. With
these tools we then prove several properties of the dynamics for our model. We prove
that “at zero temperature” the (deterministic) dynamics given is dissipative: theω-limit
set is the set of the critical points ofG(p, q, r). We also prove several properties of the
control system associated with Eq. (3): a local control property around the critical points
of G(p, q, r) and roughly speaking a global “smoothness” property of the weight of the
paths betweenx andy, whenx andy vary. The central hypothesis in this analysis is con-
dition K2: this condition implies the hypoellipticity, [12], of the generator of the Markov
semi-group associated with Eq. (3), but it implies in fact a kind of global hypoellipticity
which will be used here to prove the aforementioned properties of the dynamics.

2.1. Sample paths large deviation and control theory. Let us consider the stochastic
differential equation

dx(t) = Y (x)dt + ε1/2σ(x)dw(t), (12)

wherex ∈ X = Rn, Y (x) is a C∞ vector field,w(t) is an m-dimensional Wiener
process andσ(x) is aC∞ map fromRm to Rn. Let C([0, T ]) denote the Banach space
of continuous functions with values inRn equipped with the uniform topology. Let
L2([0, T ])denote the set of square integrable functions with values inRm andH1([0, T ])
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denote the space of absolutely continuous functions with values inRm with square
integrable derivatives. Letxε(t)denote the solution of (12) with initial conditionxε(0) =
x. We assume thatY (x) andσ(x) are such that, for arbitraryT , the paths of the diffusion
processxε(t) belong toC([0, T ]). We letP ε

x denote the probability measure onC([0, T ])
induced byxε(t), 0 ≤ t ≤ T and denoteEε

x the corresponding expectation.
We introduce the rate functionIx,T (f ) onC([0, T ]) given by

Ix,T (f ) = inf
{g∈H1:f (t)=x+∫ T

0 Y (f (s))ds+∫ T
0 σ(f (s))ġ(s)ds}

1

2

∫ T

0
|ġ(t)|2dt, (13)

where, by definition, the infimum over an empty set is taken as+∞. The rate function
has a particularly convenient form for us since it accommodates degenerate situations
where rankσ < n.

In [3], Corollary 5.6.15 (see also [1]) the following large deviation principle for the
sample paths of the solution of (12) is proven. It gives a version of the large deviation
principle which is uniform in the initial condition of the diffusion.

Theorem 2. Let xε(t) denote the solution of Eq. (12) with initial condition x. Then, for
any x ∈ Rn and for any T < ∞, the rate function Ix,T (f ) is a lower semicontinuous
function on C([0, T ]) with compact level sets (i.e. {f ; Ix,T (f ) ≤ α} is compact for any
α ∈ R). Furthermore the family of measures P ε

x satisfy the large deviation principle on
C([0, T ]) with rate function Ix,T (f ):

1. For any compact K ⊂ X and any closed F ⊂ C([0, T ]),
lim sup
ε→0

log sup
x∈K

Px(xε ∈ F) ≤ − inf
x∈K inf

φ∈F Ix,T (φ).

2. For any compact K ⊂ X and any open G ⊂ C([0, T ]),
lim inf
ε→0

log inf
x∈K Px(xε ∈ G) ≥ − sup

x∈K
inf
φ∈G Ix,T (φ).

Recall that for our model given by Eq. (3), the rate function takes the form given in
Eqs. (4) and (5). We introduce further the cost functionVT (x, y) given by

VT (x, y) = inf
φ∈C([0,T ]):φ(T )=y

Ix,T (φ). (14)

HeuristicallyVT (x, y) describes the cost of forcing the system to be aty at timeT

starting fromx at time 0. The functionV (x, y) defined in the introduction, Eq. (6) is
equal to

V (x, y) = inf
T>0

VT (x, y), (15)

and describes the minimal cost of forcing the system fromx to y in an arbitrary amount
of time.

The form of the rate function suggests a connection between large deviations and
control theory. In Eq. (13), the infimum is taken over functionsg ∈ H1([0, T ])which are
more regular than a path of the Wiener process. If we do the corresponding substitution
in Eq. (12), we obtain an ordinary differential equation

ẋ(t) = Y (x(t)) + σ(x(t))u(t), (16)
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where we have setu(t) = ε1/2ġ(t) ∈ L2([0, T ]). The mapu is called a control and Eq.
(16) a control system. We fix an arbitrary timeT > 0. We denote byϕu

x : [0, T ] → Rn

the solution of the differential equations (16) with controlu and initial conditionx. The
correspondence between the stochastic system Eq. (12) and the deterministic system
Eq. (16) is exemplified by the Support Theorem of Stroock and Varadhan [22]. The
support of the diffusion processx(t) with initial conditionx on [0, T ], is, by definition,
the smallest closed subsetSx of C([0, T ]) such that

Px[x(t) ∈ Sx] = 1 .

The Support Theorem asserts that the support of the diffusion is equal to the set of
solutions of Eq. (16) as the controlu is varied:

Sx = {ϕu
x : u ∈ L2([0, T ]) } ,

for all x ∈ Rk. The control system (16) is said to bestrongly completely controllable, if
for anyT > 0, and any pair of pointsx, y, there exist a controlu such thatϕu

x (0) = x and
ϕu
x (T ) = y. In [7] it is shown that, under conditionK2, the control system associated

with Eq. (3) is strongly completely controllable. This is an ergodic property and this
implies, [7], uniqueness of the invariant measure (provided it exists). In terms of the
cost functionVT (x, y) defined in (14), strong complete controllability simply means
thatVT (x, y) < ∞, for anyT > 0 and anyx, y. The large deviation principle, Theorem
2, gives more quantitative information on the actual weight of paths betweenx andy in
timeT , in particular that the weight is∼ exp(−1

ε
VT (x, y)). As we will see below, these

weights will determine completely the leading (exponential) behavior of the invariant
measure forxε(t), ε ↓ 0.

2.2. Dissipative properties of the dynamics. We first investigate theω-limit set of the
dynamics “at temperature zero”, i.e, when both temperaturesT1, Tn are set equal to
zero in the equations of motion. In this case the dynamics is deterministic and, as the
following result shows, dissipative.

Lemma 1. Assume condition K2. Consider the system of differential equations given by

q̇i = ∇pi
G i = 1, · · · , n,

ṗi = −∇qiG i = 1, · · · , n, (17)

ṙi = −γ λ2∇riG i = 1, n.

Then the ω-limit set of the flow given by Eq. (17) is the set of critical points of the
generalized Hamiltonian G(p, q, r) = ∑

j=1,n(λ
−2r2

j /2 − rj qj ) + H(p, q), i.e., the

set A = {
x ∈ R2d(n+1) : ∇G(x) = 0

}
.

Proof. As noted in the introductionG(x) is a Liapunov function for the flow given by
(17). A simple computation shows that

d

dt
G(x(t)) = −γ λ2

∑
i=1,n

(λ−2ri(t) − qi(t))
2 = −γ λ2

∑
i=1,n

|∇riG(x(t))|2 ≤ 0.

Therefore it is enough to show that the flow does not get “stuck” at some point of the
hyper-surfaces(λ−2ri − qi)

2 = 0, i = 1, n which does not belong to the setA.
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Let us assume the contrary, i.e.,G(x(t)) is constant fort ∈ [T1, T2] so thatdG/dt =
0, implying that

λ−2r1(t) − q1(t) = ∇r1G(x(t)) = 0. (18)

Taking the time derivative of Eq. (18) yieldsp1 = ∇p1G = 0. Sincep1 ≡ 0, q1 is
constant, by Eq. (18)r1 is constant, and

0 = −ṗ1(t) = ∇q1G(x(t)) = ∇q1V (q(t)) − r1(t). (19)

Equation (19) implies thatq2 is constant, since∇q1V is a function ofq1 andq2 only
and is a diffeomorphism inq2 (sinceU(2) is strictly convex). Thusp2 = q̇2 = ∇p2G =
0. Proceeding inductively we find that ifG(x(t)) is constant fort ∈ [T1, T2], then
∇G(x(t)) = 0. This concludes the proof of Lemma 1.��

2.3. Continuity properties of V (η)
T (x, y). It will be important to establish certain con-

tinuity properties of the cost functionV (η)
T (x, y). We prove first a global property: we

show that for any timeT , V (η)
T (x, y) as a map fromX × X → R is everywhere finite

and upper semicontinuous. Furthermore we need a local property ofV
(η)
T (x, y) near the

ω-limit set of the zero-temperature dynamics (see Lemma 1). We prove that ifx andy
are sufficiently close to thisω-limit set thenV (η)

T (x, y) is small. Both results are obtained
using control theory and hypoellipticity.

Proposition 1. Assume condition K2. Then the functions V
(η)
T , for all T > 0 and V (η)

are upper semicontinuous maps : X × X → R.

Proof. By definitionV
(η)
T (y, z) is given by

V
(η)
T (y, z) = inf

1

2

∫ T

0
(u1(t)

2 + un(t)
2)dt, (20)

where the infimum in (20) is taken over allu = (u1, un) ∈ L2([0, T ]) such that

q̇ = ∇pG,

ṗ = −∇qG,

ṙ = −γ λ2∇rG + (2γ λ2D)1/2u, (21)

with boundary conditions(p(0), q(0), r(0)) = y and(p(T ), q(T ), r(T )) = z. In other
words, the infimum in (20) is taken over all controlsu which steery to z.

We first show that, for anyy andz, there is a control which steersy to z, i.e, that
V

(η)
T (y, z) < ∞. By conditionK2, ∇qU

(2)(q) is a diffeomorphism. As a consequence
the identity (we setr1 ≡ q0, andrn = qn+1)

q̈l = −∇qlG(ql−1, ql, ql+1), l = 1, . . . , n,

can be solved for eitherql−1 or ql+1: there are smooth functionsGl andHl such that

ql−1 = Gl(ql, q̈l , ql+1), ql+1 = Hl(ql−1, ql, q̈l). (22)



10 L. Rey-Bellet, L. E. Thomas

Using this we rewrite now the equations in the following form: We assume for simplicity
n, the number of oscillators, is an even number and we setj = n/2. (If n is odd, take
j = (n+1)/2 and up to notational modifications the argument goes as in the even case.) It
follows inductively from Eq. (22) and their derivatives and from the equation forr1 = q0
andrn = qn+1 (see Eq. (21)) that we can expressu1, un andq0, . . . , qn+1, p1, . . . , pn

as functions ofqj andqj+1 and their derivatives up to order 2j + 1. Notingq[α] ≡
(q, q(1), . . . , q(α)), a straightforward induction argument shows that there are smooth
mapsB andN so that

(u1, un) = B
(
q

[2j+1]
j , q

[2j+1]
j+1

)
, (23)

and

(q0, . . . , qn+1, p1, . . . , pn) = N
(
q

[2j ]
j , q

[2j ]
j+1

)
.

Conversely, differentiating repeatedly the equations of motion we can expressq
[2j ]
j and

q
[2j ]
j+1 as a function ofq0, . . . , qn+1, pn, . . . , pn: there is a smooth mapM such that(

q
[2j ]
j , q

[2j ]
j+1

)
= M(q0, . . . , qn+1, pn, . . . , pn).

ThusN is a diffeomorphism with inverseM.
We have proven the following: The system of Eqs. (21) with given boundary condi-

tions att = 0 andt = T is equivalent to Eq. (23) with the boundary data(
q

[2j ]
j (0), q[2j ]

j+1(0)
)

= M(y),
(
q

[2j ]
j (T ), q

[2j ]
j+1(T )

)
= M(z). (24)

From this the assertion of the theorem follows easily: First we see thatV
(η)
T (y, z) is finite,

for all T > 0 and for ally, z. Indeed choose any sufficiently smooth curvesqj (t) and
qj+1(t)which satisfies the boundary conditions (24) and consider theugiven by Eq. (23).

Then the function(q0(t), . . . , qn+1(t), p1(t), . . . , pn(t)) = N
(
q

[2j ]
j (t), q

[2j ]
j+1(t)

)
is a

solution of Eq. (21) with a controlu(t) given by (23) which steersy to z.
In order to prove the upper semicontinuity ofV

(η)
T (y, z), let us choose someε > 0.

By definition ofV (η)
T there is a controlu which steersy to z along a pathφ = φu such

that

Iy,T (φ
u) ≤ V

(η)
T (y, z) + ε/2,

and

u(t) = B
(
q

[2j+1]
j (t), q

[2j+1]
j+1 (t)

)
.

Let δ be chosen sufficiently small so that if

sup
t∈[0,T ]

|q[2j+1]
j − q̃

[2j+1]
j | + |q[2j+1]

j+1 − q̃
[2j+1]
j+1 | ≤ δ, (25)
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for q̃j q̃j+1 corresponding to a path̃φ and controlũ, then

sup
t∈[0,T ]

|u(t) − ũ(t)| ≤
√

ε

T
(26)

is true. But sinceN is a diffeomorphism, the set{(ỹ, z̃); φ̃(0) = ỹ, φ̃(T ) = z̃} with φ̃

satisfying Eqs. (25) and (26) is a neighborhood of(y, z). Hence

V
(η)
T (ỹ, z̃) ≤ Iỹ,T (φ

ũ) ≤ V
(η)
T (y, z) + ε.

This shows the upper semicontinuity ofV (η)
T (y, z) and the upper semicontinuity of

V (η)(y, z) follows easily from this. This concludes the proof of Lemma 1.��
An immediate consequence of this lemma is a bound on the cost function around

critical points of the generalized HamiltonianG.

Corollary 1. For any x ∈ A = {y : ∇G(y) = 0} and any h > 0 there is δ > 0 such
that, if |y − x| + |z − x| ≤ δ, then one has

V (η)(y, z) ≤ h.

Proof. If x ∈ A, x is a critical point of Eq. (17) and, as a consequence, the control
u ≡ 0 steersx to x and henceV (η)(x, x) = 0. The upper semicontinuity ofV (η)(y, z)

immediately implies the statement of the corollary.��
Remark 5. This corollary slightly falls short of what is needed to obtain the asymptotic
of the invariant measure. More detailed information about the geometry of the control
paths around the critical points is needed and will be proved in the next subsection.

2.4. Geometry of the paths around the critical points. Let us consider a control system
of the form

ẋ = Y (x) +
m∑
i=1

Xi(x)ui, (27)

wherex ∈ Rn, Y (x),Xi(x) are smooth vector fields. We assume thatY (x),Xi(x) are
such that Eq. (27) has a unique solution for all timet > 0. We want to investigate
properties of the set which can be reached from a given point by allowing only controls
with bounded size. The class of controlsu we consider is given by

UM = {u piecewise smooth, with |ui(t)| ≤ M , 1 ≤ i ≤ m} .

We denoteYM≤τ (x) the set of points which can be reached fromx in time less thanτ
with a controlu ∈ UM . We say that the control system issmall-time locally controllable
(STLC) atx if YM≤τ (x) contains a neighborhood ofx for everyτ > 0.

The following result is standard in control theory, see e.g. [21,17] for a proof.

Proposition 2. Consider the control system Eq. (27) with u ∈ UM . Let x0 be a critical
point of Y (x), i.e., Y (x0) = 0. If the linear span of the brackets

adk(Y )(Xi)(x) i = 1, . . . , m, k = 0,1,2, . . . ,

has rank n at x0 then Eq. (27) is STLC at x0.
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Proof. One proves Lemma 2 by linearizing aroundX0 and using e.g. the implicit function
theorem, see e.g. [17], Chapter 6, Theorem 1.��

As a consequence of Lemma 2 and results obtained in [6] one gets

Lemma 2. Consider the control system given by Eqs. (21) with u ∈ UM . Let x0 be a
critical point of G(x). If condition K2 is satisfied, then the system (21) is STLC at x0.

Proof. An explicit computation, see [6], shows that conditionK2 implies that the brack-
ets

adk(Y )(Xi)(x) i = 1, . . . , m, k = 0, . . . , n

generates the tangent space at each pointx, in particular at every critical pointx0.
Therefore by Lemma 2, the control system Eq. (21) is STLC atx0. ��

With these results we can derive the basic fact on the geometry of the control paths
around critical points ofG(x).

Proposition 3. Consider the control system given by (21). Let x0 be a critical point of
G(x) and B(ρ) the ball of radius ρ centered at x0. Then for any h > 0, ρ′ > 0, there
are M , T > 0, and ρ > 0 with ρ < ρ′/3 such that for all x, y ∈ B(ρ), there is u ∈ UM

with

φu(0) = x, φu(T ) = y, φu(t) ∈ B(2ρ′/3) for t ∈ [0, T ],
and

Ix,T (φ
u) ≤ h.

Proof. Together with the control system (21), we consider the time-reversed system

˙̃q = −∇pG,

˙̃p = ∇qG,

˙̃r = γ λ2∇rG + (2γ λ2D)1/2u. (28)

Lemma 2 implies the STLC of the control system (21). Furthermore from Lemma 2 it is
easy to see the control system (28) is STLC if and only if the control system (21) is. We
noteφu (φ̃u) the solution of Eq. (21) (Eq. (28)) andYM≤T (x) (ỸM≤T (x)) the set of reachable
points for the control system (21) ((28)). We now chooseM andT such thatM2T ≤ h

and such thatYM≤T (x), Ỹ
M≤T (x) ⊂ B(2ρ′/3). By Lemma 2,YM≤T (x) andỸM≤T (x) contain

a neighborhoodB(ρ) of x0 for |x − x0| sufficiently small, withρ < ρ′/3. Therefore
there are controlsu1, u2 ∈ UM andτ1, τ2 ≤ T such that

φu1(0) = x0, φ
u1(τ1) = y, φ̃u2(0) = x0, φ̃

u2(τ2) = x.

By reversing the time, the trajectorỹφu2(t) yields a trajectoryφu2(t) with φu2(0) = x

andφu2(τ2) = x0. Concatenating the trajectoriesφu2(t) andφu1(t) yields a pathφ from
x to y which does not leave the ballB(2ρ′/3) and for which we have the estimate

Ix,2T (φ) = 1

2

∫ τ1+τ2

0
dt |u(t)|2 ≤ 1

2
M2(τ1 + τ2) ≤ h,

and this concludes the proof of Corollary 3.��
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3. Asymptotics of the Invariant Measure

We consider a stochastic differential equation of the form

dxε = Y (xε) + ε1/2σ(xε)dw, (29)

wherex ∈ X = Rn, Y (x) is aC∞ vector field,σ(x) a C∞ map fromRm to Rn and
w(t) a standardm-dimensional Wiener process. We view the stochastic process given
by Eq. (29) as a small perturbation of the dynamical system

ẋ = Y (x). (30)

We denoteIx,T (·) the large deviation functional associated with Eq. (29) (see Eq. (13))
and denoteVT (x, y) andV (x, y) the cost functions given by (14) and (15). Functions
V (Ki,Kj ), V (Ki, z), W(Ki) andW(z) are defined analogously as in Eqs.(6), (7), (8),
and (9).

We assume that the diffusionxε satisfies the conditionK1 in the introduction. In
addition we require

L2 The diffusion processxε(t) has an hypoelliptic generator, and for anyx in theω-
limit set of the deterministic flow (30) the control system associated with Eq. (29)
is small-time locally controllable.

L3 The diffusion process is strongly completely controllable and, for anyT > 0,
VT (x, y) is upper semicontinuous as a map fromX × X to R.

Remark 6. It is shown in Sect. 2 that, for the model we consider, the conditionK2 implies
that theω-limit set of deterministic flow is the set of critical values of the Hamiltonian
G as well as ConditionsL2 andL3.

We call a domainD ⊂ X regular if the boundary ofD, ∂D, is a piecewise smooth
manifold. Then we have

Theorem 3. Assume Conditions K1, L2, and L3 . Let D be a regular domain with
compact closure such that dist(D,∪iKi) > 0. Then the (unique) invariant measure µε

of the process xε(t) satisfies

lim
ε→0

ε lnµε(D) = − inf
z∈DW(z). (31)

In particular if there is a single critical set K one has

lim
ε→0

ε lnµε(D) = − inf
z∈D V (K, z). (32)

We first recall some general results on hypoelliptic diffusions obtained in [14], in
particular a very useful representation of the invariant measureµε in terms of embedded
Markov chains [11], see Proposition 4 below. Then we prove the large deviation esti-
mates. LetU andV be open subsets ofX with compact closure withU ⊂ V . Below,U
andV will be the disjoint union of small neighborhoods of the setsKi . We introduce an
increasing sequence of Markov timesτ0, σ0, τ1, . . . defined as follows. We setτ0 = 0
and

σn = inf {t > τn : xε(t) ∈ ∂V }, (33)

τn = inf {t > σn−1 : xε(t) ∈ ∂U}. (34)
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As a consequence of hypoellipticity and the strong complete controllability of the con-
trol problem associated with the diffusionxε(t) (ConditionsL2 andL3) we have the
following result, [14], Theorem 4.1 : If the diffusionxε(t) is hypoelliptic and strongly
completely controllable then the diffusion admits a (unique) invariant measureµε if
and only ifxε(t) is positive recurrent. It follows from this result that, almost surely, the
Markov timesτj andσj defined in Eqs. (33) and (34) are finite.

An important ingredient in the proof of this result in [14] is the following representa-
tion of the invariant measureµε in terms of an invariant measurelε(dx) for the Markov
chain{xε(τj )} on the (compact) state space∂U , e.g. [11], Chap. IV, Lemma 4.2. for a
proof.

Proposition 4. Let the measure νε be defined as

νε(D) =
∫
∂U

lε(dx)E
ε
x

∫ τ1

0
1D(xε(t))dt, (35)

where D is a Borel set and 1D is the characteristic function of the set D. Then one has

µε(D) = νε(D)

νε(X)
.

Up to normalization, the invariant measureµε assigns to a setD a measure equal to the
time spent by the process inD between two consecutive hits on∂U .

The proof of Theorem 3 is quite long and will be split into a sequence of lemmas. The
proof is based on the following ideas: Asε → 0 the invariant measure is more and more
concentrated on a small neighborhood of the critical set∪iKi . To estimate the measure
of a setD one uses the representation of the invariant measure given in Proposition
4, where the setsU andV are neighborhoods of the sets{Ki}. Let ρ > 0 and denote
B(i, ρ) theρ-neighborhood ofKi andB(ρ) = ∪iB(i, ρ). Let D be a regular open set
such that dist(∪iKi,D) > 0. We chooseρ′ so small that dist(B(i, ρ′), B(j, ρ′)) > 0,
for i �= j and dist(B(i, ρ′),D) > 0, for i = 1, . . . , L, and we chooseρ > 0 such that
0 < ρ < ρ′. We setU = B(ρ) andV = B(ρ′). We letσ0 andτ1 be the Markov times
defined in Eqs. (33) and (34) and letτD be the Markov time defined as follows:

τD = inf {t : xε(t) ∈ D}.
The first two lemmas will yield an upper bound onνε(D), the unnormalized measure

given by Eq. (35). The first lemma shows that, forε sufficiently small, the probability
that the diffusion wanders around without hittingB(ρ) or D is negligible.

Lemma 3. For any compact set K one has

lim
T→∞ lim sup

ε→0
ε log sup

x∈K
P ε
x (min{τD, τ1} > T ) = −∞.

Proof. From ConditionK1 and the Markov inequality we obtain

P ε
x (min{τD, τ1} > T ) ≤ 1

T
Eε

x(min{τD, τ1}) ≤ 1

T
Eε

x(τ1) < ∞,

uniformly in ε → 0, and byL2, uniformly in x ∈ K, since the diffusion has an
hypoelliptic generator and thus,Ex(τ1) is aC∞ function ofx. ��
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Instead of the quantitiesV (Ki,Kj ) andV (Ki, z), it is useful to introduce the fol-
lowing quantities:

Ṽ (Ki,Kj ) = inf
T>0

inf
{
Ix,T (φ), φ(0) ∈ Ki, φ(T ) ∈ Kj , φ(t) �∈ ∪l �=i,jKl

}
,

Ṽ (Ki, z) = inf
T>0

inf
{
Ix,T (φ), φ(0) ∈ Ki, φ(T ) = x, φ(t) �∈ ∪l �=iKl

}
.

The following lemma will yield an upper bound onνε(D), whereνε is the (unnor-
malized) measure given by Eq. (35).

Lemma 4. Given h > 0, for 0 < ρ < ρ′ sufficiently small one has

(i) lim sup
ε→0

ε log sup
y∈∂B(i,ρ′)

P ε
y (τD < τ1) ≤ − ( inf

z∈D Ṽ (Ki, z) − h),

(ii) lim sup
ε→0

ε log sup
y∈∂B(i,ρ′)

P ε
y (xε(τ1) ∈ ∂B(j, ρ)) ≤ − (Ṽ (Ki,Kj ) − h).

Proof. We first prove item (i). If infz∈D Ṽ (Ki, z) = +∞ there is no curve connecting
Ki to z ∈ D without touching the otherKj , j �= i. ThereforeP ε

y (τD < τ1) = 0 and

there is nothing to prove. Otherwise, forh > 0 we setṼh = inf z∈D Ṽ (Ki, z)− h. Since
V (y, z) satisfies the triangle inequality, we have, by ConditionL2 (see Corollary 1),
that, forρ small enough,

inf
y∈∂B(i,ρ′)

inf
z∈D Ṽ (y, z) ≥ inf

z∈D Ṽ (Ki, z) − sup
y∈∂B(i,ρ′)

Ṽ (Ki, y) ≥ Ṽh,

where

Ṽ (y, z) = inf
T>0

inf
{
Ix,T (φ), φ(0) = y, φ(T ) = z, φ(t) �∈ ∪l �=iKl

}
.

By Lemma 3, there isT < ∞ such that

lim sup
ε→0

ε log sup
y∈∂B(i,ρ′)

P ε
y (τD ∧ τ1 > T ) < −Ṽh. (36)

LetGT denote the subset ofC([0, T ]) which consists of functionsφ(t) such thatφ(t) ∈
D for somet ∈ [0, T ] andφ(t) �∈ B(ρ) if t ≤ inf {s, φ(s) /∈ D}. The setGT is closed
as is seen by considering its complement.

We have

inf
y∈∂B(i,ρ′)

inf
φ∈GT

Iy,T (φ) ≥ inf
y∈∂B(i,ρ′)

inf
z∈D

Ṽ (y, z) ≥ Ṽh,

and thus by Theorem 2, we have

lim sup
ε→0

ε log sup
y∈∂B(i,ρ′)

P ε
y (xε ∈ GT ) ≤ − inf

y∈∂B(i,ρ′)
inf

φ∈GT

Iy,T (φ) ≤ −Ṽh. (37)

We have the inequality

P ε
y (τD < τ1) ≤ P ε

y (τD ∧ τ1 > T ) + P ε
y (xε ∈ GT ),
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and combining the estimates (36) and (37) yields

lim sup
ε→0

ε log sup
y∈∂B(i,ρ′)

P ε
y (τD ∧ τ1) ≤ −Ṽh.

This completes the proof of item (i) of Lemma 4.
The proof of part (ii) of the lemma is very similar to the first part and follows closely

the corresponding estimates in [8], Chapter 6, Lemma 2.1. The details are left to the
reader. ��

The following lemma will yield a lower bound onνε(D). It makes full use of the
information contained in Lemmas 1 and 3.

Lemma 5. Given h > 0, for 0 < ρ′ < ρ sufficiently small one has

(i) lim inf
ε→0

ε log inf
x∈∂B(i,ρ)

P ε
x (τD < τ1) ≥ −( inf

z∈D Ṽ (Ki, z) + h),

(ii) lim inf
ε→0

ε log inf
x∈∂B(i,ρ)

P ε
x (xε(τ1) ∈ ∂B(j, ρ)) ≥ −(Ṽ (Ki,Kj ) + h). (38)

Proof. We start with the proof of item (i). If infz∈D Ṽ (Ki, z) = +∞ there is nothing
to prove. Otherwise leth > 0 be given. By ConditionL2, (see Corollary 3), there areρ
andρ′ > 0 with ρ < ρ′/3 andT0 < ∞ such that, for allx ∈ ∂B(i, ρ), there is a path
ψx ∈ C([0, T0]) which satisfiesIx,T0(ψ

x) ≤ h/3 with ψx(0) = x andψx(T0) = x0 ∈
Ki andψx(t) ∈ B(2ρ′/3), 0 ≤ t ≤ T0.

By ConditionL3, there arez ∈ D,T1 < ∞andφ1 ∈ C([0, T1])such thatIx0,T1(φ1) ≤
inf z∈D Ṽ (Ki, z) + h/3 andφ1(0) = x0 ∈ Ki andφ1(T1) = z andφ1 does not touch
Kj , with j �= i. We may and will assume thatρ andρ′ are chosen such that 2ρ′ ≤
dist(φ1(t),∪j �=iKj ). We noteG = dist(z, ∂D). Let x1 be the point of last intersection
of φ1 with ∂B(i, ρ) and lett1 be such thatφ1(t1) = x1. We noteφ2 ∈ C([0, T2]), with
T2 = T1 − t1, the path obtained fromφ1 by deleting up to timet1 and translating in time.
Notice that the pathφ2 may hit∂B(i, ρ′) several times, but hits∂B(i, ρ) only at time 0.
Denote as

σ = inf {t : φ2(t) ∈ ∂B(i, ρ′)} (39)

the first timeφ2(t) hits∂B(i, ρ′). We chooseG′ so small that ifψ ∈ C([0, T2]) belongs
to theG′-neighborhood ofφ2, thenψ(t) does not intersect∂B(i, ρ) and∂B(i, ρ′) for
0 < t < σ and does not intersect∂B(i, ρ)} for t > σ .

By ConditionL2, there areT3 < ∞ andφ3 ∈ C([0, T3]) such thatφ3(0) = x0,
φ3(T3) = x1, φ3(t) ∈ B(2ρ′/3), 0 ≤ t ≤ T3, andIx0,T3(φ3) ≤ h/3. Concatenatingψx ,
φ3 andφ2, we obtain a pathφx ∈ C([0, T ]) with T = T0 + T3 + T2 andIx,T (φx) ≤
inf z∈D Ṽ (Ki, z) + h. By construction the pathφx avoids∂B(i, ρ)} after the timeT0 +
T3 + σ , whereσ is defined in Eq. (39).

We consider the open set

UT =
⋃

x∈∂B(ρ)

{
ψ ∈ C([0, T ]) : ‖ψ − φx‖ < min{ρ

3
,
G

2
,
G′

2
}
}
.
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By construction the event{xε(t) ∈ UT } is contained in the event{τD ≤ τ1}. By Theo-
rem 2 we have

lim inf
ε→0

ε log inf
x∈∂B(ρ)

P ε
x (τD < τ1) ≥ lim inf

ε→0
ε log inf

x∈∂B(ρ)
P ε
x (xε ∈ UT )

≥ − sup
x∈∂B(ρ)

inf
ψ∈UT

Ix,T (ψ)

≥ − sup
x∈∂B(ρ)

Ix,T (φ
x)

≥ −( inf
z∈D Ṽ (Ki, z) + h).

This concludes the proof of item (i).
The proof of (ii) follows very closely the corresponding estimate in [8], Chapter 6,

Lemma 2.1, which considers the case where the generator of the diffusion is elliptic: for
anyh > 0 one constructs pathsφxy ∈ C([0, T ]) fromx ∈ ∂B(i, ρ) toy ∈ ∂B(j, ρ) such
thatIx,T (φxy) ≤ Ṽ (Ki,Kj ) + h/2 and such that ifxε(t) is in a small neighborhood of
φxy , thenxε(τ1) ∈ ∂B(j, ρ).As in part (i) of the lemma, the key element to construct the
pathsφxy is ConditionL2 of small-time controllability around the setsKi . The details
are left to the reader.��

The following two lemmas give upper and lower bounds on the normalization constant
νε(X), whereνε is defined in Eq. (35).

Lemma 6. For any h > 0, we have

lim inf
ε→0

ε logνε(X) ≥ −h.

Proof. We choose an arbitraryh > 0. For anyρ′ > 0 we have the inequality:

νε(X) ≥ νε(B(ρ′))

=
∫
∂B(ρ)

lε(dx)E
ε
x

∫ τ1

0
1B(ρ′)(xε(t))dt

≥
∫
∂B(ρ)

lε(dx)E
ε
x

∫ σ0

0
1B(ρ′)(xε(t))dt

=
∫
∂B(ρ)

lε(dx)E
ε
x(σ0).

Using the small-time local controllability around the setKi , ConditionL2, as in Lemma 5
it is easy to show, as in Lemma 1.8 of [8] that for anyh > 0,

inf
x∈∂B(ρ)

Eε
x(σ0) ≥ exp(−h

ε
),

for ε andρ′ sufficiently small. This completes the proof of Lemma 6.��
To get an upper bound on the normalization constantνε(X) we will need an upper

bound on the escape time out of the ballB(ρ′) around∪iKi , starting fromx ∈ ∂B(ρ).

Lemma 7. Given h > 0, for 0 < ρ < ρ′ sufficiently small,

lim sup
ε→0

ε log sup
x∈∂B(ρ)

Eε
x(σ0) ≤ h.
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Proof. Since we have the property of small time local controllability near the setsKi ,
the proof of this lemma is similar to the proof of Lemma 1.7 of [8] in the elliptic case.
��

With this lemma we have proved all large deviations estimates needed in the proof
of Theorem 3. We will need upper and lower estimates onlε(∂B(i, ρ)) where lε is
the invariant measure of the Markov chainxε(τj ). These estimates are proved in [8],
Chapter 6, Sects. 3 and 4 and are purely combinatorial and rely on the representation
of the invariant measure of a Markov chain with a finite state space via graphs on
the state space. By Lemma 4, (ii) and 5, (ii) we have the following estimates on the
probability transitionq(x, y), x, y ∈ ∂B(ρ) of the Markov chainxε(τj ): Givenh > 0,
for 0 < ρ < ρ′ sufficiently small,

exp−1

ε
(Ṽ (Ki,Kj ) + h) ≤ q(x, ∂B(j, ρ)) ≤ exp−1

ε
(Ṽ (Ki,Kj ) − h), (40)

for all x ∈ ∂B(i, ρ) and sufficiently smallε. It is shown in [8], Chapter 6, Lemmas 3.1
and 3.2 that the bound (40) implies a bound onlε(∂B(i, ρ)). One obtains

exp

(
−1

ε
(W̃ (Ki) − min

j
W̃ (Kj ) + h)

)
≤ lε(∂B(i, ρ)) ≤

≤ exp

(
−1

ε
(W̃ (Ki) − min

j
W̃ (Kj ) − h)

)
(41)

for sufficiently smallε, where

W̃ (Ki) = min
g∈G{i}

∑
(m→n)∈g

Ṽ (Km,Kn). (42)

Also in [8], Chapter 6, Lemmas 4.1 and 4.2W̃ (Ki) is shown to be in fact equal toW(Ki)

defined in Eq. (8) and that the functionW(x), defined by Eq. (9), satisfies the identity

W(x) = min
i

(W(Ki) + V (Ki, x)) − min
j

W(Kj )

= min
i

(W̃ (Ki) + Ṽ (Ki, x)) − min
j

W̃ (Kj ). (43)

We can turn to the proof of Theorem 3.
Proof of Theorem 3. In order to prove Eq. (31), it is enough to show that, for anyh > 0,
there isε0 > 0 such that, forε < ε0 we have the inequalities:

µε(D) ≥ exp

(
−1

ε
( inf
z∈DW(z) + h)

)
, (44)

µε(D) ≤ exp

(
−1

ε
( inf
z∈DW(z) − h)

)
. (45)

We letρ′ > 0 be such thatρ′ < dist(xmin,D). Recall thatτD = inf {t : xε(t) ∈ D}
is the first hitting time of the setD. We have the following bound on theνε(D):

νε(D) ≤
∑
i

lε(∂B(i, ρ)) sup
x∈∂B(i,ρ)

Eε
x

∫ τ1

0
1D(xε(t))dt

≤ Lmax
i

lε(∂B(i, ρ)) sup
x∈∂B(i,ρ)

P ε
x (τD ≤ τ1) sup

y∈∂D
Eε

y(τ1). (46)
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By K1, there exists a constantC independent ofε such that

sup
y∈∂D

Eε
y(τ1) ≤ C, (47)

for ε ≤ ε0. From Lemma 4, (i), givenh > 0, for sufficiently small 0< ρ < ρ′, we have
the bound

P ε
x (τD < τ1) ≤ exp

(
−1

ε
( inf
z∈D Ṽ (Ki, z) − h/4)

)
, (48)

for sufficiently smallε. From Eq. (41), givenh > 0, for sufficiently small 0< ρ < ρ′,
we have the bound

lε(∂B(i, ρ)) ≤ exp

(
−1

ε
(W̃ (Ki) − min

j
W̃ (Kj ) − h/4)

)
. (49)

From the estimates (46)–(49), and the identity (43) we obtain the bound

νε(D) ≤ exp

(
−1

ε
(min
z∈D W(z) + h/2)

)
, (50)

for sufficiently smallε. From Lemma 6, givenh > 0, for sufficiently small 0< ρ < ρ′,
we have the bound

νε(X) ≥ exp

(
− h

2ε

)
, (51)

for sufficiently smallε. Combining estimates (50) and (51), we obtain that

µε(D) ≤ exp

(
−1

ε
( inf
z∈DW(z) − h)

)
,

for sufficiently smallε and this gives the bound (45).
In order to prove (44), we consider the setDδ = {x ∈ D : dist(x, ∂D) ≥ δ}. For

δ sufficiently small,Dδ �= ∅. By L3, Ṽ (Ki, z) is upper semicontinuous inz so that
Ṽ (Ki, z

′) ≤ Ṽ (Ki, z) + h/4, for |z′ − z| ≤ δ. Therefore

inf
z∈Dδ

Ṽ (Ki, z) ≤ inf
z∈D Ṽ (Ki, z) + h/4. (52)

We have the bound

νε(D) ≥ max
i

lε(∂B(i, ρ)) inf
x∈∂B(i,ρ)

P ε
x (τDδ < τ1) inf

x∈∂Dδ

Eε
x

∫ τ1

0
1D(xε(t))dt. (53)

There isε0 > 0 and a constantC > 0 such that we have the bound

inf
x∈Dδ

Eε
x

∫ τ1

0
1D(xε(t))dt ≥ C > 0, (54)

uniformly in ε ≤ ε0. From Eq. (41), givenh > 0, for sufficiently small 0< ρ < ρ′, we
have the bound

lε(∂B(i, ρ)) ≥ exp

(
−1

ε
(W̃ (Ki) − min

j
W̃ (Kj ) + h/4)

)
, (55)
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for sufficiently smallε. Furthermore, by Lemma 5 and inequality (52), givenh > 0, for
0 < ρ < ρ′ sufficiently small, we have

inf
x∈∂B(i,ρ)

P ε
x (τDδ ≤ τ1) ≥ exp

(
−1

ε
( inf
z∈D Ṽ (Ki, z) + h/4)

)
, (56)

for sufficiently smallε. Combining estimates (53)–(56) and identity (43) we find

νε(D) ≥ exp

(
−1

ε
( inf
z∈DW(z) + h/2)

)
. (57)

In order to give an upper bound on the normalization constantνε(X), we use Eq. (35).
Using the Markov property, we obtain

νε(X) =
∫
∂B(ρ)

lε(dx)E
ε
x(τ1) =

∫
∂B(ρ)

lε(dx)
(
Eε

x(σ0) + Eε
x(E

ε
xε(σ0)

(τ1))
)

≤ sup
x∈∂B(ρ)

Eε
x(σ0) + sup

y∈∂B(ρ′)
Eε

y(τ1). (58)

By Lemma 7, givenh > 0, for sufficiently small 0< ρ < ρ′ we have the estimate

sup
x∈∂B(ρ)

Eε
x(σ0) ≤ exp

(
h

2ε

)
,

for sufficiently smallε. By K1, the second term on the right-hand side of (58) is bounded
by a constant, uniformly in 0≤ ε ≤ ε0. Therefore for we obtain the estimate

νε(X) ≤ exp

(
h

2ε

)
, (59)

for sufficiently smallε. Combining estimates (57) and (59) we obtain the bound

µε(D) ≥ exp

(
−1

ε
( inf
z∈DW(z) + h)

)
,

and this is the bound (44). This concludes the proof of Theorem 3.��

4. Properties of the Rate Function and Proof of Theorem 1

To complete the proof of Theorem 1 we need the following lemma which expresses
the property of detailed balance forη = 0. Recall that for a pathφ ∈ C([0, T ]) with
φ(0) = x andφ(T ) = y we denoteφ̃ the time reversed path which satisfiesφ̃(0) = Jy

andφ̃(T ) = Jx.

Lemma 8. Let φ(t) ∈ C([0, T ]) with φ(0) = x and φ(T ) = y. Either I
(0)
x,T (φ) = +∞

or we have

I
(0)
x,T (φ) = I

(0)
Jy,T (φ̃) + G(y) − G(x). (60)
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Proof. We rewrite the rate functionI (0)x,T (φ) given by Eqs. (4) and (5) as

I
(0)
x,T (φ) = 1

4γ λ2

∫ T

0
(ṙ + γ λ2∇rG)(ṙ + γ λ2∇rG)dt

= 1

4γ λ2

∫ T

0
(ṙ − γ λ2∇rG)(ṙ − γ λ2∇rG)dt +

∫ T

0
(∇rG)ṙdt

≡ K1(φ) + K2(φ). (61)

The termK1(φ) can be interpreted as the rate function corresponding to the the set of
stochastic differential equations with the associated control system

q̇ = ∇pG,

ṗ = −∇qG,

ṙ = +γ λ2∇rG + (2γ λ2D)1/2u. (62)

Consider now the transformation(p, q, r) → J (p, q, r) and t → −t . This transfor-
mation maps the solutionφ of Eq. (62) into a solution of Eq. (21) with̃φ(0) = Jy,
φ̃(T ) = Jx. This implies the equality

K1(φ) = 1

4γ λ2

∫ T

0
(ṙ − γ λ2∇rG)(ṙ − γ λ2∇rG)

= 1

4λ2γ

∫ T

0
( ˙̃r + γ λ2∇rG)( ˙̃r + γ λ2∇rG)dt = I

(η)
Jy,T (φ̃).

This means thatK1(φ) is nothing but the weight of the time reversed path.
We now consider the second term,K2(φ), in Eq. (61).
Using the constraintṡq = ∇pG and ṗ = −∇qG we obtain the identity∇pGṗ +

∇qGq̇ = 0 and therefore we get

K2(φ) =
∫ T

0
∇rGṙdt =

∫ T

0

(∇rGṙ + ∇pGṗ + ∇qGq̇
)
dt

=
∫ T

0

d

dt
Gdt = G(y) − G(x),

and this proves Eq. (60).��
With this result we obtain

Lemma 9. If η = 0 then W(0)(x) = G(x) − minx G(x).

Proof. The HamiltonianG is constant onKj and we setG(x) = Gj for all x ∈ Kj .
Furthermore if(p, q, r) ∈ Kj , thenp = 0 and therefore the setsKj are invariant under
time reversal:JKj = Kj . Using Lemma 8, we see that for any pathφ ∈ C([0, T ]) with
φ(0) = x ∈ Km andφ(T ) = y ∈ Kn we have

I
(0)
x,T (φ) = I

(0)
Jy,T (φ̃) + G(y) − G(x) = I

(0)
y,T (φ̃) + Gn − Gm.

Taking the infimum over all pathsφ and all timeT , we obtain the identity

V (0)(Km,Kn) = V (0)(Kn,Km) + Gm − Gn.
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In the definition ofW(0)(Ki), see Eq. (8), the minimum is taken over all{i}-graphs (see
the definition in the introduction). Given an{i}-graph and aj with j �= i, there is a
sequence of arrows leading fromj to i. Consider now the graph obtained by reversing
all the arrows leading fromj to i; in this way we obtain a{j}-graph. Using the identity
(4) the weight of this graph is equal to the weight of the original graph plusGj − Gi .
Taking the infimum over all graphs we obtain the identity

W(0)(Ki) = W(0)(Kj ) + Gj − Gi,

and therefore we have

W(0)(Ki) = Gi + const,

and soW(0)(x), defined in Eq. (9), satisfies the identity

W(0)(x) = min
i

(Gi + V (0)(Ki, x)) − min
j

Gj . (63)

The second term in Eq. (63) is equal to minx G(x), sinceG(x) is bounded below.
We now derive upper and lower bounds on the first term in Eq. (63). A lower bound

follows easily from Proposition 8: For any pathφ ∈ C([0, T ]) with φ(0) = z ∈ Ki and
φ(T ) = x we obtain the inequality

I
(0)
z,T (φ) = I

(0)
Jx,T (φ̃) + G(x) − Gi ≥ G(x) − Gi,

since the rate function is nonnegative. Taking the infimum over all pathsφ and timeT
we obtain

W(0)(x) ≥ G(x) − min
x

G(x).

To prove the lower bound we consider the trajectoryφ̃ starting atJx at time 0 which is
the solution of the deterministic equation (17). By Lemma 1, there is someKj such that
lim t→∞ φ̃(t) ∈ Kj . Furthermore, sincẽφ is a solution of Eq. (17), the rate function of

this path vanishes,I (0)Jx,T (φ̃) = 0, for anyT > 0. Now consider the time reversed path
φ(t). It starts att = −T with T ≤ ∞ atKi and reachesx at time 0. For such a path we
have

lim
T→∞ I

(0)
z,T (φ) = lim

T→∞ I
(0)
Jx (φ̃) + G(x) − Gi = G(x) − Gi,

and therefore

V (0)(Ki, x) ≤ G(x) − Gi.

We finally obtain

W(0)(x) ≤ Gi + V (0)(Ki, x) − min
x

G(x) ≤ G(x) − min
x

G(x),

and this concludes the proof of Proposition 9.��
We have the following bound on the rate function in the caseη �= 0:
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Lemma 10. If η ≥ 0 then

(1 + η)−1(G(x) − min
x

G(x)) ≤ W(η)(x) ≤ (1 − η)−1(G(x) − min
x

G(x)),

and a similar bound holds for η ≤ 0.

The assertion follows from the fact that the subset ofC([0, T ]) on whichI (η)x,T (φ) < ∞ is
independent ofη. This is easily seen from the definition of rate function (13). Inspection
of Eq. (4) implies the bound

(1 + η)−1I
(0)
x,T (φ) ≤ I

(η)
x,T (φ) ≤ (1 − η)−1I

(0)
x,T (φ).

Taking the infimum completes the proof of the lemma.��
Combining Theorem 3 with Lemmas 9 and 10 we obtain Theorem 1.
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