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Abstract: We analyze the free energy and construct the Gibbs-KMS states for a class
of quantum lattice systems, at low temperature and when the interactions are almost
diagonal, in a suitable basis. The models we study may have continuous symmetries,
our results, however, apply to intermediate temperatures where discrete symmetries are
broken but continuous symmetries are not. Our results are based on quantum Pirogov—
Sinai theory and a combination of high and low temperature expansions.

1. Introduction

In this paper we study the low temperature phase diagram for a class of quantum lattice
systems. Starting with [PS, Sin], Pirogov-Sinai theory has evolved [KP, Zah, BKL,BS,
Bl, BK] into a very powerful tool to study the pure phases, their coexistence and the first-
order phase transitions blassical spin systems at low temperature. In recent years a
large part of the Pirogov—Sinai theory has been extended to quantum systems [Pir, BKU,
DFF,DFFR, KU], quantum spin systems as well as fermionic and bosonic lattice gases,
and applied to a variety of models [FR, DFF2, GKU] to describe insulating phases asso-
ciated with discrete symmetry breaking. Here we formulate the Pirogov—Sinai theory in
terms of tangent functionals to the free energy. This allows us to discuss the complete-
ness of the phase diagram avoiding the difficulties associated with boundary conditions.
We reformulate results of [BKU,DFF,DFFR,KU] in this framework, and extend the
theory to a class of models where discrete symmetries are broken at intermediate tem-
peratures. This applies in particular to some systems with continuous symmetries. For
this, we consider theestricted ensembles introduced in [BKL] that are very useful to
analyze phases which are associated to a family of configurations rather than to a single
configuration.
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The models that we consider have Hamiltonians, for finite volumesf the form
Hp = VA + Ty,

where V, is a classical Hamiltonian (i.e. diagonal in a suitable basis) Bnds a
(usually small) quantum perturbation. In typical situations the suitable basis is the basis
of occupation numbers of position operators. Electronic systems provide a large class of
interesting models. The classical interactigpdescribes the many-body shortrange and
classical interaction between the s@rﬁermions as well as external fields and chemical
potentials:

VA = Z Jeolx o + Z Jey,ooMxoly ol + 0.

XEA x,yeA
oe{t I} G’G/E{T’\L}

A typical quantum perturbatiofi, is the kinetic energy

Th = Z txy,(,(cldcy(, + h.c),
<x,y>CA
oe{t.{}

WherecL, andc,, are the creation and annihilation operators and y > denotes pairs
of nearest neighbors.

Often, in such systems, the behavior at low temperatures arises from a subtle interplay
between the (classical) potential energy and the kinetic energy. In this paper two such
mechanisms are considered and combined, each of which we now illustrate with an
example.

Example 1 (Hubbard Model). In this case the (classical) interaction is only on-site:

VA = Z Unysnyy — p(ngy +nyy).

xeA

For suitable values di andw, the ground states df, have an infinite degeneracy (in

the thermodynamic limit): each site is occupied by a single particle of arbitrary spin.
However the kinetic energy lifts this degeneracy and induces an effective antiferromag-
netic interaction between nearest neighbors. The perturbative methods of [DFFR, DFF2]
shows that, in this parameter range, this system is equivalent, in the sense of statisti-
cal mechanics, to the Heisenberg antiferromagnet, up to controlled error terms. If the
hopping coefficients are asymmetric (e1.g.+ < txy,|) then quantum Pirogov—Sinai
implies the coexistence of two antiferromagnetic phases at low enough temperatures
[DFFR,KU, DFF2]. Rigorous results for the Hubbard model are reviewed in [Lieb].

Example 2 (Extended Hubbard Model). This variant of the Hubbard model includes a
nearest neighbor interaction:

Va = Z[UnxTnxl - M(”xT + nxi)il +Ww Z (”xT + nxi)(nyT + n}'¢)~

XEA <x,y>CA

If the interaction between nearest neighbors is repulsive then for suitable valiies of
W and . the ground states of, are chessboard configurations where empty sites
alternate with sites occupied with one particle of arbitrary spin. The degeneracy of the
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ground states is infinite in the thermodynamic limit but we have a spatial ordering of the
particles. Using a restricted ensemble we associate a pure phase to this spatial ordering
by neglecting the spin degrees of freedom. The methods of this paper imply the existence
of only two pure phases in the intermediate temperature range

Bt k1l and BW > 1

The temperature is so low that the spatial ordering of the particles survives but so high
that the spins are in disordered phase. The continuous symmetryif + = tx, ) is
not broken in this parameter regime.

These two models illustrate some of the mechanisms arising from the competition
between classical and quantum effects, where the system remains insulating and no
continuous symmetry is broken. Our main result, Theorem 4.4, provides tools to describe
the phase diagram of such models, in particular the coexistence of several phases and
the associated first-order phase transitions.

The main technical ingredient in this paper is a combined low-temperature and high-
temperature expansion for suitable contour models obtained using the perturbation the-
ory developed in [DFFR].

This paper is organized as follows. In Sect. 2 we describe the general formalism of
quantum lattice systems and the perturbation theory of [DFFR]. Section 3 is devoted
to the Pirogov-Sinai theory. In Sect. 4 we state the results of Pirogov—Sinai theory for
guantum systems. The extended Hubbard model is discussed in Sect. 5 as an illustration.
In Sect. 6 we prove our main result by studying a contour model and deriving the required
bounds on the contours.

2. General Framework of Quantum L attice Models

2.1. Basicset-up. We consider a quantum mechanical system srdlanensional lattice

7V, as considered, e.g., in [Rue, Isr,BR, Sim]. We will need a slight modification of the
usual formalismin order to treat fermionic lattice gases [DFFR] and to accommodate the
fact that fermionic creation and annihilation operators do not commute but anticommute.
A quantum lattice system is defined by the following data:

(i) Hilbert space. For convenience we choose a total ordering (denoted by the symbol
<) of the sites inZ". We choose thepiral order, depicted in Fig.1 for = 2, and an
analogous ordering far > 3. This ordering has the property that, for any finite et

the setd := {z € Z', z < A} of lattice sites which are smaller thah or belong toA,

is finite. To each lattice site € Z" is associated a finite-dimensional Hilbert spa&e

and, for any finite subset = {a1 < --- < a,} C Z", the corresponding Hilbert space
‘H 4 is given by the ordered tensor product

HA ZHal®"'®Han- (2.1)

We further require that there be a Hilbert space isomorplism#, — H, for all
aecZ.

(i) Field and observable algebras. For any finite subse C Z" an operator algebra
Fa, thefield algebra, is given. The algebrd, is isomorphic to the algebr&(H 4)

of bounded operators 6H4, but in generalF, # B(Ha), ratherF, C B(Hyz). The
algebraF, is ax-algebra equipped with @*-norm obtained from the operator norm
onB(Ha).If AcC Banda < b, foralla € Aandallb € B\ A, then there is a natural
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Fig. 1. Spiral order inz?2

embedding off 4 into Fz: An operatork’ € F corresponds to the operat&ir® 1y, ,
in Fp. In the following we denote b both operators. For the infinite system the field
algebra is the”* algebra given by

—hnorm
F= U Fa , (2.2)
ALY

(the limit being taken through a sequence of increasing subsgéts ofhere increasing
refers to the (spiral) ordering defined above).

The algebrasF, contain theobservable algebras O 4 which have the same embed-
ding properties as the field algebras and, moreover, satisfy the following commutativity
condition: IfA N B = @, then for anyK € F4, L € Op we have

[K,L]=0. (2.3)

For the infinite system the observable algefras given by

o= |Jos . (2.4)

The group of space translatio® acts as ax-automorphism grougz,}.cz» on the
algebrasF andO, with

-7:X+a = 1,(Fx), OX—i—a = 174(Ox), (25)

foranyX C Z' anda € Z".

(iii) Interactions, dynamics and free energy. An interactionH = {Hy4} is given: This

is a map from the finite setd C Z" to self-adjoint operatoré¢, in the observable
algebra O 4. We assume the interaction to be translation invariant or periodic, i.e., there
is a latticel’ € Z", with dimI" = v, such thatr, H4 = Hy,, foralla € T and all

A C Z.We will consider finite range or exponentially decaying interactions. The norm
of an interaction is defined as

IH||, = sup) | Hal &', (2.6)

aeZV Asa

for somer > 0. Here|A| denotes the cardinality of the smallest connected subset of
7Y which containsA. We shall denote by, = {H: | H||, < oo} the corresponding
Banach space of interactions.
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For a finite boxA, we denoteH, the finite-volume Hamiltonian given b, =
> _aca Ha. Here, we consider only periodic boundary conditionsAi.is.thev-dimen-
sional torus(Z/L7Z)", L being the size ofA. In the sequel we will consider infinite
volume limits; the notation lim ~z» will stand for limz _, «.

If H € B,,the interactiorH determines a one-parameter group-@utomorphisms,
{o:}:er ONF. These automorphisms are constructed as the limit (in the strong topology)
of the automorphisme? given by fork € Fa, A C A by

aM(K) = efin g eTitHn (2.7)
The proof is standard (see e.g. [BR]). Note that one makes crucial use of the commuta-

tivity condition (2.3).
For an interactiorH and at inverse temperatugehe partition function is defined as

7P = Tr e Pl (2.8)
thefreeenergy f(H) is then
1 1 B
f(H)_—E[\I;rpZleogZA. (2.9

Existence of the limitis a well-known result, see [Isr, Sim]. Notice th@ ) is a concave
function of the interactior .

(iv) KMSstates and tangent functionals. A state w on O is a positive normalized linear
functional onO. A statew is periodic if w o t, = w, for all a in a latticel' ¢ Z" and
invariant ifI' = Z". A KMS state at inverse temperatysas a statewg which satisfies
the KMS condition

wp (Ko (L)) = wp(@—ip(K)L). (2.10)

For finite systems with periodic boundary conditions it is easy to check that the Gibbs
state given by

wpa () = (Tre PHay=ITr(e PN (2.11)

satisfies the KMS condition. The set of KMS states is convexaiglcalledextremal
if it cannot be written as a linear combination of KMS states. The staselustering if

ali_)moow(Kra(L)) = w(K)w(t, L), (2.12)

for all K, L € O. Note that a statev is extremal if it is clustering. The state is
exponentially clustering if, for any local observable € Oy4, L € Op we have the

property
w(K (L)) —w(K)w(t,L) < Cg e /s (2.13)

with £ > 0; hereCk ;. depends oK andL only.

If we consider the free energy as a function of the interaction, KMS states at inverse
temperatured are in one-to-one correspondence with tangent functionals to the free en-
ergy. The free energy is a concave function of the interactidhand a linear functional
a on B3, is said to be tangent tg at H if for all interactionK e 5, we have

fH+K) < f(H)+a(K). (2.14)
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To an invariant state we associate a tangent functionatiefined by
a(K) = w(Ag), (2.15)

whereAg = ) y g |X|~1Kx (and similarly for periodic states). The results of Israel
and Araki [Isr,Ara] show that i is a tangent functional &, then the invariant state
defined in (2.15) is a KMS state at temperat@rand, conversely, for any KMS state at
temperatures there is a unique tangent functioral The identification of KMS states
with tangent functionals will be very useful to describe the phase diagrams arising from
Pirogov-Sinai theory.

Example. As an illustration of the general formalism we consider spifl fermions,

as in the examples treated in this paper. The Hilbert spacis isomorphic taC*. We
denoteflg andc,, the creation and annihilation operators of a particle atsitéh spin

o € {1, |}. One can construct an explicit representation of the creation and annihilation
operators as operators B(Hz), see e.g. Sect. 4.2 in [DFFR], bey,, c;rc ¢ B(H,).

The algebras, C B(Hy) are chosen to be the algebras generatemj,pyclg, acaA,

o € {4, |}. The observable algebré¥, are chosen as the algebras generatepaing

of creation or annihilation operators. It is easy to check that the elenfegnsd O 4
satisfy the commutativity condition (2.3).

Classical interactions. A particular class of interactions consists of tiassical inter-
actions. Let {e;} ;<7 be an orthonormal basis &. Then, forA C Z”,

Ea ={®acacl ), with et =g, e, (2.16)

is an orthonormal basis df 4. We denote byC(E4) the abelian subalgebra @4
consisting of all operators which are diagonal in the b&gifAn interactionV is called
classical, if there exists a basig;} ;<7 of # such that

Vi e C(Ey), for all AcZz. (2.17)

The set24 of configurations im is defined as the set of all assignme{tgac4; of an
elementj, € I to eachu. A configurationw,4 is an elementif2 4. There is a one-to-one
correspondence between basis vecfgrs. , ¢ of 14 and configurations oA:

X ¢, < @a = lalaea. (2.18)

acA

In the sequel we shall use the notatigy), to denote the basis vector defined by the
configurationw, via the correspondence (2.18). Since a classical interadtiamly
depends on the numbers

Dp(wa) = (ewy|Valew,) (2.19)

we may viewd 4 as a (real-valued) function on the set of configurations. Similarly the
algebraC(£4) may be viewed as the-algebra of complex-valued functions on the set
of configurations24.
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2.2. Perturbation theory for interactions. The interactions we will study have the form
H = V+)T,whereV is aclassical interactio; is a perturbation anda small param-
eter. A typical situation is the following: the classical part of the interaction has infinitely
many ground states, i.e. the number of ground states of the finite-volume Hamiltonian
Hp diverges agA| — oo, but the perturbatiofT lifts this degeneracy (completely or
partially). This is usually easy to check this using standard perturbation theory for the
finite-volume HamiltoniarV, + AT, . Standard perturbation theory however does not
work in the thermodynamic limit, the norm of the error growing wijtk| and other
methods are required. Such methods have been developed in [DFFR] and applied in
[FR,DFF2] (see also [KU] for an alternative approach).

The idea is to construct an interactiéhwhich is equivalent tdd and which can be
cast in the form

H=V0O)+T®), (2.20)

where now the degeneracy of the ground statdé isflifted and7 (1) is suitably small
with respect toV (1).

Recall that two interactiond andH areequivalent if there exists a-automorphism
of the algebraD of local observables such that

Hyp = y(Ha), (2.21)

for all A. In particular, ifH € B,, there exist$ such thatil € B;. A convenient way of
constructing equivalent interactions is with a family of unitary transformationsLet
Sa, A C Z", be a family ofantiselfadjoint operators, periodic or translation invariant,
with S4 € Oa and||S]l, < oo for somer > 0. We setSy = ), Sa and then
Upx = exp(Sp) is unitary. It is shown in [DFFR] that if S|, is small enough then the
unitary equivalent Hamiltonian&l, = UrHU, ! define an interactiod € B; for

someF > 0 andH is equivalent taH .
We consider now an interaction of the folth= V + AT which satisfy the following
conditions:

(P1) The interactionV is classical and of finite range. Moreover, we assume thist
given by a translation-invariant-potential. This last condition means that we can
assume (if necessary by passing to a physically equivalent interaction) that there
exists at least one configuratianminimizing all &gy, i.e.,

Pox (@) = min dox (o), (2.22)
w/
for all X. For anym-potential, the set of all configurations for which Eq. (2.22)

holds is the set of ground states®g.
(P2) The perturbation interactiofi is in some space Banach spdt;efor somer > 0.

Since, by conditior{P1), the ground states can be determined locally, there is a corre-
sponding decomposition of the Hilbert spdég for all A:

Ha=HM U, (2.23)

Where’H'o"" is the subspace spanned by the ground stat®s @fe can decompose any
operatork 4, € B(H 4) according to their action oR/'SW and’Hh'gh.

KA:KA+KA +KA’ (224)
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with
KAMEY CHEY KhHL™ =0,
KON a9 kgen — o,
KD <2 ko oo,
Accordingly we decompose any interacti®n

T=1"+1"M4 71" (2.25)

The following theorem shows that, for any integer 1, it is possible to construct
an interactiond ™ equivalent toH with the property tha ™ is block diagonal up to
ordern. Note that this is a constructive result and an algorithm is given in [DFFR] which

allows one to construct the unitary transformatidilfé) and the interaction&l .

Theorem 2.1. Consider an interaction of the form
H =V +T, (2.26)

where V satisfies Condition (P1) and T satisfies Condition (P2). For any integer n > 1
thereisr, > 0and A, > O such that for |»| < A, thereis an interaction H® =
V+T™ e B, equivalent to H, with

7™M, = o+, (2.27)

This theorem is useful to analyze the low temperature behavior of quantum spin
systems when the ground stateddfiave infinite degeneracy afddifts this degeneracy
(totally or partially). Consider for example the typical case where the degeneracy is
lifted in second order perturbation theory. In that case we mayrtakel and we have
TN = 0(12):

HY =y 4+ 3 P 3o ph i, (2.28)
Jjz1 j=1 j>2

We then decomposH ™ = V + T into a new “classical partV given by

2
V=v+y Pl (2.29)
j=1

and T contains all remaining terms. The new perturbation satisfies the bdinds
013, - o), andT" = O(12). If V is a classical interaction with a sufficiently
regular zero-temperature phase diagram, then Pirogov—Sinai techniques can be applied
to study the phase diagrams%f+ T for sufficiently smallx (see below).

Note that this perturbation scheme is not only useful to analyze the low-temperature
behavior of the model. The new “classical pa¥t'does not need to be classical at alll.
For example, see [DFFR,DFF2], if one applies this perturbation scheme to the Hubbard
model at half-filling,V is given by the Heisenberg model and this gives a rigorous proof
of the equivalence of both models up to controlled error terms.



Quantum Lattice Models at Intermediate Temperature 41

3. Phase Diagrams, Contour Models, and Pirogov—Sinai Theory

A phase diagram in Thermodynamics is a partition of a space of physical parameters in
domains corresponding to phases; the free energy varies very smoothly inside a domain.
However, first derivatives or of higher order may have discontinuities when crossing the
boundary between two domains, and in this case one talplsase transitions.

The first proof of a phase transition was proposed by Peierls for the Ising model [Pei].
It was extended by Pirogov and Sinai [PS, Sin] to situations where different phases are
not related by a symmetry. Important extensions and simplifications of the Pirogov—
Sinai theory include Kotecky and Preiss [KP], Zahradnik [Zah], Bricmont et al. [BKL]
and [BS], Borgs and Imbrie [BI], Borgs and Kotecky [BK, BK2]. An exposition of the
Pirogov-Sinai theory can be found in [EFS].

Another extension of the Peierls argument was done in Frohlich and Lieb [FL] using
reflection positivity [FSS, DLS].

3.1. Phase diagrams. We consider the Banach spaBg of periodic interactions, with
the norm defined in (2.6). Herds any positive number, but further assumptions (bounds
for the weights of the contours, see below) can be verified in given models only if
large enough. To a given interactidh € 5, and temperaturg we associate the set of
all translation invariant (or periodic) KMS states or, equivalently [Ara, Isr], the set of all
tangent functionals to the free energyH). The set of periodic KMS states forms a
simplex, so that it is enough to describe the extremal states, or the corresponding tangent
functionals. We denote the set of extremal state§/byH ).

Inorderto define a phase diagram we consider a smgothl)-dimensional manifold
on the Banach spadg. of periodic interactions; it is described by an applicatior>
H*", from a connected open dé¢tc R?~1into B,. Form = 1,2, 3, ..., we introduce
E™ = {(H € B, : |Ef(H)| = m}; accordingly, we partition the sét as

o
U= U um™, (3.1)
m=1
whereu € U™ iff H* € E™ . The decomposition (3.1) is called the phase diagram of
H".

The phase diagram d“, u € U c RP~1, is said to satisfy th&ibbs phase rule if
the following conditions hold. Here, we call “boundary”af” the sett/™ \t/) NiA,
with Z/®) the closure ot/).

(i) U=UDuU...uu»,
(i) (@) U consists op connected components, each of which(g & 1)-dimensional
manifold. The boundary @@ ist/® U ... uUY®.
(b) U® consists o( g) connected components, each of which (pa 2)-dimen-
sional manifold. The boundary &@ ist/® U ... uY®.
(c) U'P consists o( f]’) connected components, each of which {(pa ¢)-dimen-
sional manifold. The boundary &f? isy/ D U ... U@,
(d) U'P) consists of a single poimtp.

In other words, the phase diagram Hf* satisfies the Gibbs phase rule iff it is
homeomorphic to a connected, open neighbortigodf the boundary of the positive
octant ofR?, in such a way thaig is mapped onto the origid{(”?—1 is mapped onto
the union of axisJ;{a; > 0,a; =0, j # i}, and so on...
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Connected components@f? are theone-phase region, orpure phase region,/®
is the region of coexistence of two phases, , /(") is the point of coexistence of all
p phases.

We will call a phase diagram which satisfies the Gibbs phaseaegigar if the free
energy is a real analytic function afin each one-phase region, and if all connected
components of the manifold'/) are smooth?).

3.2. Contour models. A contour A is a pair(A, «), whereA C Z" is a finite connected
setand is theupport of A; to describex, let us mtroduce the closed unit cél{x) c R"
centered at,i.e.C(x) ={y e R" : |y — x| < 2} Theboundary B(A) of A C Z"
is the union of plaquettes

B(A)={C(x)NCH):x €A, y¢A} (3.2)

The boundaryB(A) decomposes into connected components; each connected compo-
nentb is given a labely, € {1, ..., p}, anda = (o).
LetA c ZY finite, with periodic boundary conditions. A set of contoyss, . . ., Ax}
is admissible iff
o A; C A,anddisi(A;, A;) > L1ifi # j.
e Labelso; are matching in the following sense. LBt = A \ U’jﬁzlAJ-; then each
connected component & must have the same label on its boundaries.

Forj € {1,..., p}, let W; be the union of all connected componentdiofwvith labels
j on their boundaries.

Foreachj € {1, ..., p}, we give ourselves a complex functigfﬂ’” (“free energy of
arestricted ensemble”), that is real analytizia /. We suppose that the limit — oo
of g? " exists, and we write

eqg = miine;‘. (3.4)

We consider the partition function (2.8) for an interactillif = V* + T, where the
periodic interactior is a perturbation o¥*. We assume that the partition function can
be rewritten as

Zi,u,T _ Z
WA

Hwﬂ T (A, )]_[ e pel Wl (3.5)
{A j=1

K}

where the sum is over admissible sets of contoura thThe weight w?* T (A) of a
contourA is a complex function oB, u, andT , that behaves nicely fg# large andr’ in

a neighborhood of 0. Precisely, we assume that there exist3/® selR, x B5,, that is
open and connected, and whose closure containg); furthermore, we suppose that
forallu e &/ and all(B8, T) € W, and all contours4,

B.u
1 The sum includes the cage= 0, and the corresponding term E;.’zl e P& 1M it is however
irrelevant, since it does not contribute to the infinite-volume free energy (3.6).
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e wh T is periodic with periodt, i.e. we havew?*T (r, 4) = wf*T(A) for all
a € (¢Z)Y and all A. Herez, is the translation operator.

o [wfuT(4) < e PeulAl eTlAl for alarge enough constant(depending o, p,
and?). Furthermore,

|8iwﬂ’“’T<A>| < plAICe bl Tl
0

1
and

a u
b e THK )] < BIAICI K], e PeblAl el
n

for a uniform constan€.

o limg_ o limr_o wh T (A) = 0. This means that the weights represent the correction
to the situationg = oo, T = 0).

o wh T (A)isreal analytic in; for all K € B,, w?*T+1K (A) is real analytic in in
a neighborhood of 0 (the neighborhood depend&dn

Finally, the free energy is

1 1
pul — _Z jim —logzh™T. 3.6
! B as Al O &o

We also assume the following properties 4T :

e AT jsreal, and concave as a function®f
e whenevetH" + T = H" + T', we have

fouT = ppulT’, (3.7)

Although these properties seem difficult to verify in the context of a contour model, they
are usually clear in the original physical model.

3.3. The Pirogov—Sinai theory. The results of the Pirogov—Sinai theory are usually pre-
sented in terms of existence of many Gibbs states for a given interaction. However, it is
more convenient to think of the Pirogov—Sinai theory as to express the free energy in a
suitable form for the description of first-order phase transitions: the free energy is given
as the minimum ot functions (“metastable free energies”), that intersect themselves
by making angles, hence a first-order phase transition when varying parameters so as to
Cross an intersection.

The free energy at zero temperature is given by (3.4); in typical situations this is the
minimum over energies of some important configurations (the “potential ground states”).
The Pirogov—-Sinai theory shows that in contour models, this structure extends at low
temperatures. In the quantum situation one is also interested in adding a perturbation to
a “nice” model; the metastable free energies then depend not oty laut also on the
guantum perturbation.

We claim that the Pirogov—Sinai theory allows to construct metastable free energies
that satisfy the following properties.
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Propertiesof the metastablefreeenergies. Weconsider acontour model that satisfiesthe

structure described in Sect. 3.2. Then there exist p real functions fiﬂ’”’T for (8, T.,u) e
W x U, such that

(@) fAeT = min; (P
fﬂ u,T ie

(b) limpcolimy—o f" = et', andlim g cc im0 50 T
(c) for all K € B,, there e><|stsane|ghborhoodNK of 0 such that fiﬁ wTnK isClas

a function of (u, n) inU x Nk, and |anfﬂ wT+nK < C|K |, for a constant C
depending on v, p, £ only;
(d) fiﬂ’”’T isareal analytic function of u in My = {u : fiﬁ’”’T < f’“ Tyj+ i}.

Notice that the point (d) implies that the free eneytfy-T is a real analytic function
of u in U;My;y (which is the region of uniqueness, as will be seen below).

The proof of these properties involves the full artillery of the Pirogov—-Sinai theory.
The item (c) is not really standard and may appear as superfluous technicalities, but it
plays a role when establishing the properties of the phase diagram, see Theorem 3.1
below. Since the present paper is only aimed at studying a special class of quantum
models, we content ourselves with an outline of the proof, so as to make it plausible for
readers who have knowledge of the details of the Pirogov—Sinai theory. A review of the
Pirogov-Sinai theory is expected to appear shortly and will contain a detailed proof of
these properties.

Sketch of the proof of these properties. We heavily rely on [BKU], which itself follows
[PS, Sin, zah,BI, BK,BK2]. Our metastable free energies are defined as the real part of
the metastable free energies of [BKU], which are complex in general.

The first step consists in defining the metastable free energies. This can be done by
introducing truncated contour activities and truncated partition functions following the
inductive procedure of [BKU], Egs. (5.6)—(5.12). One obtains metastable free energies

fj(”) (that depend o, u, T). One can then prove the claims of Lemma A.1 i), iii), iv),

v), vi) of [BKU]. We then setf"" = lim, .o f,".

At this point we have well-defined metastable free energies dependigwoand
T (thatis, they are functionals on the Banach space of interactions), and the free energy
of the system is given by the minimum of the metastable free energies, as stated in item
(a). Itis also clear that ligL, o0 im0 fl.ﬁ’“’T = e, and thatfl.’s’”’T is real analytic in
u on9My;y. What remains to be done is to check differentiable properties.

For givenT and K, we considerff’”’””K as a function ofu, n). This is a mild
complication of the situation in [BKU], since the metastable free energies here depend
on p parameters instead ¢f — 1. One then gets the items ii) and vii) of Lemma A.1
— the partial derivatives with respectoof the truncated contour activities and of the
partition function with given external label satisfying the claims of the lemma with a
constantCo|| K ||, instead ofCyp.

Finally, the metastable free energies are given as convergent series of clusters of
contours, the weights of those obeying suitable bounds. This leads to itent(c).

We show now that these metastable free energies allow for a complete characterization
of tangent functionals, under the extra assumption that the situation at zero temperature
and without perturbation satisfies the Gibbs phase rule in a strong sense.
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The stronger condition for the Gibbs phase rule is that, for segne U/, we have
that all “potential ground state energies” are equdl, = e;fo for all i, j, and that the
matrix of derivatives

8 u u
(ﬁj[ei B e”Dlg ij<p-1 (3.8)

has an inverse that is uniformly bounded. Actually, energiesay not be differentiable;

in this case, we consider the same matrix Withg’é‘é instead ofe;, and we suppose
that it has an inverse for gl large enough, the inverse matrix being uniformly bounded
with respect tar € U, andg > const.

Theorem 3.1 (Stability of the phase diagrgmAssume that there exist metastable free
energies fl.ﬂ’“’T, 1 < i < p,that satisfy all points (a)—(d) of the properties above.
We assume in addition that the strong version of the Gibbs phase rule, described above,
is satisfied.

Then for 8 large enough and || T ||, small enough (depending on p and on the bound
of theinverse of the matrix of derivatives (3.8)), there existsi/’ C I/ such that the phase
diagramfor H* + T, u € U’, at inverse temperature 8, satisfies the Gibbs phase rule
and isregular.

Theorem 3.1 states that there exigjse ¢’ such that the set of tangent functionals to
the free energy alf“o + T is a simplex withp extremal points. More generally, we have
the decompositioy’ = U/ U --- UL'P such that for e U@, the set of tangent
functionals atH" + T is ag-dimensional simplex.

This “completeness” of the phase diagram was addressed in [Zah] and [BW]. The
approach was however different and involved studying the Gibbs states, which is more
intricate and does not easily extend to the quantum case. It is simpler to look at tangent
functionals, and then to use existing results on their equivalence with DLR or KMS
states.

Notice that the Pirogov—Sinai theory also provides various extra information, such
as the fact that the limit df’’, asT — 0 andg — oo, is equal ta/@. Also, the
extremal equilibrium states can be shown to be exponentially clustering. We do not claim
these properties here however, because doing so would require extra assumptions and
technicalities in the description of the abstract contour model.

Proof of Theorem 3.1. Iltems (b) and (c) of the properties of metastable free energies

(with n = 0) imply that there exists;, such thatf,ﬂ’“U’T = fPo

i J
the matrix of derivatives

(a%j[fiﬁ,u,T _ f[/;‘},u,T]) (3.9)

1<ij<p-1

d forall i, j, and that

has a bounded inverse, uniformly:irin a neighborhood(’ of u,. Let us define
M =(wetd : 7 = min 0Ty, (3.10)
J
and, forQ c {1, ..., p},

Mo = ()2 \ M (3.11)
i€Q i¢Q
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(notice thatdty, C 9t;). By the implicit function theorem, eacity is described by
a C?! function from an open subset &9l into U/, If we setd? = Ugi=,Mo
the phase diagram satisfies the Gibbs phase rule, provided there are gatdlygent

functionals ati* 4 T for eachu € M.

Each metastable free energf’“’T, J € Q, defines a tangent functionaj}: for all

K € B,, we setw;(K) = 5 f‘6 w1k _o. Notice that item (c) ensures boundedness

of the tangent funcnone@I.We show now that these tangent functionals are linearly
independent, and that any other tangent functional is a linear combination of these ones.

We examine the manifold whetephases coexist; without loss of generality, we can
choosei € Mo with 0 = {1, ..., q}. The determinant of (3.9) can be written as a
linear combination of determinants of

( ? [P0 = ppnT]) , (3.12)

duy, 1<ij<q-1

with k1, ..., k,—1 beingg — 1 different indices. Since the determinant of (3.9) differs
from 0, at least one of the determinants in the previous equation differs from 0. Without
loss of generality we can assume that

9 B.u,T _ .p.a,T
<8u] [f; ) ])1<i,j et (3.13)

is not singular.

Our analysis is local, so we can take= 0 andH" = H° + Z;’;ll u;K ;. Then
(3.7) implies thaix; (K;) = %ff’“’Tl,,:o, and non-singularity of (3.13) shows that
aj, 1 < j < gq,are linearly independent. Furthermore, it also implies that for all

tangent functionale’ the system of equations fgr= (&1, .. ., £
q
o (Ki) =) Ejoj(Kp), i=1....q-1 (3.14)
j=1

has a unique solution wit[j £; = 1. Now we consider ank e B,; we define
au,T+nK .
giGu.n) = f T 1 < j < g and

g1(u, n) — gq(u, n)
glu,n) = : ) (3.15)
8q—1(u, n) — gq(u, n)

We haveg(0,0) = 0, f—ug(o, 0) is an isomorphism, and(x, n) is a map of clasg?
by item (c) of the properties metastable free energies. By the implicit function theorem

2 One may wonder whether the functiong is linear. It is actually, because; can be obtained as the
limit of linear functionals that are tangent to the free energy, uniquely defined for all poitg 9f- a region
of parameters where the concave free energy has a unique tangent functional.
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there exists a mag(n) such thatg(u(n), n) = 0. We introduce the interactions

1971
R(n) :K—i—;Zuj(n)Kj, (3.16)
j=1
g—1
R =1i|Ln0R(n) =K+j2_luj(O)Kj. (3.17)

Then using (3.7) we have

FBOTHIRM) _ flﬂ,OvTHR(ﬂ) - = qu’O’TJr”R(”). (3.18)

Differentiating with respect tg, we obtain (recall that’ is tangent tof #-0-T 1R gt
n=0)

o' (R) = a1(R) = - = ay(R). (3.19)

Then obviously'(R) = Zj &jaj(R), and it follows by linearity of the tangent func-
tionals that

q
o (K) = Z%j a;(K). (3.20)
j=1

4, Results of the Quantum Pirogov-Sinai Theory

We summarize in this section the results obtained in [BKU,DFF,DFFR,KU], and in
the present paper. All results concern the situation where the interaction has the form
H =V + T, whereV is a classical interaction satisfying the standard Pirogov—Sinai
framework, andl' is a small perturbation. The temperature will be assumed to be small.
The results however split into four classes, according to whether we use the perturbation
methods of [DFFR] (Sect. 2.2), and whether we include high temperature expansions to
analyze phases at intermediate temperatures.

In this section, we implicitly assume all properties of the metastable free energies,
see Subsect. 3.3, to be valid — without these properties the statements below would not
include completeness, i.e. we could not ascertain to have idersifidat periodic Gibbs
states of the systems.

4.1. Quantum perturbation of classical model with finitely many ground states. In this
case the classical interactidhhas finitely many ground states and the phase diagram
of V + T is, at low temperatures and for sufficiently sniila small deformation of the
zero temperature phase diagran¥ofThe extension of the Pirogov—Sinai theory to this
class of quantum systems goes back to [Pir] and was proved in [BKU, DFF].

(a) Sructure. We denote by = {1, ..., M}Z" the space of classical configurations;
the dimension of the physical space is always supposed to be bigger or equal to 2. The
interaction has the forrtld = V + T, whereV is a block interaction and is diagonal with
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respect to the basis of classical configurationst &= U(x) = {y : |y — x| < R}
for somex € ZV,

Vale)o = Cpx(wU(x)) l€)w, (41)

andV, = Oifthereis noc with U (x) = A. The function®, dependsop € ¢/ ¢ RP~1,
and we assume that its derivativ?l% d, (wy(x)) are bounded uniformly im, g, w, j.

A finite setG = {g@, ..., ¢®} c Q of periodic configurations is given, that
contains all ground states &f for all u (see below the precise assumption). We write
Ga ={ga : g € G}. We suppose thab, (gy(r)) is independent of, for all g € G, and
this value is denoted b@{; (this is the mean energy of the configuratign

(b) Assumptions.
(A1) A gap separates the excitations: foral} ) ¢ Gy ).

O (wyr) —MiNd,(gyr) = A
geG

(uniformly in p).
(A2) The zero temperature phase diagram is (linearly) regular: thetg s U such
thatey® = eif,o forall g, ¢’ € G, and the inverse of the matrix of derivativag;,

see (3.8), is uniformly bounded.

(c) Properties of Gibbs states.

Theorem 4.1. Assume (Al) and (A2) hold true. There exist 8o, ¢ < oo (depending on
v, R, p, M and on the periods of {g\/)} and H only) such that if BA > po and
IT|./A < 1,thephase diagram of the quantum model satisfies the Gibbs phase rule
and isregular in a neighborhood U’ C U of pg.

Inthe single phase region, i.e. if u € MP({g}), the KMS state w?*T (.) is close to
the ground state g: for all K € O, iMoo 7,0 wPH T (K) = (e4K eg).

The condition||T|./A < 1 means that is a perturbation with respect ; c
plays the role of the perturbative parameter: from Definition (2.6) of the rjpri.,
IT4] must be very small it is very large.

The proof of this theorem follows from [BKU, DFF].

4.2. Models with infinite degeneracy. Consider a model whose classical part has in-
finitely many ground states, and a perturbation which lifts this degeneracy completely.
The pertubation methods of [DFFR] (see Sect. 2.2) permits one in certain cases to ana-
lyze this by constructing an equivalent interaction with a new classical part which has
finitely many ground states. In this case the new perturbation has a slightly more com-
plicated form than in Sect. 4.1 and the following theorem deals with this situation. This
situation was considered in [DFFR] (for a different approach see [KU]).

(a) Sructure. The space of classical configurations is ag@ir= {1, ..., M}%" . We
consider two set&, D C , with D C G finite, D = {d, ..., dP} is a finite set

of periodic configurationsG may be infinite and will represent the configurations of
low energy. ForA C Z", the Hilbert spacé{ 4 has the following decompositich 4 =

How @ 779" whereH!9" is the subspace spanned by the low energy configurations
ga € G4. The interaction has the forld = V + T, whereV is a classical block
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interaction with uniformly bounded derivativg%—, d, (wy(x)), andT is a perturbation
J

that is submitted to some restrictions, see the assumptions below.

(b) Assumptions.

(B1) A gap separates high and low energies: fotgll,) ¢ Gy ),

D, (wy(x)) — Maxd,(guwr)) = Ao.
geG

(B2) Gap with the ground states: we assume thatdy .)) is independent ok for
d € D, and for allwy vy ¢ Dy (x),

D (wy)) —Mind,(dyw) = A
deD

(and we assume tha&t < Ap).
(B3) The perturbation may be decompodgée- K + K’ + K”; for all A,

high high
K\ HM™ =0, K\ HAO < Hy O

high high
K i K[

(there is no assumption dki).

(B4) The zero temperature phase diagram is (linearly) regular, i.e. all enejfgiﬂe
equal for somgug € U, and the matring [see (3.8)] has a uniformly bounded
inverse.

(c) Properties of Gibbs states.

Theorem 4.2. Assume (B1)B4) hold true. There exist Bg, ¢ < oo (depending on
v, R, p, M andontheperiodsof {d/)} and H only) suchthatif BA > PBo, |K|l./A <
LIK'|/A0 < L, ||IK"|lc/Ao < 1thephasediagram of the quantum model satisfies
the Gibbs phaseruleandisregular inU’ c U, U > pq.

In the single phase region, i.e. if u € MP({d}), the KMS state w? *T (-) is close to
the ground state d: for all K € O, liMp_ o0 7y, 0 w* T (K) = (eq|K ea).

The proof of this theorem is given in [DFFR]. A somewhat different method yielding
similar results has been developed later in [KU].

4.3. Combined high and low temperature expansions. Here we consider models whose
classical par¥ has partially ordered ground states, typically described by periodic con-
figurations of holes and particles but still with infinite degeneracy due to, e.g., degeneracy
of the spin at each site. Together with the quantum perturbation the system may have
a continuous symmetry. We will suppose that the temperature is low and, in addition,
that 8| T ||, is actually small (i.e. the temperature is large comparefl)tand we will

prove that in this case one phase corresponds to each periodic configuration of holes and
particles and that in this phase the spin degrees of freedom are in a disordered phase.
This situation has many similarities with that of [BKL], and could be called “a theory

of restricted ensembles in quantum lattice systems”.

3 Motivation comes from (2.25). It is however slightly more general, and it is just what is required in the
proof of Theorem 4.2.
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(a) Sructure. Asbefore, lef2 = {1, ..., M}Z". Intermediate temperature phases will be
characterized by “motives” giving partial information on the underlying configurations.
In order to describe this, we consider a partitior{hf. .., M}:

N
L...my=J1; withi;ni;=0. (4.2)
j=1

We denoteNV, = {1,..., N}* (@ndN = Nz»). Forn € N, we writeQ,, = {w €
Q:w, €1, Vx}.LetG = {g, ..., ¢} c N be afinite set of periodic configura-
tions; this is the set of motives and a pure phase will be associated with each of these
configurations. We Writ€g = Ugeg 2.

Theinteraction hasthe forld = V+T, whereV is a classical block interaction with
uniformly bounded derivatives w.rg., andT is a perturbation. We introduce restricted
partition functions for each € G: let

zZ8 = Z e PLrvwea Pr(@uw) (4.3)
WAERQg A
and
) i|ogzg. (4.4)
§ B asze Al A

The ground energies agg = limg_, hg’”, g €G.
(b) Assumptions.

(C1) For all configurationsy vy ¢ Qc,u), We have

D, (wy)) — wl;‘relé?g Dy (wb(x)) = A.

Moreover, we assume that

min O (wy)) = e*(g)
oy (x) €L, U (x)
independently ok, forall g € G.
(C2) We need a condition that ensures that no phase transition takes place in a restricted
ensemble,; in other words, spatial correlations should decay quickly enough.
The following condition is stronger, and amounts to saying that thei@dsrrela-
tion between different sites. For glle G, we suppose that there exists an on-site
interaction®$ such that for alk:

(Dx(a)U(x)) = cbi(a)x)
for all w € Q.
(C3) The zero temperature phase diagram is regular affth= eg,o, g. g € G, for
somepu € U, and the matrixi/, see (3.8), has a uniformly bounded invetse.

4 If {e}} are notC1, we consider the matrix of derivativeshf"‘ for g large; it must have an inverse that
is bounded uniformly w.r.tu and larges.
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(c) Gibbs states at intermediate temperature.

Theorem 4.3. Assume (C1){C3) hold true. There exist Bg, ¢ < oo (depending on
v, R, p, M and on the periods of {g(/)} and H only) such that if Bp < BA < oo
and 8||IT|l. < 1, the phase diagram satisfies the Gibbs phase rule and is regular in
U cUu,U's po.

In the single phase region, i.e. if u € MP({g}), the KMS state w7 (.) is close
to themotive g: for all K € O, limg_, 00 7|, —0 wﬁ’ﬂ’T(K) = (TI'(PA))_]'TI’(KPA),
where P, isthe projection given by ZwAeszg.A lewy ) (€awy | -

Remark. Itfollows from our assumptions thdtis small compared t¥'; more precisely,
ITllc/A < 1/po.

This theorem is actually a consequence of Theorem 4.4 below, see the remark after
Theorem 4.4.

4.4. Infinite degeneracy, high and low temperature expansions. Here we consider sys-
tems where phases result from subtle interplay between potential and kinetic energy,
combining the effect described in Sects. 4.2 and 4.3. The quantum perturbation lifts par-
tially the degeneracy of the classical interaction, leading at intermediate temperatures,
to spatially ordered phases. Hereafter we describe the general framework in a rather ab-
stract way; it will be illustrated in Sect. 5, and the reader may gain better understanding
by working out a concrete application.

(a) Sructure. The space of classical configurationsds= {1, ..., M}%"; we consider

a partition like in (4.2) and define similarly” and<2,,. We consider a (possibly infinite)
setG C N that represents low energy configurations; the Hilbert spaces decompose in
the following way:H, = 1'% @ 19", whereH!9" is the subspace spanned by the
low-energy configurationgs € G 4. The interaction has the forld =V + T; Visa

block interaction with uniformly bounded derivativg%—_ d, (wy(x)); the perturbation
J

T decomposes furthef = K + K’ + K”; we shall require different assumptions on
K, K’, K", motivated by the perturbation theory of Sect. 2.2.

We suppose that a finite sbt= {dD, ..., d?)} c G is given, that corresponds to
possible ground states. For eatk D, we define the corresponding restricted partition
function

Zl/j\ = Z eiﬂ Z)C.U()C)CA CDX(CUU(.\')) (45)

WA ERq A

and the corresponding restricted free energy

1 . 1
Wit — 2 lim —logz4, (4.6)
B a7y |Al

andel; = limg_ hg”‘.
(b) Assumptions.
(D1) A gap separates high and low energies: forall.) ¢ Q6. u ).

D, (wy(x)) — mMax CDX(w;J(x)) = Ao.
w/EQG
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(D2) Gap with the ground states: for all;(x) ¢ Qp,v (),

D, (wy)) — w[Qg]D (D(a)b(x)) = A.

(D3) Foralld € D, there exists an on-site interactid@{ such that for allv € Q; and
all x,

Dy (wy () = D (wy).

Moreover, we suppose that

min d>§(wx) = ef;
wx€lg,

independently ok.

(D4) The quantum perturbatidh = K + K’ + K" has the same properties as in (B3),
with respect to the decomposition into low and high energy states.

(D5) There ispg € U such thate}® = €°, d,d’ € D, and the matrix of deriva-
tives (3.8) has a uniformly bounded inverse (see the footnote of (@g)ih‘ not
differentiable).

(c) Properties of Gibbs states.

Theorem 4.4. Assume (D1)—«D5) hold true. There exist Bo,c < oo (depending on
v, R, p, M and on the periods of {d()} and H only) such that if B < BA < oo,
BIKlle < L IIK'lc/A0 < 1, |K"[lc/A0 < 1,and B|K"|2/A¢ < 1, the phase
diagram satisfiesthe Gibbsphaseruleandisregular inan openseti/’ C U that contains
Ko
In the single phase region, i.e. if u € MP({d}), the KMS state w?* T (.) is close
to the motive d: for all K € O4, liM g0 1), —0 WP T (K) = (Tr(Pa))"1Tr(K P4),
where P4 isthe projection given by ZwAeszd‘A lews ) (€wy ] -

This theorem follows from the contour representation obtained in Sect. 6, together
with the Pirogov—-Sinai theory.

Remarks. 1. Theorem 4.3 is an immediate consequence of Theorem 4.4. Indeed, we
clearly recover the setting of Sect. 4.3 by choosiheg: €2 (i.e. all configurations have
low energy), ank’ = K” = 0.

2. These two theorems also generalize results of [Uel]: they can be applied to the
Hubbard model

H=—t E (ciocyg +hc)y+U E Ryplxys (4.7)
<X, y> X
o=t

to show that the high temperature phase extends to
[(B.1,U): prsmalll and {(B,1,U): pt?>/U small)

(standard high temperature expansions apply when gwo#md U are small).
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5. Example: Extended Hubbard Model

This is a Hubbard model where particles interact among each other when their distance
is smaller than or equal to 1. Explicitly,

Hpy = —t Z (clgcyg+h.c.)+Uan¢nx¢+W Z nxny—uan.

<x,y>CA xXEA <x,y>CA XEA

o=
(5.1)

Here,cl’g, cxo are creation, annihilation, operators of a fermion of spiat sitex;

< x,y > stands for a set of nearest neighbor siigs; = cL,cm is the number of
particles of spiny atx (it has eigenvalues 0 and k); = ny + n, is the total number
of particles atc. The coefficient represents the hopping, and will be taken to be small
compared to the nearest-neighbor repuldignu is the chemical potential. The classical
limit + — 0 was studied in [gq, BJK]. The stability of the chessboard phg8e ») (see
below) with small is a straightforward application of [DFF]; a later study devoted to it
is [BK3].

We start by analyzing the classical interactions. The configuration sp@ceif, 1,
1, 2}2" and the corresponding classical interaction can be written as (tﬂ(iﬁg%)

U w nw
Ox(@uw) = 5 > w2+ -1 > 4 > > ay (5.2)
yeU(x) <y,z>CU(x) yeU(x)

Here we introduced, < {0, 1, 2}:

0 ifw,=0
gy =11 ifo,=1 oro, =| (5.3)
2 ifw,=2

The interaction can also be written as a sum over pairs of n.n. sites; this simplifies
the analysis of the zero temperature phase diagram, and the search for symmetries (see
below). This pair interaction is given by

U 2
Dy~ (qx, qy) = 5(6‘“'2 +84,.2) + Warqy — Z—U(qx +qy)- (5.4)

This model has a hole-particle symmetry. Introducing the unitary opdvadach that

UcloU™Y = ¢yp andUc,e UL = 1, we see thay TAU 1 = T, As for the potential,

the effect of the symmetry can be exhibited by considering classical configurations;
definingg, = 2 — g, andy’ = U + oW — u, we easily check that
L (g4 q)) = P (qr.qy) + C. (5.5)

whereC = —U/v — 4W + 2u/v does not depend ofy,, g,). As a result, the phase
diagramgqU, ) are symmetric along the line

U
n== + 2vW, (5.6)

for any temperature.
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Fig. 2. Zero temperature phase diagrams of the extended Hubbard nj@dehien W < 0 and(b) when
W > 0. The dashed line represents the hole-particle symmetry, see (5.6)

The zero temperature phase diagrams withO are depicted in Fig. 2, in both cases
W < 0andW > 0.

In the case < 0, it decomposes into three domaiity, M1, andMiz; Mo and
M, have a unique translation invariant ground state with respectively 0 and 2 particles
at each site. Ift1, any configurations with one particle per site is a ground state; there
is degeneracy'2! since each particle has spfror |.

The situationW > 0 presents a richer structure with six domains. Domgiitas 911
andft, have the same features as with attractive n.n. interactions. In between domains
M 0,2), M(1,2) andMi,1) now appeardig 2 consists in two ground states, the two

chessboard configurations with alternatively 0 and 2 electrons pebiga; has 223 Al
ground states of the chessboard type, one sublattice being empty, while the other has
exactly one particle of spint or |; 91 2) is similar, with 2 particles per site on one
sublattice and one on the other.

We are interested in the case where the temperature is small, but bigger than 0, and
with small hopping. The phase diagrams for laggend smallgr are presented in Fig. 3.

K
vW
Bt -7
my .-
U 7 ///// oy’
VW] <//
2~ _
227 Bot
/ -7 e
B.t
m 1 U
0 2 =
B.t vW
My

(@ (b)
Fig. 3. Phase diagrams of the extended Hubbard model at intermediate temperature and with small hopping,
(a) whenW < 0 and(b) whenW > 0. Bold lines denote first-order phase transitions. White is the reBion
that resists rigorous investigations, where second-order transitions are expected

In the caseW < 0, all three domains survive at low temperature and wigh 0; a
first-order phase transition occurs when crossing the border between any two domains.
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The point(% = 2,55 = 1) belongs toimf’l: this phase has residual entropy (it
also has more quantum fluctuations, although this has much less effect). The Gibbs

state corresponding to the domamf” is thermodynamically stable and exponentially
clustering. The restriction to intermediate temperatuses{ ¢) is important, because,
forv > 3, a phase transition is expected when the temperature decreases, leading to
an antiferromagnetic phase that breaks both symmetries of translations and of rotations
of the spins.

The phase diagram at finif® and nonzera is especially interesting foW > O.

There are not six, but only four domaias”, 9m', 5" and M%'; see Fig. 3.
Indeed, the three domains corresponding to chessboard phases have merged into a singl
domain (this was first understood and proven in [BJK] in the absence of hopping). The

free energy is real analytic in the whole domamft’)’. The transition betweeﬁmg”
and smfg is presumably second-order, but our results do not cover the intermediate

region between these domains. The boundary bet\ﬁmg’ﬁ and?mf” contains a part
where afirst-order phase transition occurs that can be rigorously described. Crossing the
boundary elsewhere presumably results in a second-order transition. Due to the thermal

fluctuations, the segment from (2,2) to (2,4) belong%)tfil.
Our results for this model are summarized in the next two theorems.

Theorem 5.1 (Hubbard model with attractive n.n. interactions). Let v > 2. There
exist constants Bp < oo and ¢g > 0 (depending on v) such that the phase diagram

(U, w) for BIW| > Boand Br < egisregular; domainsimff”, a € {0, 1, 2} satisfy
lim g 00 lim; o M5 = 9M,. If (U, 1) belongs to a unique M5, there is a unique
Gibbs state. Furthermore, the density of the systemis closeto a,

|(nx)_a| g 8(:8at)’
for all x. e(B, t) can be made arbitrarily small by taking 8 large and r small.

In order to describe the situatidi > 0 we first introduce the region of the phase
diagramP, where we have no results. Let

L= I:(Qﬁ(o’z) UM(1,2) U m(o,l)) ﬂ(gﬁo Ut u Sﬁz):l \ [93?(0’2) N ml], (5.7)
and fore > 0,

Pe= |J B, w, (5.8)
U,wel

whereB (U, w) is the open ball of radius centered orU, ). We restrict our consid-
erations to the complement &% .

Theorem 5.2 (Hubbard model with n.n. repulsions). Letv > 2and e > 0. There

exist constants Bp < oo andep > 0 (dependingonv ande¢) suchthatif 8o < W < o0
and gt < e, we have the decomposition

PE=my" uamp ums Uk,

and
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(i) ML c Mo, ME" © My, MY (¢ My) are domains with a unique Gibbs state.
Densitiesare closeto 0, 2, 1 respectively in the sense

(ny) < e(B,1) inony’
(ny) > 2—e(B.r)  inMS’
lny) — 1] < e(B,0) inony!

with (B, ¢) arbitrarily closeto O if g8 islargeand ¢ small.

(i) Dﬁﬁ;’ C Mo,2) UM 1,2) UM(o,1) isadomain with two extremal Gibbs states of
the chessboard type. The free energy is a real analytic function of g and w in the
domain

{(B.1): o/ W < B < eo/t and (U, ) € MBS

(iiiy 9mE,' N9’ is a line of first-order phase transition, with exactly three extremal
states.

Remarks. The proofs of Theorems 5.1 and 5.2 use Theorem 4.3. But using Theorem 4.1,
one could establish stability of domaifBo, 12, M q,2) for all B|W| > Bo, without

the restriction that the temperature be not too small. Another possible improvement, for
U, W > 0, would use Theorem 4.4 to replace the condifion< &g by g12/U < eo.

The latter clearly allows lower temperatures.

6. Combined High-L ow Temper ature Expansions

In this section we simultaneously perform a low and a high temperature expansion. The
temperature is low, in such a way that excitations above the low energy §tzé§@$ are

rare. At the same time, the temperature is high relatively to the quantum perturbations
K andK”. These expansions allow to write the partition functions as onecoftaur

model, that can be treated by the Pirogov—-Sinai theory, see Sect. 3.2.

We rewrite the quantum model as a contour model, by making a mixed low and
high temperature expansion (Sect. 6.1); we define suitable weights, so that the partition
function takes the form required in Sect. 3.2. Section 6.2 is devoted to proving that the
weights are small compared to their size. Finally, we explain in Section 6.3 how other
requirements of Sect. 3.2 are fulfilled.

6.1. Expansion of the partition function. Our intention is to expand ik + K’ + K”;
in order to simplify the notation, we introdud® = (B,i), B Cc Z",i = 1,2, 3, and
we write Kg = Tg with B = (B, 1), K}, = Tg with B = (B, 2), andK} = Tg with
B = (B, 3). We refer toB as atransition.

5 Furthermore, the restriction to intermediate temperatures arises because of possible antiferromagnetism
due to “guantum fluctuations” of strengtﬁ/U; it should be stable foﬁzz/U > const; therefore this new
condition is qualitatively correct.
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Using Duhamel’s formula, we obtain

Tr e ISHA_Tre ﬁZBCAVB+Z Z Z / 1...d'L'm

m>1B1...By w O<ti< <ty <P

—(12—11) erA D (@) .

e u Dcen d)X(wU(.\')) <a)A| Tg, |a)A) €

1
(| Tg,, o} e P Zxea i) (5.1)

At this point, it is natural to define the supports of contours as all sites that belong
to U; B;, or for which there exists’ such thatw{,(x) ¢ Qp.u)- But two technical

difficulties arise:d®, ..., d® are periodic rather than translation invariant; and the
weight of a contour should not depend on the configuration outside of its support (but
it may depend on the labeling). The later difficulty is specific to systems with phases
given by a restricted ensemble instead of a single configuration. To account for these
difficulties, we introduce a partition of the lattice into cubes of giag@heref is the Icm
of the periods ofdV} (considering all spatial directions).

Let B = U,cgU (x); we define excited cubes.

¢ A cube( is quantum excited if there is B; such thaiC N B; # 0.
¢ Otherwise, itixlassically excited if there isw/ andx € C such thatoU(X) ¢ Q2p.Uw)-

Consider the se of quantum excited cubes, the geof classically excited cubes, and
the set\ of cubes that are neighbors @fU £ (two cubesC # C’ are neighbors iff there
existx € C andy € C’ with |x — y|o = 1). Connected components@fJ £ UA form
the supports of the contours. Connected components of the complen@nt fU A/
are characterized by a configuratiére D, and this information may be stored in the
labelinge. The union of all components corresponding/tis denotedW,;. Then

A=QUEUNU UgepWy), (6.2)

see Fig. 4 for illustrationW, is a union of cubes, each culiecontributing in (6.1) by
a factor [we use (D3)]

Y e P Tec o) o gt 6.3)
CUCEQd,C
Summing first over admissible sets of contouds, ..., Ay}, we can rewrite (6.1)

in the following way:

Trefh = )" [H 3 e—ﬂzxewﬂi’(wx)]

{At,.... A} deD ow,€Qu.w,

f[z YOy /Oﬂdldm

QCAm>OBl ----- B wk,.i.,w’Af’,
B;CcQ J
—T1 Y cen; Prl@f) —(B=tm) Lren; Ox(@f(y)

e (wi‘j| Tg, |w§j> (@] | Tp, |w}4_/> e
(6.4)
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1T
NN
[T

A

Fig. 4. The spaceA is divided into cubes; contours are formed by excited cubes (in black) and by their
neighbors. There are four contours on this picture

We used here the fact that the contribution of different contours factorizes. There are
several restrictions to the sums over transitigBig and configurationsa);j }: each cube

of Q is intersected by at least oig; {a)gj} are compatible with the labeling;; excited
cubes ofA; \ Q do not touch the boundary of;; and non excited cubes ia; have

at least one neighbor that is excited. In the last line appears configuw@i&p with

U(x) N Wy # @, hence depending any,. However, in such a casebelongs to a cube

that is not excited, so that{](x) € Q4. (). From (D3) we can substitut@x(w{,(x))

with d)ﬁ(a);ﬁ), which does not depend any more on the configuration outside the support
of the contouf Then we obtain

Tr e BHA — Z 1_[ e B I Wy HZ(AJ (6.5)

{A1,..., Ak} deD

where the sum is over admissible sets of contourszadglis the weight of the contour
A. The explicit expression faf(.A) looks rather tedious, but the main pointis to establish
the properties of Sect. 3.2. The expression(f) is

=Y ¥ ¥ 2/ drs ... dr,

m>00cCA Bl .... B o1 O<mi<..<tp<pB
BicQ

,,,,,

o > ea ‘Dx(‘“zl/(x)) ( —(B—Tm) D_rea <I>x(w11/(x)) , (6.6)

Wil Tpy103) . (]| T, lo) €
with some restrictions on the sums oyé&;} and{wi‘}, see above.
Remark. We constructed contours out of cubes, while the supports of contours in

Sect. 3.2 are any connected sets. There is no contradiction, if we define the weight
z(A) to be 0 if the support of is not a union of cubes.

6 This is why cubes that are neighbors of excited cubes need to be considered as part of contours.
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6.2. Bounds for the weights of the contours. We turn to the proof of the exponential
decay of the weight of contours, as required in Sect. 3.2. We give the following “space-
time” interpretation to the collection of sums and integrals in (6.6): we ‘(/iéyv ;) as
asubset ofA x [0, B] per, With periodic boundary conditions along the “vertical” interval

[0, B]. Furthermore, to each “time € [0, 8] per cOrresponds the configuraties for
which (z;_1, 7;] 5 . We define

=J B xtmpJex oy

j=1

m+1 m+1 )
E=|JE@) xItj1.7l, |El=Y_ |E@HIF;—1j-1),
j=1 j=1

(With 79 = 0, 741 = B, andw™+1 = w?). Here, we seB = U,cpU (x), andE (wg) =

{x e Q:ouw ¢ QL.uml-
From assumptions (D1) and D2) we can bound

LA < et Y S Y Z / dry ... d,

m>00CAB1,.. Bmw O<ty<-<tp<p
BCQ

.....

m
o BAIEI/E g-olE] 1_[ IT;Il, (6.7)

where the sums ovéiB ;} and{wg} satisfy the restrictions explained above.

We view eachéj as a connected subset Bft1 (one can e.g. add links between
nearest neighbors). TheB U E is a subset oR"*1 made out of vertical segments
and horizontal sets. We consider connected componenB WfE. For a connected
component withn horizontal sets andi’ > m — 1 vertical segments, we deleted
m’ — m + 1 of the latter, in such a way that the component remains connected. One of
these components contai@sx {0}, possibly with extra vertical segments and horizontal
sets. Other components hawenhorizontal sets anek — 1 vertical segments. Because of
the structurg D4), or (B3), components not linked wit x {0}, either consists in a
single transition of typeK, or include at least two transitions of tygeor K”.

A connected object wittm horizontal sets, an@n — 1) vertical segments that end
on the horizontal sets, is calledjather and is denoted by the lettgr. It is illustrated in
Fig. 5. We introduce the following sets of gathers:

e &,,: gathers withm horizontal sets, one containing the origin = 0} x {t = 0};
6 = B

e ®&': gathers of%1 that consist in a unique transition of tye

e & : gathers of5,,, with at least two transitions of typk or K”; & = &/_.

The connected component BfU E that containg? x {0} can be viewed as a set of
gathers, each gather being connecte@te {0} by a vertical segment.

Since a choice ofB;} and{a) } leads to a set of gathers, we obtain a bound by first
integrating over sets of gathers then summing over compatible space-time configurations
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Fig. 5. A “gather” with 6 transitions and 5 vertical segments

w4, and choosing which gathers are linkedQox {0}. Therefore

LA < efdial k‘/dgl dGi

k>0

k
ZZ e BAIEI/E g=RolE] H( l_[ ||TB||>. (6.8)

w4 links Jj=1 BegG;

The shortcuy dG means a sum over the numbeof transitions, a sum over transitions

By, ..., B, anintegral over ordered times, . . ., 7,,, and a sum ovegn — 1) vertical
segments that linkB; x {r;}} together.
We define
2(G) = e 29l T |7p) €2 toaM 0I5 (6.9)
BeG

where|G] is the total length of the vertical segmentgofif BA /€Y > 2v(logM + 1),
we can write

k
2(A)| el < gBeblAl Z (2|Q|) (/ dr e~ 2o / dQZ(g)>k
k>0 ! 0 ®

k
'Q'f / dgz(g)
S'UB

where the first sum corresponds to the number of gathers linké€d xto{0}, and the
second sum is the number of independent gathers. The shgfgdﬁ is identical to
J dgG, except for the absence of an integral ovgrwhich is set to 0; integrals ovey’
and®” are similar.

One easily obtains an upper bound for the gathers with a unique transition:

(6.10)

k>0

/ dgz(G) = Y 1Kl € 0OMHIIEL < 2R + 1)’ K] (6.11)

B,B30
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with ¢ = 2v€¥ (2R + 1)" (log M + t); this is smaller thar\ if ¢ is large enough in the
assumptions of Theorem 4.4.
For general gathers, we proceed by induction. First,

/@ dgz(@) < CR+D"(IKllc+ 1K llc + I1K"llc)- (6.12)
1

Next, we use the recursion inequality:

[ doz0) < 3y oo

B,B>0
k
2 (2 Z / dr &0t / 462(9))
k> 0 Gm-1.0
Integrating over, and sincg|K"||./Ao < 1 for alarge enough, we get

/ dgz(G) < Y |ITg]| & (OOMOIPI 2P
" B.B50 (6.14)

< CR+D (Kl + 1K llc + I1K"llc)-

(6.13)

This holds independently of:. This allows to estimate the integral over gathers that
contain at least two transitions of tygeor K”. Let &/, C &,, be gathers with at least
one transition of typeK or K’. One easily obtains

R dgz(@) < CR+D"(IKllc + IK"llc)- (6.15)

Then the integral over gathers with two transitions of typer K” can be done by
integrating first on the time for such a transition, then over vertical segments and gathers
at their ends, at least one of which must belongfo ;. We obtain

/ df Z (”KB ” + ”Kg”) e2v£”(logM+r)|B\ / d_[/ e—AO‘[ / dgz(g)
0 (]

B,BCQ w1
k
f dr e~ bor f dgz(G)

k>0 yGB 617171,0

(K|l + 1K"])?
Ao )

< BIQ
Plugging these estimates in (6.10), one easily gets

(A el < e e |Al GBIAl (6.16)

Exponential decay of the weights of the contours is now clear.
The bound on the derivative can be proven in the same way. Looking at (6.6), we see
that the integrand gets a factor boundedshy| sup, oo, |#<I>x (wy )|
T J
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6.3. Other properties of the weights. The weight of the contours can be viewed as a
series in powers ofK g}, {K}}, {K}}. Since it is absolutely convergent uniformly in

K, K’', K" (provided they be small enough), we have by the dominated convergence
theorem

lim  z(4) =0 (6.17)
K,K' ' K"—0

Analyticity of z(A) as a function ot andg is clear, as well as a function gfif we
add a new perturbationL, in a neighborhood of 0 that depends @ihL||. Periodicity
is also obvious.
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