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Abstract. The primary objective of this work is to develop coarse-graining schemes for stochastic
many-body microscopic models and quantify their effectiveness in terms of a priori and a posteriori
error analysis. In this paper we focus on stochastic lattice systems of interacting particles at equilib-
rium. The proposed algorithms are derived from an initial coarse-grained approximation that is directly
computable by Monte Carlo simulations, and the corresponding numerical error is calculated using the
specific relative entropy between the exact and approximate coarse-grained equilibrium measures. Sub-
sequently we carry out a cluster expansion around this first – and often inadequate – approximation
and obtain more accurate coarse-graining schemes. The cluster expansions yield also sharp a posteriori
error estimates for the coarse-grained approximations that can be used for the construction of adap-
tive coarse-graining methods. We present a number of numerical examples that demonstrate that the
coarse-graining schemes developed here allow for accurate predictions of critical behavior and hystere-
sis in systems with intermediate and long-range interactions. We also present examples where they
substantially improve predictions of earlier coarse-graining schemes for short-range interactions.
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Introduction

In the recent years there has been a growing interest in developing and analyzing hierarchical coarse-graining
methods for the purpose of modeling and simulation across scales for systems arising in a broad spectrum
of scientific disciplines ranging from materials science to biology and atmosphere/ocean science. Typically
in microscopic simulations of complex systems the model is formulated in terms of simple rules describing
interactions between small-scale degrees of freedom such as individual particles or spin variables. On the other
hand computational difficulties arise immediately from evaluating their interactions for any realistic size spatio-
temporal scales. When a coarse-grained model becomes available, it has fewer observables than the original
microscopic system making it computationally more efficient than the direct numerical simulations. At the
same time it is expected that it can describe accurately the unresolved degrees of freedom. The coarse-graining
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strategy we are pursuing here is attempting to address these goals in the context of equilibrium sampling of
stochastic lattice systems by combining methods from statistical mechanics and perturbation analysis.

In this paper we consider stochastic lattice systems such as Ising-type models as a paradigm of hierarchical
coarse-graining that can provide an explicit numerical method with prescribed error tolerance. Such lattice
systems for N particles are defined in terms of a microscopic lattice Hamiltonian HN (σ) with σ being the
microscopic configuration and an a-priori Bernoulli measure PN (dσ). We perform a coarse-graining by subdi-
viding the lattice into coarse cells and defining variables η on each coarse cell to be the total magnetization in
the cell. The corresponding renormalization group map (known as the Kadanoff transform) [7,12] is defined by
the formula

e−βH̄M (η) =
∫

e−βHN (σ)PN (dσ|η),

where H̄M (η) is the Hamiltonian at the coarse level and PN (dσ|η) is the conditional probability of having a
microscopic configuration σ given a configuration η at the coarse level.

Such a Hamiltonian defined on a coarser level than the microscopic, is an exact equivalent of the microscopic
Hamiltonian HN , in the sense that the finer degrees of freedom have been averaged. However, it cannot be easily
calculated explicitly and hence used in numerical simulations. Our perspective is to approximate it by viewing
it as a perturbation of a coarse-grained approximating Hamiltonian H̄

(0)
M suggested in [14, 15] and defined by

H̄
(0)
M (η) =

∫
HN (σ)PN (dσ|η) .

A closely related coarse-grained Hamiltonian was suggested independently in [10,11], where it was constructed
in an equilibrium context using a wavelet expansion.

Using this first approximation we have

H̄M (η) = H̄
(0)
M (η) − 1

β
log
∫

e−β(HN (σ)−H̄
(0)
M (η))PN (dσ|η).

The fact that the conditional probability PN (dσ|η) factorizes at the level of the coarse cells allows us to use
cluster expansion techniques to write a series expansion for H̄M (η) around H̄

(0)
M . We obtain the following series

H̄M (η) = H̄
(0)
M (η) + H̄

(1)
M (η) + · · · + H̄

(p)
M (η) + O(εp+1), p = 2, . . . (1)

uniformly in η, where the correction terms H̄
(1)
M (η), H̄

(2)
M (η), etc., can be calculated explicitly with the relevant

errors and ε is a small parameter depending on the characteristics of the coarse-graining, the potential and the
inverse temperature. In this paper we first show that this strategy works well provided that the interactions
have a range which is long compared to the size of the coarse cells and that they vary slowly over the size of a
coarse cell. The parameter ε (given explicitly in (20)) encapsulates these conditions.

Notice that we do not perform the usual high-temperature expansion using the Bernoulli product measure
PN (dσ) but rather expand the Hamiltonian around a well-chosen first approximation using the product structure
at the coarse level of the conditional probability PN (dσ|η). This allows us to construct these approximating
Hamiltonians well-beyond the temperature range allowed in a standard high-temperature expansion. The basic
tool for cluster expansions is the reformulation of the system in terms of what is called the polymer model. This
technique originates from Mayer [19] and Peierls [20] for the case of high/low temperature respectively. For
the high temperature case, a first rigorous proof was given in [6], while our approach is based on the polymer
system introduced in [8]. For an overview of these methods and references we refer to [23].

Clearly the choice of the first approximation H̄
(0)
M is crucial to our method and it should be such that

(i) it is explicitly computable as the constructions in [10, 14], and (ii) it provides a good estimate between the
microscopic and the 2nd-order coarse-graining. In a subsequent paper [16] we will show how to apply these
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ideas and techniques to systems with both short and long-range interactions. In this case the choice of the first
approximation H̄

(0)
M will not be given in a closed form but it will be computed numerically in an efficient way.

All error estimates are calculated in terms of the specific relative entropy of the corresponding equilibrium
Gibbs measures. Specific relative entropy represents the loss of information in the transition from the microscopic
to the coarse-grained models and here is used to assess the information compression for the same level of coarse
graining in schemes that are of a higher or lower order, determined by the truncation level p in (1). The
primary practical purpose of the higher-order corrections is in allowing us to extend the regime of validity of
the expansion and to obtain very accurate coarse grainings of the Gibbs measure even if the parameter ε in (1)
is not necessarily much smaller than one. We refer to examples in Section 4 where even for ε = O(1), we obtain
an accurate prediction of the hysteresis when we include the higher-order correction terms.

The error analysis developed in this paper also provides an error expansion that can be computed and tracked
in the process of a simulation from the numerical data. Such an a posteriori error cannot be numerically
computed directly from the relative entropy formula, since it involves the calculation of the probability density
functions of the microscopic and the coarse-grained measure. However, the expansion in (1) shows a constructive
way of calculating the error made, for instance, by the 2nd-order coarse-graining H̄

(0)
M (η) in terms of other coarse

observables given by the higher-order correction terms H̄
(p)
M plus a controlled error of order O(εp+1). Similarly to

the numerical analysis of approximations for PDEs, we derive a priori and a posteriori error estimates between
the exact microscopic solution and the approximating coarse-grained one. In contrast to the PDE setting where
such error analysis is calculated in a suitable norm, here the error is measured in terms of the specific relative
entropy. As in the case of PDEs such a posteriori errors are also useful for constructing adaptive methods. For
some earlier work on adaptivity for stochastic systems see, e.g., [3, 4, 24].

The paper is organized as follows: in Section 1 we present the main results and an outline of our methods.
In Section 2 we discuss cluster expansions in the context of coarse-graining and derive the effective coarse-
grained Hamiltonian as an abstract expansion. In Section 3 we calculate the first terms in the expansion of
the Hamiltonian and formulate two concrete numerical schemes; Scheme 3.1 is second-order accurate, while
Scheme 3.2 is third-order accurate. In Section 4 we present simulations with these schemes in a demanding
phase transition regime. Appendix A includes the details of our analytical calculations in Section 3. Appendix B
contains a brief description of computational background for the Monte Carlo algorithms used in the sampling
of microscopic and coarse-grained Gibbs states carried out in Section 4.

1. Main results and outline of the method

1.1. Microscopic models

We consider as the physical domain for the system the d-dimensional torus Td := [0, 1)d with periodic
boundary conditions. The microscopic system consists of a uniform lattice ΛN := ( 1

nZ)d ∩ Td. The number of
lattice sites N = nd is fixed, but arbitrary and finite. We consider here periodic boundary conditions, but other
boundary conditions can be accommodated easily.

The spin (or order parameter) σ(x) takes values in {+1,−1} at each lattice site x ∈ ΛN . A spin con-
figuration σ = {σ(x)}x∈ΛN is an element of the configuration space SN := {+1,−1}ΛN . The energy of the
configuration σ is given by the Hamiltonian

HN (σ) = −1
2

∑
x∈ΛN

∑
y �=x

J(x − y)σ(x)σ(y) + h
∑

x∈ΛN

σ(x), (2)

where the two-body inter-particle potential J describes the interaction between individual spins and h is an
external field.

The strength of the potential is measured by ‖ J ‖ ≡∑x �=0 |J(x)|, i.e. we assume that the two-body potential
is summable. As we will scale later the Hamiltonian with the inverse temperature β we can assume, without
loss of generality, that ‖ J ‖ = 1.
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Example 1.1 (Nearest-neighbor interaction). In this case the spin at site x interacts only with its nearest
neighbors on the lattice ΛN , i.e.

J(x − y) =

{
J if |x − y| = 1

n ;
0 otherwise.

Example 1.2 (Finite-range interactions). A spin at site x interacts with its neighbors which are at most
L lattice points away from x. It will be useful to consider the range of the interaction L as a parameter of the
model. To do this let

V : R
+ → R, V (r) = 0, if |r| ≥ 1. (3)

Then the potential J(x − y) can be taken to have the form

J(x − y) =
1
Ld

V
(n

L
|x − y|

)
, x, y ∈ ΛN . (4)

The factor 1/Ld in (4) is a normalization which ensures that the strength of the potential J is essentially
independent of L and we have ‖ J ‖ � ∫ |V (r)|dr. Note also that Example 1.1 can be obtained from Example 1.2
by setting L = 1.

Example 1.3 (Long-range interactions). In this case we assume that a spin interacts with all spins on the
lattice ΛN via a summable interaction J(x). Since our goal is to construct coarse-grained approximations of
the Hamiltonian suitable for numerical simulations it will be convenient to truncate long-range interactions and
control the error term. In order to do this we choose a small parameter θ and choose L such that

∑
{x : |x|≥L

n }

|J(x)| ≤ θ.

The parameter L can be thought as the effective range of the potential and we can truncate the long-range
potential J(x) by setting J(x) = 0 if |x| ≥ L

n . If we denote by Ĵ the truncated potential and by ĤN the
corresponding Hamiltonian it is easy to see that

1
N

|HN (σ) − ĤN (σ)| = O(θ),

i.e., the error per unit volume is of order θ. We can then assume that the truncated potential has the form (4).

Example 1.4 (Kac-type interactions). Mean-field interactions are obtained formally by taking a finite range
interaction and setting L = n in (4)

J(x − y) =
1
N

V (|x − y|) , x, y ∈ ΛN . (5)

Note that this is different from a summable long-range interaction since the potential is scaled with the size of
the system.

The potential in Example 1.2 will be central to our analysis. Both Examples 1.1 and 1.4 are obtained in
suitable limiting cases (L = 1 and L = n respectively) and the potential in Example 1.3 can be approximated
by such potentials (see the error estimates below).

The finite-volume equilibrium states of the system are given by the canonical Gibbs measure

µN,β(dσ) =
1

ZN
e−βHN (σ)PN (dσ), (6)
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where β is the inverse temperature, ZN is the normalizing partition function, and PN (dσ), the prior distribution
on SN , is the product measure

PN (dσ) =
∏

x∈ΛN

ρ(dσ(x)).

A typical choice ρ(σ(x) = +1) = 1
2 and ρ(σ(x) = −1) = 1

2 is the distribution of a Bernoulli random variable for
each x ∈ ΛN .

1.2. Specific relative entropy

One of the obvious issues arising in any attempt to coarse-grain microscopic systems is the evaluation of the
numerical error as we move from finer to coarser scales. This error essentially involves the comparison of the
microscopic and the coarse-grained probability measures. A natural way to compare two probability measures
is to compute their relative entropy. Let π1(σ) and π2(σ) be two probability measures defined on a common
probability space, with the state space S. The relative entropy, or Kullback-Leibler distance, of π1 with respect
to π2, is defined as

R (π1 |π2) ≡
∫
S

log
(

dπ1

dπ2

)
dπ1, (7)

where dπ1/dπ2 is the Radon-Nikodym derivative of π1 with respect to π2. On a countable state space S we
obtain

R (π1 |π2) =
∑
σ∈S

π1(σ) log
π1(σ)
π2(σ)

·

In information theory the relative entropy R (π1 |π2) provides a measure of “information loss” or “information
distance” of π1 compared to π2. In our context we use the relative entropy in order to assess the information
compression of different coarse-graining schemes. Basic properties and applications in information theory can
be found in [5].

Using Jensen’s inequality it is not difficult to show that

R (π1 |π2) ≥ 0 and,
R (π1 |π2) = 0 if and only if π1(σ) = π2(σ) for all σ ∈ S.
R (π1 |π2) = ∞ if π1 is not absolutely continuous with respect to π2.

The relative entropy is not a metric (it is not symmetric), but one can use the relative entropy to bound the
total variation distance of the measures π1 and π2 as demonstrated by Csiszár-Kullback-Pinsker inequality [5]

R (π1 |π2) ≥ 1
2

(∑
σ∈S

|π1(σ) − π2(σ)|
)2

≡ 1
2
‖π1 − π2‖2

TV, (8)

or equivalently using the dual form of the total variation norm

sup
‖f‖∞=1

∣∣∣∣
∫

f dπ1 −
∫

f dπ2

∣∣∣∣ ≤
√

1
2
R (π1 |π2), (9)

where ‖ · ‖∞ denotes the usual sup-norm.
In statistical mechanics, the entropy, which is the relative entropy with respect to the prior distribution, and

the relative entropy play a prominent role, in particular in the variational principles. The relative entropy is,
in general, difficult to compute since it requires the sampling of the probability distribution π1(σ) and π2(σ)
which can be prohibitively expensive if the dimension of the state space is large. For Gibbs measures it is,
however, a little simpler in the sense that it depends only on the partition functions and the expected values of
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the Hamiltonian. Consider, for example, two Gibbs measures µ
(1)
N,β and µ

(2)
N,β with Hamiltonians H

(1)
N and H

(2)
N

and partition functions Z
(1)
N and Z

(2)
N . Then we have

R
(
µ

(1)
N,β |µ(2)

N,β

)
= log

(
Z

(2)
N

Z
(1)
N

)
+ β

∫ (
H

(2)
N − H

(1)
N

)
dµ

(1)
N,β. (10)

Note that the Hamiltonians and the logarithm of partition functions are extensive quantities: they are propor-
tional to the size of the system N . The formula (10) shows that the entropy of a Gibbs measure and the relative
entropy of a Gibbs measure with respect to another Gibbs measure are also extensive quantities. It is therefore
natural to compare two Gibbs measures on SN by computing their specific relative entropy

1
N

R
(
µ

(1)
N,β |µ(2)

N,β

)
.

The specific relative entropy is a measure of the information loss per unit volume and will be our main estimation
tool in this paper. A simple example where this interpretation is evident arises if one considers N indepen-
dent particles and the ensuing scaling of the collective discrepancy if an individual error is committed on the
observation of each particle.

1.3. Coarse-grained models

The coarse-graining procedure consists of three steps that we describe separately.
(a) Coarse graining of the configuration space. We partition the torus Td into M = md cells: For k =
(k1, . . . , kd) ∈ Z

d with 0 ≤ ki ≤ m − 1 we define Ck ≡ [k1
m , k1+1

m ) × · · · × [kd

m , kd+1
m ) and we have Td = ∪kCk.

We identify each cell Ck with a lattice point of the coarse lattice Λ̄M = ( 1
mZ)d ∩ Td. Each coarse cell contains

Q = qd points of the microscopic lattice points with N ≡ nd = (mq)d ≡ MQ. We will refer to Q as the level of
coarse graining (Q = 1 corresponds to no coarse graining).

We assign a new spin value η(k) for the cell Ck according to the rule

η(k) =
∑

x∈Ck

σ(x).

The spin η(k) takes values in {−Q,−Q + 2, . . . , Q} and the configuration space for the coarse grained system
is S̄M ≡ {−Q,−Q + 2, . . . , Q}Λ̄M . We denote by F the map

F : SN → S̄M , σ �→
{∑

x∈Ck

σ(x)

}
k

,

which assigns a configuration η = {η(k)}k∈Λ̄M
on the coarse lattice given a configuration σ = {σ(x)}x∈ΛN . An

equivalent coarse grained variable, which we shall also use later, is

α(k) := card {x ∈ Ck : σ(x) = +1}

which takes values in {0, 1, . . . , Q}. Both coarse variables are equivalent and they are related by the transfor-
mation η = 2α − Q or α = η+Q

2 .
(b) Coarse-graining of the prior distribution. The prior distribution PN on SN induces a new prior distribution
on S̄M given by P̄M = PN ◦ F−1, i.e.,

P̄M (η) = PN (σ : F(σ) = η).
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Since η(k) depends only on the spin σ(x), with x ∈ Ck, the measure P̄M is a product measure

P̄M (dη) =
∏

k∈Λ̄M

ρ̄(dη(k)),

with

ρ̄(η(k)) =
(

Q
η(k)+Q

2

)(
1
2

)Q

.

The conditional probability PN (dσ|η) plays a crucial role in the sequel. Since η(k) depends only on the spin σ(x)
with x ∈ Ck, the probability PN (dσ|η) factorizes over the coarse cells. We have

PN (dσ|η) =
PN (σ ∩ {F(σ) = η})

P̄M (η)
=
∏

k∈Λ̄M

ρ̃k,η(k)(dσ) (11)

and ρ̃k,η(k)(dσ) depends only on {σ(x)}x∈Ck
. In particular we have

ρ̃k,η(k)(σ(x) = 1) =
η(k) + Q

2Q
and ρ̃k,η(k)(σ(x) = −1) =

Q − η(k)
2Q

· (12)

To simplify the notation and because our estimates are uniform in η(k) we denote this measure simply by ρ̃k.
For a function f = f(σ) we define the conditional expectation

E[f |η] =
∫

f(σ)PN (dσ|η) =
1

P̄M (η)

∫
{σ: F(σ)=η}

f(σ)PN (dσ) =
∫

f(σ)
∏
k

ρ̃k(dσ) .

(c) Coarse-graining of the Hamiltonian. We want to construct a Hamiltonian H̄M (η) at the coarse-level. A nat-
ural definition of such Hamiltonian, as we explain below, is given by the renormalization group block averaging
transformation (also known as Kadanoff transformation).

Definition 1.1. The exact coarse grained Hamiltonian H̄M (η) is defined by the formula

e−βH̄M (η) = E[e−βHN |η]. (13)

Given the Hamiltonian H̄M we define the corresponding Gibbs measure by

µ̄M,β(dη) =
1

Z̄M
e−βH̄M (η)P̄M (dη). (14)

The factor β in front of H̄M (η) is merely a convention, in general the Hamiltonian H̄M (η) does itself depend
on β in a nonlinear, complicated way.

Clearly for a fixed value of N , this transformation is well defined. However, from the point of view of statistical
mechanics this is not sufficient. We want to construct the coarse-grained Hamiltonian H̄M (η), for any M , as
a sum of (summable) many-body interactions. Our original Hamiltonian HN (σ) involves only one-body and
two-body interactions but the nonlinear transformation (13) will not preserve this property. The Hamiltonian
we will consider in the sequel will have the form

KM (η) =
∑

X⊂Λ̄M

J(X, {ηk}k∈X) (15)
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where the J(X, {ηk}k∈X) are translation-invariant many-body interactions involving card(X)-many different
sites. Such an interaction is said to be summable if∑

{X : 0∈X}
‖J(X, {ηk}k∈X)‖ < ∞.

It is well-known [25] that the Kadanoff transformation suffers from some pathologies. At very low temperature
the Kadanoff transformation for the nearest-neighbor Ising model with the zero magnetic field is not well-defined
in the sense that the coarse-grained Hamiltonian H̄M does not correspond to a summable interaction. These
pathologies are relatively mild [1] and can be eliminated by extending slightly the concept of Gibbs measures.
For a comprehensive presentation of this issue see the review paper [25] or also [1] among others. Furthermore,
these pathologies will not play any role in our analysis: the cluster expansion techniques we are using exclude
the occurrence of these pathologies for the models and the values of the parameter we consider.

The exactness of the coarse graining in the Kadanoff transform is expressed by the fact that the specific
relative entropy of µ̄M,β(dη) with respect to the coarse-grained Gibbs measure µN,β ◦F−1 vanishes. Indeed we
have

ZN =
∫

e−βHN (σ)PN (dσ) =
∫

E[e−βHN |η] P̄M (dη)

=
∫

e−βH̄M (η) P̄M (dη) = Z̄M , (16)

and consequently from (13),

1
Z̄M

e−βH̄M(η)P̄M (η) =
1

ZN

∫
{σ | F(σ)=η}

e−βHN PN (dσ),

and thus
1
N

R(µ̄M,β |µN,β ◦ F−1) = 0.

Even for moderately large values of N the exact computation of H̄M (η) is, in general, impractical. The coarse
grained Hamiltonian involves not only two-body interactions, but also many-body interactions of an arbitrary
number of spins. Our goal is to present a systematic way of calculating explicit approximations of the coarse-
grained Hamiltonian H̄M , to any given degree of accuracy. In the first step we define an approximate Hamiltonian
H̄

(0)
M (η) and we give an a priori bound on the blocking error. The choice of H̄

(0)
M we make, following [15], is

given in the following definition.

Definition 1.2. The first approximation H̄
(0)
M of the coarse-grained Hamiltonian H̄M is given by the formula

H̄
(0)
M (η) ≡ E[HN |η]. (17)

In order to compute H̄
(0)
M (η) we note that we have

E[σ(x)|η] =
η(k)
Q

, x ∈ Ck,

E[σ(x)σ(y)|η] =
η(k)2 − Q

Q(Q − 1)
, x ∈ Ck, y ∈ Ck, y 
= x.

Then
H̄

(0)
M (η) = −1

2

∑
k

∑
l �=k

J̄(k − l)η(k)η(l) − 1
2

∑
k

J̄(0)(η2(k) − Q) + h
∑

k

η(k)
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where

J̄(k, l) =
1

Q2

∑
x∈Ck,y∈Cl

J(x − y), for k 
= l,

J̄(k, k) =
1

Q(Q − 1)

∑
x,y∈Ck,y �=x

J(x − y), for k = l.

By defining H̄
(0)
M (η) one replaces the potential J(x− y) by its average over a coarse cell. Thus the error for the

potential is proportional to

Ekl(x − y) := J(x − y) − J̄(k, l), x ∈ Ck, y ∈ Cl,

which measures the variation of the potential J(x − y) over a cell. An estimate on the error is provided by the
following lemma

Lemma 1.3. Assume that J satisfies (3)–(4) and assume that V (r) is C1.
(1) There exists a constant C > 0 such that, if x ∈ Ck and y ∈ Cl, we have

|J(x − y) − J̄(k, l)| ≤ 2
q

Ld+1
sup

x′∈Ck,

y′∈Cl

‖∇V (x′ − y′)‖. (18)

(2) There exists a constant C > 0 such that, if F(σ) = η, we have

1
N

∣∣∣HN (σ) − H̄
(0)
M (η)

∣∣∣ ≤ C
q

L
‖∇V ‖∞. (19)

The lemma will be proved in Section 2.2. Note that the estimates in Lemma 1.3 are not necessarily optimal
and can be improved under suitable assumptions on the potential. The importance of Lemma 1.3 lies in the
identification of the small parameter in Theorem 1.4 below

ε ≡ Cβ
q

L
‖∇V ‖∞, (20)

where C is some constant. Note that we included the inverse temperature β in the parameter, taking into
account that β multiplies the Hamiltonian in the Gibbs measure. The parameter ε encapsulates the various
factors involved in our coarse-graining method.

(i) Coarse-graining cell size. The factor q/L in (20) indicates how the size of the coarse cell governs the
effectiveness of the coarse-graining procedure.

(ii) Slow variation of the potential. The factor ‖∇V ‖∞ in 20 indicates that the coarse-graining will be
particularly effective even for large cell sizes if the potential V is slowly varying. This fact is exemplified
by considering the extreme case of the Curie-Weiss model where J(x − y) = J is independent of x − y.
It is easy to see that in this case the coarse-graining is actually exact.

(iii) Temperature. At high temperature, i.e., for small β the coarse-graining procedure will work well even
for large values of q/L, i.e., for very large coarse cells or for potentials with very short range. This
reflects the fact that at high temperature Gibbs measures are actually very close to product measures
and that, trivially, product measures can be coarse-grained exactly. On the other hand our methods
clearly do not apply to very-low temperatures.

Let us denote by µ̄
(0)
M,β(dη) the Gibbs measure

µ̄
(0)
M,β(dη) =

1

Z̄
(0)
M

e−βH̄
(0)
M (η)P̄M (dη).
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From Lemma 1.3 and with the help of calculation in the proof of Proposition 2.4 we obtain the bound

1
N

R(µ̄(0)
M,β |µN,β ◦ F−1) = O(ε) . (21)

Furthermore, Lemma 1.3 allows us to perform a cluster expansion and compute higher-order corrections. The
basic idea is to rewrite the exact coarse-graining as

e−βH̄M(η) = e−βH̄
(0)
M (η)

E[e−β(HN (σ)−H̄
(0)
M (η))|η],

or
H̄M (η) = H̄

(0)
M (η) − 1

β
log E[e−β(HN (σ)−H̄

(0)
M (η))|η]. (22)

Note that the exponential in the second term is not necessarily small, it is in fact of order Nε. Cluster expansions
are tools which allows to expand such quantities in convergent power series using the independence properties
of product measures. The crucial fact here is that conditional measure PN (dσ|η) factorizes over the coarse cells.
The main result of our paper, proved in Section 3, is

Theorem 1.4. Let us assume that J satisfies (3)–(4) and that V (r) is C1. Then there exists a constant δ0 > 0
such that if

δ = Qε < δ0,

the Hamiltonian H̄M (η) can be expanded into a convergent series

H̄M (η) =
∞∑

p=0

H̄
(p)
M (η),

where each term H̄
(p)
M (η) is a sum of finite-range translation invariant many-body potentials. The first few terms

are explicitly calculated in Schemes 3.1 and 3.2 in Section 3. We have the following error bounds uniformly in η
and N

β

N

(
H̄M (η) − (H̄(0)

M (η) + . . . + H̄
(p)
M (η)

)
= O(εp+1).

If we define the Gibbs measures

µ̄
(p)
M,β(dη) =

1

Z̄
(p)
M

e−β(H̄
(0)
M (η)+...+H̄

(p)
M (η))P̄M (dη),

then the following bounds for the relative entropy per unit volume hold

1
N

R
(
µ̄

(0)
M,β

∣∣µN,β ◦ F−1
)

= O (ε2) , (23)

1
N

R
(
µ̄

(p)
M,β

∣∣µN,β ◦ F−1
)

= O (εp+1
)
, (24)

where p = 2, . . . and ε is given by (20).

We note that in information theory the relative entropy provides a measure of “information distance” of two
probability measures. In our context we use the relative entropy estimate of Theorem 1.4 in order to assess
the information compression of different coarse-graining schemes. According to how many correction terms
are included in the expansion corresponding to different truncation levels p, such as Schemes 3.1 and 3.2 in
Section 3, we quantify the amount of the information loss when the measures are compared at the same level
of coarse graining. Furthermore, it would be mathematically interesting and numerically useful to study the
implications of the relative entropy error estimates for weak errors of specific observables; for example, expected
times for domain switching in regimes that exhibit phase transitions such as those discussed in Section 4.
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Remark 1.5.
(1) The cluster expansion provides an explicit algorithm to compute the higher-order approximations H̄

(p)
M .

For example, the next order correction is given by H̄
(1)
M + H̄

(2)
M as in Scheme 3.2 in Section 3. The

analytical computations required for determining higher-order corrections become quickly very involved,
nonetheless they can be carried out with symbolic computational tools.

(2) The primary practical purpose of the higher-order estimates in Theorem 1.4 is in allowing us to extend
the regime of validity of the expansion and obtain very accurate coarse-graining of the Gibbs measure
even if the parameter ε given by (20) is not necessarily much smaller than one. We refer to the examples
in Section 4 where even for q ≥ L, and β > 1, i.e., ε = O(1), we get an accurate prediction of critical
behavior when we include the higher-order correction terms.

(3) The reader might wonder about the appearance of a new small parameter δ = Qε in the statement of
Theorem 1.4. The reason lies in the details of the cluster expansion. Since the conditional measure
PN (dσ|η) factorizes over the coarse cells, it is required for the cluster expansion to converge that the
error in every coarse cell is small. The error for each site of the microscopic lattice is of order ε and
thus the error for a coarse cell is of order δ = Qε.

(4) Note further that the bound (23) improves on the bound (21) and that shows the first approxima-
tion H̄

(0)
M is actually already a second-order method. This is due to cancellations which follow directly

from the definition of H̄
(0)
M , see Definition 1.2 and (46) below.

In the previous theorem the errors are calculated with respect to the relative entropy of the corresponding
equilibrium measures. Apart from this a priori estimate, we would also like to have a formulation of the error
that can be explicitly computed, from the data of the simulation. In our case, such an a posteriori error cannot
be numerically computed directly from the relative entropy formula, since it involves the calculation of the
probability density functions of the microscopic and the coarse-grained measure. However, the error estimate
of Theorem 1.4 provides us with an explicit way of calculating the error made, for instance, by the 2nd-order
coarse-graining. In Section 3 we prove the a posteriori error estimate for R(µ̄(0)

M,β |µN,β ◦ F−1) given in the
theorem

Theorem 1.6 (A posteriori error). We have

R
(
µ̄

(0)
M,β

∣∣µN,β ◦ F−1
)

= βE
µ̄

(0)
M,β

[R(η)] + log
(

E
µ̄

(0)
M,β

[
eβR(η)

])
+ O (ε3) ,

where the residuum operator R(.) is given by

R(η) = H̄
(1)
M (η) + H̄

(2)
M (η).

Note that the quantity E
µ̄

(0)
M,β

[R(η)] can be calculated on-the-fly using the coarse simulation. Calculations

involving the a posteriori error estimation and related adaptive methods will be discussed in a forthcoming
publication. Earlier work that uses only an upper bound and not the sharp estimate of Theorem 1.6 can be
found in [3, 4].

2. Cluster expansion and effective interactions

In this section we expand the term E[e−β(HN (σ)−H̄
(0)
M (η))|η] in (22) into a convergent series using a cluster

expansion.

2.1. Introduction to the polymer model

It is convenient to choose an ordering on the d-dimensional lattice Λ̄M . For example, the lexicographic
ordering defines for d = 2 the relation (k1, k2) ≤ (l1, l2) if and only if k1 < l1 or k1 = l1 and k2 ≤ l2 and is
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then extended recursively for arbitrary dimension d. To set-up the cluster expansion we write the difference
HN (σ) − H̄

(0)
M (η) as

HN (σ) − H̄
(0)
M (η) =

∑
k≤l

∆klJ(σ), where (25)

∆klJ(σ) := −1
2

∑
x∈Ck

y∈Cl,y �=x

(J(x − y) − J̄(k, l))σ(x)σ(y)(2 − δkl).

Note that we have excluded the external field contribution to the Hamiltonian, the role of which will be presented
as a remark at the end of this section. In order to expand the exponential e−β(HN (σ)−H̄

(0)
M (η)) into a series we

set
fkl(σ) := e−β∆klJ(σ) − 1 (26)

and obtain, using the factorization properties of PN (dσ|η)

E[e−β(HN (σ)−H̄
(0)
M (η)|η] =

∫ ∏
k≤l

(1 + fkl)
∏
k

ρ̃k(dσ). (27)

We give a short description of the polymer model that we will use in order to organize the cluster expansion.
The product

∏
k≤l(1 + fkl(σ)) can be expressed as

∑
G∈GM

∏
{k,l}∈G fkl, where GM is a collection of all simple

graphs on M = md vertices, i.e., graphs where each edge appears only once, with additional loops (k, k) on the
same vertex. A one-dimensional example of an element G is G = {{1, 2}, {2, 2}, {2, 5}, {3, 6}}which corresponds
to the term f12f22f25f36 in the above sum. We observe further that each G can be divided into connected non-
intersecting components called polymers, where by non-intersecting we mean that they do not share the same
coarse cells. We define the support supp (γ) of a polymer γ the set of the coarse cells participating in it. In
the previous example, G = (γ1, γ2) where γ1 = {{1, 2}, {2, 2}, {2, 5}} and γ2 = {{3, 6}}. We also say γ1 is
incompatible with γ2 and we write γ1 
∼ γ2 if supp (γ1) ∩ supp (γ2) = ∅. Then (27) is equal to

∫ ∑
n≥1

1
n!

∑
(γ1,...,γn)
γi �∼γj,i�=j

n∏
i=1

∏
{k,l}∈γi

fkl

∏
k

ρ̃k(dσ) =
∑
n≥1

1
n!

∑
(γ1,...,γn)
γi �∼γj,i�=j

n∏
i=1

∫ ∏
{k,l}∈γi

fkl

∏
{k}∈supp (γi)

ρ̃k(dσ),

since the polymers γ1, . . . , γn do not share the same coarse cells. Note that the factor 1
n! takes into account the

fact that by relabeling the connected polymers γ1, . . . , γn we get the same G.
An equivalent formulation is to consider as our building blocks the more fundamental (than the polymers)

clusters R ⊂ Λ̄M (i.e. the set of vertices appearing in each polymer). For example, the corresponding cluster
to γ1 is R1 = {1, 2, 5}. Note that to each cluster there are several polymers that correspond to it. To prevent
confusion we warn the reader that what we call clusters R, it is called polymers in [2]. We use the name cluster
to distinguish it from the previous description of vertices with edges, that we have called polymers. Using
clusters the expansion becomes

∑
n≥1

1
n!

∑
(R1,...,Rn)∈Rn

Ri∩Rj=∅,i�=j

n∏
i=1

ζ(Ri), where

ζ(R) =
∫ ∑

g∈GR

∏
{k,l}∈g

fkl(σ)
∏

{k}∈R

ρ̃k(dσ) (28)

is called the activity of the cluster R. By R we denote the space of clusters R ⊂ Λ̄M with |R| = card (R) ≥ 1 and
GR is the set of generalized connected graphs on the set R. A generalized connected graph on R is a collection
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of distinct subsets of R, in which case the vertices of the generalized graph are the indices of the enumeration of
the subsets, and any two subsets of the vertices of the graph are linked to each other. The edges of this graph
are defined whenever the distinct subsets share a common element. For more details we refer to [22]. Thus we
are in the context of [2], Theorem 2, and we can formulate our first lemma.

Lemma 2.1 (Expansion of the Hamiltonian). If for every integer r ≥ 2, ζ satisfies the condition

sup
k∈Λ̄M

∑
R∈R,R⊃{k}

|R|=r

|ζ(R)| ≤ δr−1 (29)

for some δ such that supk∈Λ̄M

∑
R∈R,R⊃{k}

|R|=1
|ζ(R)| ≤ δ and δ < 1

6 , then

H̄M (η) = H̄
(0)
M (η) − 1

β

∑
n≥1

1
n!

∑
(R1,...,Rn)∈Rn

Ri⊂Λ̄M

φ(R1, . . . , Rn)
n∏

i=1

ζ(Ri), (30)

where

φ(R1, . . . , Rn) =
{

1, n = 1∑
g∈Gn

∏
{i,j}∈g(1(Ri, Rj) − 1), n > 1

and Gn is the set of the generalized, connected graphs on {1, . . . , n} and

1(Ri, Rj) =

{
0, {Ri ∩ Rj 
= ∅} ;
1, {Ri ∩ Rj = ∅}.

Proof. The proof is the same as in [2], Theorem 2, given (22) and the discussion preceding Lemma 2.1. For
later use we repeat the main steps of the proof. For the series (30) we have

∑
n≥1

1
n!

∑
(R1,...,Rn)∈Rn

Ri⊂Λ̄M

∣∣∣∣∣φ(R1, . . . , Rn)
n∏

i=1

ζ(Ri)

∣∣∣∣∣ =

∑
R∈R,R⊂Λ̄M

|ζ(R)| +
∑
n≥2

1
n!

∑
(R1,...,Rn)∈Rn

Ri⊂Λ̄M

∣∣∣∣∣φ(R1, . . . , Rn)
n∏

i=1

ζ(Ri)

∣∣∣∣∣ =: S, (31)

where for the first term (n = 1) we have

∑
R∈R,R⊂Λ̄M

|ζ(R)| ≤ M
∑
r≥1

sup
k∈Λ̄M

∑
R∈R,R⊃{k}

|R|=r

|ζ(R)| ≤ M

⎛
⎝δ +

∑
r≥2

δr−1

⎞
⎠. (32)
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For the second term (n ≥ 2) using the estimate from [2], p. 526, (3.6), we obtain

∑
n≥2

1
n!

∑
(R1,...,Rn)∈Rn

Ri⊂Λ̄M

∣∣∣∣∣φ(R1, . . . , Rn)
n∏

i=1

ζ(Ri)

∣∣∣∣∣ ≤
∑
n≥2

1
n!

∑
R∈R

R⊂Λ̄M

∑
(R1,...,Rn)∈Rn

∃Ri=R

∣∣∣∣∣φ(R1, . . . , Rn)
n∏

i=1

ζ(Ri)

∣∣∣∣∣
≤
∑
n≥2

n

n!

∑
R∈R

R⊂Λ̄M

|ζ(R)|
∑

(R2,...,Rn)∈Rn−1

∣∣∣∣∣φ(R1, . . . , Rn)
n∏

i=2

ζ(Ri)

∣∣∣∣∣
≤
∑
n≥2

n

n!

∑
R∈R

R⊂Λ̄M

|ζ(R)|1
2

(
2e

5
4

δ

1 − δ

)n−1

(n − 2)!|R|e|R|.

Thus,

S ≤ M(δ +
∑
r≥2

δr−1) + M
1
2

∑
n≥2

1
n − 1

(
2e

5
4

δ

1 − δ

)n−1
⎛
⎝δe +

∑
r≥2

r(δe)r−1

⎞
⎠, (33)

which concludes the proof. �

2.2. The small parameter of the cluster expansion

In order to identify a small parameter we set

Ekl(x − y) := J(x − y) − J̄(k, l).

The expansion (26) suggests that the error depends on both β and

sup
k,l∈Λ̄M

sup
x∈Ck, y∈Cl

|Ekl(x − y)|.

This quantity can be evaluated more explicitly for the special choice of interaction potential defined in (4).

Lemma 2.2. Assume that J satisfies (3)–(4) then the coarse-grained interaction potential J̄ at the coarse-
graining level q approximates the potential J with the error

|J(x − y) − J̄(k, l)| ≤ 2
q

Ld+1
sup

x′∈Ck,

y′∈Cl

‖∇V (x′ − y′)‖ (34)

for both l 
= k and l = k.

Proof. Using the properties of the potential V , we have

V (z) = V (z′) + (z − z′) · ∇V (z′) + o(‖z − z′‖).

Using the definition of J , (4) and setting z = x − y and z′ = x′ − y′, where x, x′ ∈ Ck and y, y′ ∈ Cl, we have

J(x − y) =
1

q2d

∑
x′∈Ck

∑
y′∈Cl

J(x′ − y′)

+
1

q2d

∑
x′∈Ck

∑
y′∈Cl

n

LdL
((x − y) − (x′ − y′)) · ∇V (

n

L
(x′ − y′))

+
1

q2d

∑
x′∈Ck

∑
y′∈Cl

o
(
‖n

L
((x − y) − (x′ − y′))‖

)
,
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and using the estimate ‖(x − y) − (x′ − y′)‖ ≤ ‖x − x′‖ + ‖y − y′‖ ≤ 2 max{diam (Ck)} ∼ 2
m we obtain (34) in

both cases l 
= k and l = k. �

Our goal is to construct higher-order corrections to the Hamiltonian H̄
(0)
M based on the expansion (30). First

we check the condition (29) and identify the parameter δ. From the point of view of the cluster expansion theory
we are in the high temperature, small activity regime because of the a priori estimate given by Lemma 2.2 on
the coarse-grained approximation. Hence we expect the small parameter δ to depend on the characteristics of
the coarse-graining, in particular on the parameters q and L.

Lemma 2.3 (Identification of the small parameter δ). For ζ defined in (28), condition (29) holds with

δ ∼ β sup
k∈Λ̄M

∑
l: l �=k

|
∑

x∈Ck, y∈Cl

Ekl(x − y)|.

In the particular case of Lemma 2.2 we obtain δ ∼ β qd+1

L ‖∇V ‖∞, where q is the level of coarse-graining and
L is the range of the interaction of the particles on the microscopic lattice.

Proof. To check the condition (29) we follow the analysis proposed in [22]. We start with the r = 1 case

sup
k∈Λ̄M

∑
R∈R,R⊃{k}

|R|=1

|ζ(R)| = sup
k∈Λ̄M

∫
|e−β∆kkJ(σ) − 1|ρ̃k(dσ) ∼ O

(( q

L

)d

β
qd+1

L
‖∇V ‖∞

)
,

where we have used the fact that |ea − 1| ≤ |a|e|a| and that eβ|∆kkJ(σ)| ∼ O(1). For the general case r ≥ 2 we
have

sup
k∈Λ̄M

∑
R∈R,R⊃{k}

|R|=r

∣∣∣∣∣∣
∫ ∑

g∈GR

∏
{l1,l2}∈g

fl1l2(σ)
∏

{k}∈R

ρ̃k(dσ)

∣∣∣∣∣∣ =

sup
k∈Λ̄M

1
(r − 1)!

∑
k1=k,k2,...,kr

ki �=kj,i�=j

∣∣∣∣∣∣
∫ ∑

g∈Gr

∏
{i,j}∈g

(e−β∆kikj
J(σ) − 1)

r∏
i=1

ρ̃ki(dσ)

∣∣∣∣∣∣ , (35)

where we have assumed R = {k1, . . . , kr}. We divide by (r − 1)! because we can relabel k2, . . . , kr. Note
that by Gr we denote the set of all connected graphs in {1, 2 . . . , r} which may have self-loops {j, j} for any
combination of j = 1, 2, . . . , r (from now on we simply call them loops instead of self-loops). In the sequel we
need the following estimate: due to Lemma 2.2 we have that for a fixed k ∈ Λ̄M which interacts with (L

q )d

many coarse cells,

∑
l: l �=k

|∆klJ(σ)| ∼
(

L

q

)d

q2d 1
Ld

O
( q

L

)
∼ O

(
qd+1

L
‖∇V ‖∞

)
,

which implies that

sup
k∈Λ̄M

∑
l: l �=k

|∆klJ(σ)| ≤ C, (36)

for every σ and with C ∼ supk∈Λ̄M

∑
l: l �=k |

∑
x∈Ck, y∈Cl

Ekl(x− y)| or in the special case of J given in terms of

V C ∼ qd+1

L ‖∇V ‖∞.
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Now we denote by G0
r the set of graphs g0 without loops and we describe by g ∼ g0 the corresponding graph g

with loops such that g = g0 if we remove all loops {j, j} from g. We have

∑
g∈Gr

∏
{i,j}∈g

(e−β∆kikj
J(σ) − 1) =

∑
g0∈G0

r

∏
{i,j}∈g0

(e−β∆kikj
J(σ) − 1)

⎛
⎝1 +

∑
g∼g0

∏
{j,j}∈g/g0

(e−β∆kjkj
J(σ) − 1)

⎞
⎠ .

We observe that for any g0 ∈ G0
r with |supp (g0)| = r the terms in the parenthesis are bounded by 2r, since for ev-

ery g ∼ g0 we have that
∏

{i,j}∈g/g0 β|∆kikj J(σ)| ≤ 1 (after the choice we will make at the end of the proof) and

the summation
∑

g∼g0 has
∑r

k=1

(
r
k

)
= 2r−1 many terms. Then, for the sum

∑
g0∈G0

r

∏
{i,j}∈g0 (e−β∆kikj

J(σ)−1)
we can use the tree-graph equality (e.g., [22], p. 5, Thm. 2) to estimate the sum over connected graphs with
respect to the sum over the corresponding maximal spanning trees. From [22], Theorem 2, we have that

∑
g0∈G0

r

∏
{i,j}∈g0

(e−β∆kikj
J(σ) − 1) =

∑
τ0∈T 0

r

∏
{i,j}∈τ0

(−β∆kikj J(σ))
∫ 1

0

dt1 . . .

∫ 1

0

dtr−1

×
∑

X1,...,Xr−1
comp. with τ0

tb1−1
1 . . . t

br−1−1
r−1 e−W (X1,...,Xr−1,t1,...,tr−1), (37)

where g0 is a connected graph in {1, 2, . . . , r} without loops and τ0 is the corresponding tree graph. The
summation is over all sequences X1, . . . , Xr−1 of increasing subsets of {1, 2, . . . , r} such that X1 = 1, Xn ⊂ Xn+1

and |Xn| = n that are compatible with τ0. A sequence X1, . . . , Xr−1 is compatible with a given tree τ0 if, for
all n = 1, . . . , r − 1, Xn contains exactly n − 1 links of τ0. We also say that a link {i, j} crosses Xn if i ∈ Xn

and j /∈ Xn or vice versa; then bn is the number of links of τ0 which cross Xn, and

W (X1, . . . , Xr−1, t1, . . . , tr−1) =
∑

1≤i<j≤r

t1({i, j}) . . . tr−1({i, j})β∆kikj J(σ),

where

tn({i, j}) =
{

tn ∈ [0, 1], if {i, j} crossesXn

1, otherwise .

Then from (36) we obtain that

W (X1, . . . , Xr−1, t1, . . . , tr−1) ≤
∑

1≤k<l≤r

|β∆klJ(σ)| ≤ rβ sup
k∈Λ̄M

r∑
l=1,l �=k

|∆klJ(σ)| ∼ rβC,

where C ∼ O( qd+1

L ‖∇V ‖∞). Thus, uniformly in X1, . . . , Xr−1, t1, . . . , tr−1 we have that

e−W (X1,...,Xr−1,t1,...,tr−1) ≤ erβC .

Furthermore, from [22], Lemma 4, we have that

∫ 1

0

dt1 . . .

∫ 1

0

dtr−1

∑
X1,...,Xr−1

comp. with τ0

tb1−1
1 . . . t

br−1−1
r−1 = 1.
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This leads to the following tree-graph inequality for the case of graphs with loops∣∣∣∣∣∣
∑

g∈Gr

∏
{i,j}∈g

(e−β∆kikj
J(σ) − 1)

∣∣∣∣∣∣ ≤ 2r

∣∣∣∣∣∣
∑

g0∈G0
r

∏
{i,j}∈g0

(e−β∆kikj
J(σ) − 1)

∣∣∣∣∣∣
≤ 2rerβCβ

∑
τ0∈T 0

r

∏
{i,j}∈τ0

|∆kikj J(σ)|.

From (36) we have that for any tree τ0

sup
k∈Λ̄M

∑
k1=k,k2,...,kr

ki �=kj,i�=j

∏
{i,j}∈τ0

|∆ki,kj J(σ)| ≤ Cr−1.

Using the Cayley formula
∑

τ0∈T 0
r

1 = rr−2, we conclude that

sup
k∈Λ̄M

∑
R∈R,R⊃{k}

|R|=r

|ζ(R)| ≤ 2r erβC

(r − 1)!
rr−2(βC)r−1.

Thus, we require
2βCeβC+1 ≤ δ,

so it suffices to consider δ ∼ β qd+1

L ‖∇V ‖∞. �

2.3. Effective Hamiltonians and specific entropy estimates

In this section we use the results of Lemmas 2.1 and 2.3 and expand the Hamiltonian H̄M (η) around H̄
(0)
M

in powers of δ by truncating the series (30) at the levels of the number of interacting clusters and of the length
of the clusters. We obtain the series

H̄M (η) = H̄
(0)
M (η) + H̄

(1)
M (η) + · · · + H̄

(p)
M (η) + MO(δp+1),

and define the corresponding Gibbs measures by

µ̄
(p)
M,β(dη) =

1

Z̄
(p)
M

e−β(H̄
(0)
M (η)+...+H̄

(p)
M (η)) P̄M (dη), (38)

where p = 1, 2, . . . and Z̄
(p)
M is the corresponding partition function. In the following proposition we derive

explicit formulas up to the order O(δ3) and state the corresponding error estimates for the relative entropy.
Higher order corrections can be computed in a straightforward although tedious way. For the sake of simplicity
we restrict ourselves to the case d = 1, however similar computations and results are derived in any dimension.
To make the cluster summations more specific we also denote by Br(k) the ball centered at k of radius r for a
given metric on the lattice. Furthermore, by l ∈ B+

r (k) we mean that l ∈ Br(k) ∩ {l > k}.
Proposition 2.4 (Corrections to H̄

(0)
M ). For H̄

(0)
M we have the error estimate

H̄M (η) = H̄
(0)
M (η) + MO(δ). (39)

Furthermore, the first and second order corrections to the Hamiltonian H̄
(0)
M are given by

H̄M (η) = H̄
(0)
M (η) + H̄

(1)
M (η) + MO(δ2)

H̄M (η) = H̄
(0)
M (η) + H̄

(1)
M (η) + H̄

(2)
M (η) + MO(δ3), (40)
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where

H̄
(1)
M (η) = − 1

β

∑
k∈Λ̄M

∫
fkk(σ)ρ̃k(dσ)

− 1
β

∑
k

∑
l∈B+

L
q

(k)

∫
(fkl +fklfkk +fklfll +fklfkkfll)ρ̃k(dσ)ρ̃l(dσ) (41)

and

H̄
(2)
M (η) =

1
2β

∑
k∈Λ̄M

(∫
fkk(σ)ρ̃k(dσ)

)2

+
1
2β

∑
k

∑
l∈B+

L
q

(k)

∫
fkk(σ)ρ̃k(dσ)

∫
fkl(σ)ρ̃k(dσ)ρ̃l(dσ)

+
1
2β

∑
k

∑
l1∈B+

L
q

(k)

∑
l2∈B+

L
q

(k)

∫
(fkl1 + fkkfkl1 + fkl1fl1l1 + fkkfkl1fl1l1)ρ̃k(dσ)ρ̃l1 (dσ)

×
∫

(fkl2 + fkkfkl2 + fkl2fl2l2 + fkkfkl2fl2l2)ρ̃k(dσ)ρ̃l2 (dσ)

+
1
β

∑
k

∑
l1∈B+

L
q

(k)

∑
l2∈B L

q
(l1)∪B+

L
q

(k)

∫
(fkl1fl1l2 + fkl1fkl2 + fkl2fl1l2 + [. . .])ρ̃k(dσ)ρ̃l1 (dσ)ρ̃l2(dσ)

= I1 + I2 + I3 + I4, (42)

where [. . .] means the previous three terms with all possible combinations of loops. The corresponding relative
entropy error is

1
N

R
(
µ̄

(p)
M,β

∣∣µN,β ◦ F−1
)
∼ O

(
1
q
δp+1

)
.

Proof. The error in (39) is given by (33). To get an error MO(δ2) we need to include the terms n = 1, r = 1, 2,
i.e.,

H̄
(1)
M (η) = −

∑
R: |R|=1,2

ζ(R).

Similarly, for the MO(δ3) error we need to include (41) together with the terms n = 2, r = 1, 2 and n = 1,
r = 3

H̄
(2)
M (η) = −1

2

∑
R1,R2

|Ri|=1,2,i=1,2

φ(R1, R2)ζ(R1)ζ(R2) −
∑

R: |R|=3

ζ(R),

where φ(R1, R2) = 0 if R1 ∩ R2 = ∅ and −1 if R1 ∩ R2 
= ∅, which occurs when R1 = R2 = {k} for k ∈ Λ̄M , in
the case of |Ri| = 1, i = 1, 2. If |Ri| = 2, i = 1, 2 we have that R1 = {k, l1} and R1 = {k, l2}. For the relative
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entropy error for H̄
(p)
M with p = 0, 1, . . ., we have

R
(
µ̄

(p)
M,β

∣∣µN,β ◦ F−1
)

=
1
N

∫
log

1

Z̄
(p)
M

e−βH̄M ρ(η)

1
ZN

∫
{F(σ)=η} e−βHN (σ)PN (dσ)

µ̄
(p)
M,β(dη)

=
1
N

∫
log

1

Z̄
(p)
M

e−βH̄
(p)
M ρ(η)

1
Z̄M

e−βH̄M ρ(η)
µ̄

(p)
M,β(dη)

=
1
N

log
Z̄M

Z̄
(p)
M

+
1
N

E
µ̄

(p)
M,β

[
β
(
H̄M − H̄

(p)
M

)]
, (43)

where for the partition functions we have

Z̄M =
∑

η

e−βH̄M ρ(η) = Z̄
(p)
M

∑
η

1

Z̄
(p)
M

e−βH̄
(p)
M e−β(H̄−H̄

(p)
M )ρ(η) = Z̄

(p)
M E

µ̄
(p)
M,β

[
e−β(H̄M−H̄

(p)
M )
]
. (44)

Thus, for the different choices of p in H̄
(p)
M , given the fact that the estimates (39) and (40) are uniform in η we

get that

log
Z̄M

Z̄
(p)
M

∼ log E
µ̄

(p)
M,β

[
eMO(δp+1)

]
∼ MO(δp+1), and E

µ̄
(p)
M,β

[H̄M − H̄
(p)
M ] ∼ MO(δp+1),

where p = 0, 1, 2. �

3. Numerical schemes for coarse-graining and A POSTERIORI estimates

We conclude the proof of Theorem 1.4 by giving explicit formulas for the correction terms (41) and (42)
and estimating them with respect to the small parameter ε. The corrections consist of combinations of fkl =
e−β∆klJ(σ) − 1 for all k and l. Since the exponent −β∆klJ(σ) in (26) is small we have that

e−β∆klJ(σ) − 1 =
∞∑

p=1

1
p!

(−β∆klJ(σ))p with ∆klJ(σ) ∼ O
(
q2d q

Ld+1
‖∇V ‖∞

)
. (45)

The key point of our calculations relies on the cancellation

∫
∆klJ(σ)ρ̃k(dσ)ρ̃l(dσ) = 0, (46)

following from the definition of H̄
(0)
M in (17).

In order to keep expressions simple we express our results in terms of the variables α(k), the number of spins
σ(x) = 1 in the coarse cell Ck, and ω(k) = q − α(k). Next we define the following quantities for distinct x, y, z



646 M.A. KATSOULAKIS ET AL.

and w

E1(α) := E[σ(x)|α] =
2α − q

q
, (47)

E2(α) := E[σ(x)σ(y)|α] =
α(α − 1) − 2αω + ω(ω − 1)

q(q − 1)
, (48)

E3(α) := E[σ(x)σ(y)σ(z)|α]

=
α(α − 1)(α − 2) − 3α(α − 1)ω + 3α(ω − 1)ω − (ω − 2)(ω − 1)ω

q(q − 1)(q − 2)
, (49)

E4(α) := E[σ(x)σ(y)σ(z)σ(w)|α]

=
α(α − 1)(α − 2)(α − 3) − 4α(α − 1)(α − 2)ω

q(q − 1)(q − 2)(q − 3)

+
6α(α − 1)(ω − 1)ω − 4α(ω − 2)(ω − 1)ω + ω(ω − 1)(ω − 2)(ω − 3)

q(q − 1)(q − 2)(q − 3)
, (50)

where all spin sites in the expressions are different. Note that all terms are of order O(1). Furthermore, we
introduce the notation

j1
kl :=

∑
x∈Ck
y∈Cl

(J(x − y) − J̄(k, l))2 (51)

j2
kl :=

∑
x∈Ck

y,z∈Cl

(J(x − y) − J̄(k, l))(J(x − z) − J̄(k, l)) (52)

j2
k1k2k3

:=
∑

x∈Ck1
y∈Ck2

,z∈Ck3

(J(x − y) − J̄(k1, k2))(J(y − z) − J̄(k2, k3)). (53)

If k1 = k2 then we also impose that for x, y ∈ Ck1 we have y 
= x.
Note that these quantities have various symmetries following from translational invariance of J(x − y); for

example, j2
lk = j2

kl or j1
kl = j̃1

k−l = j̃1
l−k for some function j̃1 and similarly j2

kl depends also only on k − l,
moreover j2

k1k2k3
= j̃2

k1−k2,k3−k2
.

Based on (18) we get first estimates in terms of q and L

j1
kl ∼

( q

L

)2d+2

, j2
kl ∼ q3d

( q

Ld+1

)2

∼ qd
( q

L

)2d+2

, j2
k1k2k3

∼ qd
( q

L

)2d+2

.

Proof of Theorem 1.4. Starting from the formulas for H̄
(1)
M and H̄

(2)
M in Proposition 2.4 we expand the factors fkl

and re-estimate the corrections using the cancellations in (46). Recalling that ε ∼ q
Lβ‖∇V ‖∞, we have

(i)
∑

k∈Λ̄M

∫
fkk(σ)ρ̃k(dσ) ∼ M

(
q2d q

Ld+1
β‖∇V ‖∞

)2

∼ Mq2d
( q

L

)2d

ε2

(ii)
∑

k

∑
l∈B L

q
(k)

∫
(fkl + fklfkk + fklfll)ρ̃k(dσ)ρ̃l(dσ) ∼ M

(
L

q

)d (
q2d q

Ld+1
β‖∇V ‖∞

)2

∼ Mq2d
( q

L

)d

ε2

where in the estimate we included ‖∇V ‖∞ and β into the constant since here we want to focus on the L and q
dependence. Note also that the term involving fklfkkfll is of a higher order.
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Therefore it suffices to include only the first two contributions which we also compute explicitly. With a
slight abuse of notation we still denote the new terms by H̄

(1)
M . Collecting all the terms gives us

− H̄
(1)
M = β

∑
k

∫
1
8
(∆kkJ(σ))2ρ̃k(dσ) + β

∑
k<l

∫
1
2
(∆klJ(σ))2ρ̃k(dσ)ρ̃l(dσ)

+ β
∑
k<l

∫
1
2
∆kkJ(σ)∆klJ(σ)ρ̃k(dσ)ρ̃l(dσ) + β

∑
k<l

∫
∆klJ(σ)

1
2
∆llJ(σ)ρ̃k(dσ)ρ̃l(dσ).

Explicit calculations of these integrals are detailed in Appendix A, yielding

−H̄
(1)
M =

β

8

∑
k

4j2
kk [−E4(α(k)) + E2(α(k))] + 2j1

kk [E4(α(k)) + 1 − 2E2(α(k))]

+
β

2

∑
k<l

j1
kl [E2(α(k))E2(α(l)) − E2(α(l)) − E2(α(k)) + 1)]

+ j2
kl [−2E2(α(k))E2(α(l)) + E2(α(k)) + E2(α(l))]

+
β

2

∑
k<l

2j2
kkl [−E3(α(k))E1(α(l)) + E1(α(k))E1(α(l))]

+
β

2

∑
k<l

2j2
llk [−E3(α(l))E1(α(k)) + E1(α(l))E1(α(k))] .

Since j2
kkl = j2

llk this expression further simplifies to

−H̄
(1)
M =

β

8

∑
k

4j2
kk [−E4(α(k)) + E2(α(k))] + 2j1

kk [E4(α(k)) + 1 − 2E2(α(k))]

+
β

2

∑
k<l

j1
kl [E2(α(k))E2(α(l)) − E2(α(l)) − E2(α(k)) + 1]

+ j2
kl [−2E2(α(k))E2(α(l)) + E2(α(k)) + E2(α(l))]

+
β

2

∑
k,l �=k

j2
kkl [−E3(α(k))E1(α(l)) + 2E1(α(k))E1(α(l)) − E3(α(l))E1(α(k))] .

By the estimates on the terms j2
kl and the fact that the terms Ei(α) are of order one, and by counting the

summations we obtain

H̄
(1)
M ∼ M

1
β

q3d
( q

Ld+1
β‖∇V ‖∞

)2

+ M
1
β

(
L

q

)d

q3d
( q

Ld+1
β‖∇V ‖∞

)2

∼ Mqd
( q

L

)2d

ε2 + Mqd

(
L

q

)d ( q

L

)2d

ε2 ∼ N
( q

L

)d

ε2,

hence we have gained an extra qd as compared with the previous estimate. In the same spirit we estimate the
terms of the correction H̄

(2)
M . From (42) we have

I1 ∼ M
1
β

(
q2d q

Ld+1
β‖∇V ‖∞

)4

, I2 ∼ M
1
β

(
L

q

)d (
q2d q

Ld+1
β‖∇V ‖∞

)4

,

I3 ∼ M
1
β

(
L

q

)2d (
q2d q

Ld+1
β‖∇V ‖∞

)4

, I4 ∼ M
1
β

(
L

q

)2d (
q2d q

Ld+1
β‖∇V ‖∞

)2

,
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where in the term I4 we have neglected the higher order contribution of the terms [. . .] in (42). Obviously,
for H̄

(2)
M it suffices to consider only the term I4. Abusing slightly the notation we call this term H̄

(2)
M and we

calculate it explicitly

H̄
(2)
M = β

∑
k1

∑
k2>k1

∑
k3>k2

∫
∆k1k2J(σ)∆k2k3J(σ)ρ̃k1 (dσ)ρ̃k2 (dσ)ρ̃k3 (dσ)

+
∫

∆k2k3J(σ)∆k3k1J(σ)ρ̃k2 (dσ)ρ̃k3 (dσ)ρ̃k1 (dσ) +
∫

∆k3k1J(σ)∆k1k2J(σ)ρ̃k3 (dσ)ρ̃k1 (dσ)ρ̃k2 (dσ).

Similarly, as for the previous term, we evaluate the integrals in terms of Ek and obtain

H̄
(2)
M = β

∑
k1

∑
k2>k1

∑
k3>k2

j2
k1k2k3

(−E1(α(k1))E2(α(k2))E1(α(k3)) + E1(α(k1))E1(α(k3)))

+ j2
k2k3k1

(−E1(α(k2))E2(α(k3))E1(α(k1)) + E1(α(k2))E1(α(k1)))

+ j2
k3k1k2

(−E1(α(k3))E2(α(k1))E1(α(k2)) + E1(α(k3))E1(α(k2))).

Using the estimates above we obtain the order of the correction

H̄
(2)
M ∼ M

1
β

(
L

q

)2d

q3d
( q

Ld+1
β‖∇V ‖∞

)2

∼ Mqdε2.

Thus, from the above we deduce two results: the first one that due to the fact that the leading order terms that
participate in the O(δ) error vanish, the choice of the initial Hamiltonian H̄

(0)
M yields a second-order accurate

approximation, in other words
β

N

(
H̄M − H̄

(0)
M

)
∼ O(ε2).

The second one is that to obtain a O(ε3) error, the corresponding correction term have to include both H̄
(1)
M

and H̄
(2)
M . In such a case we obtain

β

N

(
H̄M −

(
H̄

(0)
M + H̄

(1)
M + H̄

(2)
M

))
∼ O(ε3).

In the same spirit we can derive error estimates for the additional terms in the expansion. �
In Section 4 we discuss the computational complexity of higher-order terms. Here we present only two

schemes that are relevant for practical implementations.

Scheme 3.1 (2nd-order coarse-graining). The 2nd-order coarse-graining algorithm has the following character-
istics

(1) Hamiltonian: H̄
(0)
M , given by (17).

(2) Gibbs measure: µ̄
(0)
M,β, given by (38) for p = 1.

(3) Relative entropy error
R
(
µ̄

(0)
M,β

∣∣µN,β ◦ F−1
)
∼ O(ε2).

Scheme 3.1 is the coarse-graining algorithm that has been extensively studied in [13–15, 17]. The novelty
presented in this paper is the sharper error estimate that shows that the error is of the order O(ε2); this
estimate readily follows from the cancellation due to (46) as is seen from the calculations above.

Scheme 3.2 (3rd-order coarse-graining). We construct a higher-order Monte Carlo algorithm with the following
characteristics
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(1) Hamiltonian: H̄
(0)
M + H̄

(1)
M + H̄

(2)
M ,where the corrections are

−H̄
(1)
M (η) =

β

8

∑
k

4j2
kk [−E4(α(k)) + E2(α(k))]

+ 2j1
kk [E4(α(k)) + 1 − 2E2(α(k))]

+
β

2

∑
k<l

j1
kl [E2(α(k))E2(α(l)) − E2(α(l)) − E2(α(k)) + 1]

+ j2
kl [−2E2(α(k))E2(α(l)) + E2(α(k)) + E2(α(l))]

+
β

2

∑
k,l �=k

j2
kkl [−E3(α(k))E1(α(l)) + 2E1(α(k))E1(α(l)) − E3(α(l))E1(α(k))] (54)

and

H̄
(2)
M (η) = β

∑
k1

∑
k2>k1

∑
k3>k2

j2
k1k2k3

(−E1(α(k1))E2(α(k2))E1(α(k3)) + E1(α(k1))E1(α(k3)))

+ j2
k2k3k1

(−E1(α(k2))E2(α(k3))E1(α(k1)) + E1(α(k2))E1(α(k1)))

+ j2
k3k1k2

(−E1(α(k3))E2(α(k1))E1(α(k2)) + E1(α(k3))E1(α(k2))). (55)

The terms Ei are defined in (47)–(50) and the quantities j1
kl, j

2
kl, j

2
k1k2k3

are defined in (51)–(53).

(2) Gibbs measure µ̄
(2)
M,β(dη) = 1

Z̄
(2)
M

e−(H̄
(0)
M +H̄

(1)
M +H̄

(2)
M )P̄M (dη).

(3) Relative entropy error

R
(
µ̄

(2)
M,β

∣∣µN,β ◦ F−1
)
∼ O(ε3).

Remark 3.1. The estimates in Schemes 3.1 and 3.2 refer to the equilibrium Gibbs states of lattice systems.
Non-equilibrium models such as the Arrhenius dynamics can be coarse-grained as shown in [14,15]. In this case
it is also possible to carry out a detailed error analysis between the exact microscopic and the approximating
coarse-grained dynamics. In [13] an order O(ε) estimate was proved for the specific relative entropy between
microscopic and coarse-grained dynamics, while in [17] an improved O(ε2) estimate was shown in the weak
topology. Both results are analogous to Scheme 3.1, as the invariant Gibbs measure corresponding to the
coarse-grained Arrhenius dynamics studied there is (38).

We now turn our attention to the a posteriori error estimate in Theorem 1.6. The terms derived in Scheme 3.2
and the error estimate of Theorem 1.4 provide an explicit way of calculating the error made by the 2nd-order
coarse-graining.

Proof of Theorem 1.6. As we have seen in Proposition 2.4, we can write the relative entropy error as the expec-
tation with respect to the coarse-grained measure of some quantities, namely of the difference H̄M − H̄

(p)
M for

any choice of K. On the other hand, in the Scheme 3.2 we have calculated explicitly the terms that contribute
to the error of H̄

(0)
M . We now conclude the proof by recalling the proof of Theorem 1.4 and relations (43)

and (44). �

Using a Metropolis Monte Carlo sampler (see App. B), we can numerically compute the expectations in (43)
and (44) and thus we can calculate the a posteriori error of R(µ̄(0)

M,β |µN,β◦F−1). Note also that as a consequence
the quantity E

µ̄
(0)
M,β

[R(η)] can be calculated on-the-fly using the coarse simulation only, at least up to the error

O(ε3) according to Scheme 3.2.
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3.1. Coarse-graining of external fields

To include an x-dependent external field in our analysis, we define an effective external field h̄ by

e−βh̄(η(k)) =
∫
{F (σ|k)=η(k)}

e−β
∑

x∈Ck
h(x)σ(x)

ρ̃k(dσ) (56)

for every k. Then the effective full Hamiltonian (for both the interaction and the external field contribution)
will be given by

e−βH̄M (η) =
1

ρ̄(η)

∫
{F (σ)=η}

e−βHN−β
∑

x∈Λ h(x)σ(x)PN (dσ)

and by perturbing around the coarse-grained Hamiltonian H̄
(0)
M +

∑
k h̄(η(k)) we obtain

H̄M (η) = H̄M (0) +
∑

k

h̄(η(k)) − 1
β

log
1

ρ(η)

∫
{F (σ)=η}

e−β∆Heβ(
∑

k h̄(η(k))−
∑

x∈Λ h(x)σ(x))PN (dσ),

where ∆H = HN − H̄
(0)
M . Since the part that involves the external field can be written in a product form, we

obtain
H̄M (η) = H̄

(0)
M +

∑
k

h̄(η(k)) − 1
β

log
∫

e−β∆H
∏
k

(
eβ(h̄(η(k))−

∑
x∈Ck

h(x)σ(x))
ρ̃k(dσ)

)
.

The new prior measure is normalized due to the definition (56) of the effective external field and therefore we
can proceed with the cluster expansions as described before. Eventually, the only issue will be the analytic
evaluation of the expected values Eh[σ(x)|η] with respect to the new prior measure due to the dependence on
the external field. Furthermore, it is easy to see that in the case of a constant or slowly varying (at the same
scale as the coarse cells) external field there is no extra contribution to the correction terms of the Hamiltonian.

4. Computational algorithms and numerical experiments

The 2nd-order approximation for the coarse-grained algorithm as described in Scheme 3.1 has been extensively
studied in previous works, see, e.g., [14,15,17], where it has been demonstrated that it performs well in certain
regimes (e.g., long-range interactions). In this section we present numerical experiments based on Scheme 3.2
and its comparison with the 2nd-order coarse-graining Scheme 3.1 for cases where the latter does not give
satisfactory results.

Before we present numerical examples we briefly discuss the computational complexity of the approximations.
As a simple measure of complexity we use the number of operations required for evaluating the Hamiltonian.
Although the actual Monte Carlo step does not require evaluation of the full Hamiltonian the relative complexity
with respect to the operation count of the full microscopic simulation q = 1 is properly reflected by this measure.
Given a potential with the interaction radius L on a d-dimensional lattice with N sites, the number of operations
for evaluation of the microscopic Hamiltonian HN is O(NLd). The count for the 2nd-order approximation
H

(0)
M on the coarse lattice with M sites and coarse-graining ratio q becomes O(MLd/qd). The 3rd-order

approximation H
(1)
M involves an additional summation over the interaction range and hence the operation count

is O(ML2d/q2d). In these estimates the ratio L/q is understood to be equal to one whenever q ≥ L. In such a
case the coarse interactions are reduced to the nearest-neighbor case. Thus the compression of the interaction
kernel J in the corresponding approximations yields the speed-up of order O(q2d) for H

(0)
M and O(q3d/Ld) for

H
(1)
M . We see that the 3rd-order approximation gives an improved error estimate at the same computational

cost whenever q = L, in other words, whenever we can compress interactions to the nearest-neighbor potential.
We demonstrate the approximation properties in simulations of one-dimensional Ising-type spin systems. The

one-dimensional system provides a suitable test bed since the exact (analytical) solutions are known for both
the classical Ising system (i.e., nearest-neighbor) and the mean-field model (Curie-Weiss model). We use the
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exact solutions to ensure that the simulations are not influenced by finite-size effects. In all figures the exact
solutions visually coincide with the fully resolved simulations, i.e., q = 1. We computed error bars for statistical
post-processing, however, they are not displayed in the figures due to their small relative size as compared to
the scales of figures.

In the case of nearest-neighbor interactions the one-dimensional system does not exhibit phase transition.
In fact, the exact solution is given by a well-known formula (see, e.g., [18]), which we adopt to our choice of
Hamiltonian with the constant nearest-neighbor (L = 1) interaction potential of strength J0. The equilibrium
magnetization curve is then given by

mβ(h) =
sinh(βh)√

sinh2(βh) + e−2βJ0

· (57)

On the other hand, for infinitely long attractive interactions there exists a 2nd-order phase transition and
hysteresis behavior is observed according to the global mean-field theory for β > βc [9]. More explicitly, the
mean-field (Curie-Weiss) model gives the magnetization curve as a solution of the non-linear equation

h = −J0mβ +
1
2β

log
1 + mβ

1 − mβ
· (58)

The Curie-Weiss model exhibits phase transition at the critical temperature given by βcJ0 = 1 in the case of
spins {−1, 1} (βcJ0 = 4 for spins {0, 1}).

The approximation of the hysteresis behavior in coarse-grained simulations provides a good test for derived
coarse-graining schemes. It has been observed previously that hysteresis and critical behavior are not captured
properly for short and intermediate range potentials [15]. Similar issues in predicting critical behavior were also
observed in [21] for coarse-graining of complex fluids. There an artificial solidification effect was observed for
higher levels of coarse-graining.

In the numerical tests presented here we demonstrate that the derived corrections improve this behavior even
in the case of nearest-neighbor interactions or high coarse-graining ratio q. The sampling of the equilibrium
measure is done by using microscopic and coarse-grained Metropolis dynamics discussed briefly in Appendix B.
We compute isotherms similarly to natural parameter continuation, i.e., we trace the magnetization mβ vs.
external field h, first upon increasing the field h from low values and then decreasing it from high values. All
simulations have been done with the fine lattice of the size N = 512. As derived in Section 2.2 the errors depend
on the interplay of three parameters q, L and β. In examples presented here we investigate approximation
properties for some regimes in this parameter space. In the computational examples we choose J to be constant
on its support of the size 2L, in particular J(x) = J0

2L , for |x| ≤ L and 0 otherwise.
Test Case I: short-range interactions. We use the classical Ising model with nearest-neighbor interactions to show
efficiency of the 3rd-order correction term. Figures 1 and 2 depicts simulations at two different temperatures
β = 2, 3. The 2nd-order approximation exhibits hysteresis behavior for β above the critical value βc for the
Curie-Weiss model. It partly follows the magnetization curve predicted by the mean-field theory. Including
the corrections into the effective Hamiltonian removes the hysteresis and in the case of smaller β gives even a
reasonable approximation to the exact solution, which coincides with the case q = 1 at the scale of the figure.
Test Case II: intermediate-range interactions. In this case the system exhibits hysteresis behavior (and a 2nd-
order phase transition) but the correct approximation of the transition between two states is not achieved by
the 2nd-order effective Hamiltonian. In Figures 3 and 4 we present an example with extreme coarse-graining up
to the interaction range, i.e., q = L = 8, and beyond the interaction range q = 32. Note that this example is far
from the ε ∼ q

L � 1 limit suggested by Lemma 2.1. However, as is the case in most asymptotics, computations
perform well even for larger values of ε and especially in this case where the higher-order corrections are added.
Test Case III: long-range interactions. If the interaction range L is sufficiently large the behavior of the system is
well-approximated by the mean-field solution and coarse-grained simulations will give good predictions already
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Figure 1. Comparison of fully resolved q = 1 and coarse-grained q = 8 simulations. The
interaction range is L = 1 and the inverse temperature is fixed at β = 2.
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Figure 2. Comparison of fully resolved q = 1 and coarse-grained q = 8 simulations. The
interaction range is L = 1 and the inverse temperature is fixed at β = 3.

in the 2nd-order approximation. This is observed in Figures 7 and 8 with coarse-graining to the range of
interactions q = L = 32. However, coarse-graining beyond the interaction range (q = 64 in Fig. 8) shows that
the 2nd and 3rd-order schemes give almost identical results. On the other hand the simulations in Figures 5
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Figure 3. Comparison of fully resolved q = 1 and coarse-grained q = 8 simulations. The
interaction range is L = 8 and the inverse temperature is fixed at β = 2.
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Figure 4. Comparison of fully resolved q = 1 and coarse-grained q = 32 simulations. The
interaction range is L = 8 and the inverse temperature is fixed at β = 2.
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Figure 5. Comparison of fully resolved q = 1 and coarse-grained q = 8 simulations. The
interaction range is L = 8 and the inverse temperature is fixed at β = 2.
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Figure 6. Comparison of fully resolved q = 1 and coarse-grained q = 8 simulations in the
“high temperature” regime. The interaction range is L = 8 and the inverse temperature is
fixed at β = 1.

and 6 show two regimes where the 2nd-order approximation gives reasonable agreement with the microscopic
magnetization curve.
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Figure 7. Comparison of fully resolved q = 1 and coarse-grained q = 32 simulations. The
interaction range is L = 32 and the inverse temperature is fixed at β = 2.
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Figure 8. Comparison of fully resolved q = 1 and coarse-grained q = 64 simulations. The
interaction range is L = 32 and the inverse temperature is fixed at β = 2.
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Appendix A

In this section we present the detailed calculations involved in obtaining exact formulas for the corrections
H̄

(p)
M , p = 1, 2, . . . to the coarse-grained Hamiltonian H̄

(0)
M .

Computation of the term
∫

(∆kkJ(σ))2ρ̃k(dσ). Using the definition of ∆kkJ we write

∫
(∆kkJ(σ))2ρ̃k(dσ) =

∑
x,y∈Ck

y �=x

∑
x′,y′∈Ck

y′ �=x′

(J(x − y) − J̄(k, k))(J(x′ − y′) − J̄(k, k))E[σ(x)σ(y)σ(x′)σ(y′)|α].

In the above formula the expectation takes different values according to the following cases

(1) Four particles: x 
= x′, y′ and y 
= x′, y′, in which case the expectation gives E4(α).
(2) Three particles: x = x′ and y 
= y′, or y = y′ and x 
= x′, or x = y′ and x′ 
= y, or x′ = y and x 
= y′,

in which case for some distinct x, y, z we obtain E[σ2(x)σ(y)σ(z)|α] = E[σ(y)σ(z)|α] = E2(α), since
σ2(x) = 1.

(3) Two particles: x = x′ and y = y′, or x = y′ and x′ = y, which for the distinct particle positions x, y
gives E[σ2(x)σ2(y)|α] = 1.

We also keep in mind that we already have that y 
= x and y′ 
= x′. With the above cases we can substitute for
E[σ(x)σ(y)σ(x′)σ(y′)|α] the expression

(1 − δx,x′)(1 − δx,y′)(1 − δy,x′)(1 − δy,y′) × E4(α)
+ [δx,x′(1 − δy,y′) + δy,y′(1 − δx,x′) + δx,y′(1 − δx′,y) + δx′,y(1 − δx,y′)] × E2(α)
+ (δx,x′δy,y′ + δx,y′δx′,y) × 1.

We expand the above products and collect the terms with the factor δx,x′ (note that the others with the
factors δx,y′ , etc., are same by changing variables), and with the factor δx,x′δy,y′ and we obtain

4
∑

x,y∈Ck
y �=x

∑
x′,y′∈Ck

y′ �=x′

(J(x − y) − J̄(k, k))(J(x′ − y′) − J̄(k, k))δx,x′(−E4(α) + E2(α)) = 4j2
kk(−E4(α) + E2(α)),

and we also have

2
∑

x,y∈Ck
y �=x

∑
x′,y′∈Ck

y′ �=x′

(J(x − y) − J̄(k, k))(J(x′ − y′) − J̄(k, k))δx,x′δy,y′(E4 + 1 − 2E2) = 2j1
kk(E4(α) + 1 − 2E2(α)).
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Computation of the term
∫
(∆klJ(σ))2ρ̃k(dσ)ρ̃l(dσ). Similarly as in the calculation above we consider all possible

cases for the position of the particles and we obtain

∑
x∈Ck
y∈Cl

∑
x′∈Ck
y′∈Cl

(J(x − y) − J̄(k, l))(J(x′ − y′) − J̄(k, l))E[σ(x)σ(y)σ(x′)σ(y′)|α]

=
∑

x∈Ck
y∈Cl

∑
x′∈Ck
y′∈Cl

(J(x − y) − J̄(k, l))(J(x′ − y′) − J̄(k, l))

×
{

(1 − δx,x′)(1 − δy,y′)E[σ(x)σ(x′)|αk]E[σ(y)σ(y′)|αl]

+ δx,x′(1 − δy,y′)E[σ2(x)|αk]E[σ(y)σ(y′)|αl]

+ δy,y′(1 − δx,x′)E[σ(x)σ(x′)|αk]E[σ2(y)|αl]∗
+ δx,x′δy,y′E[σ2(x)|αk]E[σ2(y)|αl]

}
=
∑

x∈Ck
y∈Cl

∑
x′∈Ck
y′∈Cl

(J(x − y) − J̄(k, l))(J(x′ − y′) − J̄(k, l))

×
{

δx,x′(−E2(αk)E2(αl) + E2(αl)) + δy,y′(−E2(αk)E2(αl) + E2(αk))

+ δx,x′δy,y′(E2(αk)E2(αl) − E2(αl) − E2(αk) + 1)
}

= j2
kl(−2E2(αk)E2(αl) + E2(αk) + E2(αl)) + j1

kl(E2(αk)E2(αl) − E2(αl) − E2(αk) + 1).

Computation of the term
∫

∆kkJ(σ)∆klJ(σ)ρ̃k(dσ)ρ̃l(dσ). In the same spirit we have

∑
x,y∈Ck

y �=x

∑
x′∈Ck
y′∈Cl

(J(x − y) − J̄(k, k))(J(x′ − y′) − J̄(k, l))E[σ(x)σ(y)σ(x′)σ(y′)|α]

=
∑

x,y∈Ck
y �=x

∑
x′∈Ck
y′∈Cl

(J(x − y) − J̄(k, k))(J(x′ − y′) − J̄(k, l))

×
{
(1 − δx,x′)(1 − δy,x′)E[σ(x)σ(y)σ(x′)|αk]E[σ(y′)|αl]

+ δx,x′E[σ2(x)σ(y)|αk ]E[σ(y′)|αl] + δy,x′E[σ(x)σ2(y)|αk]E[σ(y′)|αl]
}

=
∑

x,y∈Ck
y �=x

∑
x′∈Ck
y′∈Cl

(J(x − y) − J̄(k, k))(J(x′ − y′) − J̄(k, l))

×
{
− δx,x′ (E3(αk)E1(αl) − E1(αk)E1(αl)) − δy,x′ (E3(αk)E1(αl) − E1(αk)E1(αl))

}
= −2j2

kkl(E3(αk)E1(αl) − E1(αk)E1(αl)).

Similar computation yields expressions −2j2
llk(E3(αl)E1(αk) − E1(αl)E1(αk)) for the terms fllfkl.
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Computation of the term
∫

∆k1k2J(σ)∆k2k3J(σ)ρ̃k1 (dσ)ρ̃k2 (dσ)ρ̃k3 (dσ). We repeat the same procedure and
obtain ∑

x∈Ck1
y∈Ck2

∑
x′∈Ck2
y′∈Ck3

(J(x − y) − J̄(k1, k2))(J(x′ − y′) − J̄(k2, k3))E[σ(x)σ(y)σ(x′)σ(y′)|α] =

∑
x∈Ck1
y∈Ck2

∑
x′∈Ck2
y′∈Ck3

(J(x − y) − J̄(k1, k2))(J(x′ − y′) − J̄(k2, k3))

×
{

(1 − δy,x′)E[σ(x)|αk1 ]E[σ(y)σ(x′)|αk2 ]E[σ(y′)|αk3 ]

+ δy,x′E[σ(x)|αk1 ]E[σ(y)2|αk2 ]E[σ(y′)|αk3 ]
}

∑
x∈Ck1
y∈Ck2

∑
x′∈Ck2
y′∈Ck3

(J(x − y) − J̄(k1, k2))(J(x′ − y′) − J̄(k2, k3))

× δy,x′(−E1(αk1 )E2(αk2 )E1(αk3 ) + E1(αk1)E1(αk3))

= j2
k1k2k3

(−E1(αk1)E2(αk2)E1(αk3) + E1(αk1)E1(αk3)).

Appendix B: Sampling of the equilibrium measure

In this section we briefly describe the background of Monte Carlo methods used in Section 4 for the sampling
of the microscopic and coarse-grained equilibrium Gibbs measures. These algorithms rely on the construction
of a suitable Markov Chain such that its unique invariant measure is the Gibbs measure we intend to sample.

Microscopic Monte Carlo algorithms. The sampling algorithm for the microscopic lattice system is given in
terms a continuous-time jump Markov process that defines a change of the spin σ(x) with the probability
c(x, σ)∆t over the time interval [t, t + ∆t]. The function c : ΛN × SN → R is called a rate of the process. The
jump process {σt}t≥0 is constructed in the following way: suppose that at the time t the configuration is σt,
then the probability that over the time interval [t, t + ∆t] the spin at the site x ∈ ΛN spontaneously changes
from σt(x) to a new configuration σx

t+∆t(x) is c(x, σ)∆t+O(∆t2). We denote the resulting configuration σx. We
require that the dynamics is such that the invariant measure of this Markov process is the Gibbs measure (6).
The sufficient condition is known as detailed balance and it imposes a condition on the form of the rate

c(x, σ)e−βHN (σ) = c(x, σx)e−βHN (σx).

This condition has a simple interpretation c(x, σ) is the rate of converting σ(x) to the value σx(x) while c(x, σx) is
the rate of changing the spin at the site x back to σ(x). For the spin-flip dynamics we have σx(y) = (1−2δxy)σ(y).
The widely used class of Metropolis-type dynamics satisfies the detailed balance conditions and has the rate
given by

c(x, σ) = G(β∆xHN (σ)), where ∆xHN (σ) = HN (σx) − HN (σ),
where G is a continuous function satisfying: G(r) = G(−r)e−r for all r ∈ R. The most common choices in
physics simulations are G(r) = 1

1+er (Glauber dynamics), G(r) = e−[r]+ , (Metropolis dynamics), with [r]+ = r

if r ≥ 0 and = 0 otherwise, and G(r) = e−r/2. Such dynamics are often used as samplers from the canonical
equilibrium Gibbs measure.

Coarse-grained Monte Carlo algorithms. For the purpose of sampling the coarse-grained Gibbs measure given
by µ̄M,β(η) we will consider a Markov jump process with the rates c̄b(k, η), c̄d(k, η) correspond to the addition
(“birth”) and removal of a particle (“death”) respectively, at the coarse cell k. The resulting process is a
birth-death process {ηt}t≥0 defined on the configuration space (Σc)Λ̄M , where the state space is Σc = {−q,−q +
2, . . . , +q} or Σc = {0, 1, . . . , q}.
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As in the case of microscopic dynamics, we need to ensure the detailed balance condition for the coarse-grained
rates expressed as

c̄b(k, η)µ̄M,β(η) = c̄d(k, η + δk)µ̄M,β(η + δk), and c̄d(k, η)µ̄M,β(η) = c̄b(k, η − δk)µ̄M,β(η − δk).

For the Metropolis-type dynamics the rates are given by

c̄b(k, η) = G(H̄(0)
M (η + δk) − H̄

(0)
M (η))(q − η(k)), and c̄d(k, η) = G(H̄(0)

M (η − δk) − H̄
(0)
M (η))η(k).

Notice that with these rates the detailed balance conditions hold since

G(H̄(0)
M (η + δk) − H̄

(0)
M (η))e−H̄

(0)
M (η) = G(H̄(0)

M (η − δk) − H̄
(0)
M (η))e−H̄

(0)
M (η+δk),

G(H̄(0)
M (η − δk) − H̄

(0)
M (η))e−H̄

(0)
M (η) = G(H̄(0)

M (η) − H̄
(0)
M (η − δk))e−H̄

(0)
M (η−δk)

and G(r) = G(−r)e−r for all r ∈ R.

Higher-order coarse-grained Monte Carlo algorithms. In Theorem 1.4 we have suggested higher-order corrections
(H̄(p)

M , for p = 1, . . .) to the coarse-grained Hamiltonian H̄
(0)
M . Based on this equilibrium theory, and on

the detailed balance condition, we define rates that are capable of sampling the corrected Gibbs measure
corresponding to H̄

(p)
M . In this case the Metropolis-type rates are given as

c̄(p)
a (k, η) = G(H̄(p)

M (η + δk) − H̄
(p)
M (η))(q − η(k)), and c̄

(p)
d (k, η) = G(H̄(p)

M (η − δk) − H̄
(p)
M (η))η(k).
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