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Abstract: We analyze the free energy and construct the Gibbs-KMS states for a class
of quantum lattice systems, at low temperature and when the interactions are almost
diagonal, in a suitable basis. The models we study may have continuous symmetries,
our results, however, apply to intermediate temperatures where discrete symmetries are
broken but continuous symmetries are not. Our results are based on quantum Pirogov–
Sinai theory and a combination of high and low temperature expansions.

1. Introduction

In this paper we study the low temperature phase diagram for a class of quantum lattice
systems. Starting with [PS,Sin], Pirogov–Sinai theory has evolved [KP,Zah,BKL,BS,
BI,BK] into a very powerful tool to study the pure phases, their coexistence and the first-
order phase transitions inclassical spin systems at low temperature. In recent years a
large part of the Pirogov–Sinai theory has been extended to quantum systems [Pir,BKU,
DFF,DFFR,KU], quantum spin systems as well as fermionic and bosonic lattice gases,
and applied to a variety of models [FR,DFF2,GKU] to describe insulating phases asso-
ciated with discrete symmetry breaking. Here we formulate the Pirogov–Sinai theory in
terms of tangent functionals to the free energy. This allows us to discuss the complete-
ness of the phase diagram avoiding the difficulties associated with boundary conditions.
We reformulate results of [BKU,DFF,DFFR,KU] in this framework, and extend the
theory to a class of models where discrete symmetries are broken at intermediate tem-
peratures. This applies in particular to some systems with continuous symmetries. For
this, we consider therestricted ensembles introduced in [BKL] that are very useful to
analyze phases which are associated to a family of configurations rather than to a single
configuration.
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The models that we consider have Hamiltonians, for finite volumes�, of the form

H� = V� + T�,
whereV� is a classical Hamiltonian (i.e. diagonal in a suitable basis) andT� is a
(usually small) quantum perturbation. In typical situations the suitable basis is the basis
of occupation numbers of position operators. Electronic systems provide a large class of
interesting models.The classical interactionV� describes the many-body short range and
classical interaction between the spin-1

2 fermions as well as external fields and chemical
potentials:

V� =
∑
x∈�

σ∈{↑,↓}

Jx,σ nx,σ +
∑
x,y∈�

σ,σ ′∈{↑,↓}

Jxy,σσ ′nx,σ ny,σ ′ + · · · .

A typical quantum perturbationT� is the kinetic energy

T� =
∑

<x,y>⊂�
σ∈{↑,↓}

txy,σ (c
†
xσ cyσ + h.c.),

wherec†
xσ andcxσ are the creation and annihilation operators and<x, y> denotes pairs

of nearest neighbors.
Often, in such systems, the behavior at low temperatures arises from a subtle interplay

between the (classical) potential energy and the kinetic energy. In this paper two such
mechanisms are considered and combined, each of which we now illustrate with an
example.

Example 1 (Hubbard Model). In this case the (classical) interaction is only on-site:

V� =
∑
x∈�

Unx↑nx↓ − µ(nx↑ + nx↓).

For suitable values ofU andµ, the ground states ofV� have an infinite degeneracy (in
the thermodynamic limit): each site is occupied by a single particle of arbitrary spin.
However the kinetic energy lifts this degeneracy and induces an effective antiferromag-
netic interaction between nearest neighbors. The perturbative methods of [DFFR,DFF2]
shows that, in this parameter range, this system is equivalent, in the sense of statisti-
cal mechanics, to the Heisenberg antiferromagnet, up to controlled error terms. If the
hopping coefficients are asymmetric (e.g.txy,↑ � txy,↓) then quantum Pirogov–Sinai
implies the coexistence of two antiferromagnetic phases at low enough temperatures
[DFFR,KU,DFF2]. Rigorous results for the Hubbard model are reviewed in [Lieb].

Example 2 (Extended Hubbard Model). This variant of the Hubbard model includes a
nearest neighbor interaction:

V� =
∑
x∈�

[
Unx↑nx↓ − µ(nx↑ + nx↓)

]
+W

∑
<x,y>⊂�

(nx↑ + nx↓)(ny↑ + ny↓).

If the interaction between nearest neighbors is repulsive then for suitable values ofU ,
W andµ the ground states ofV� are chessboard configurations where empty sites
alternate with sites occupied with one particle of arbitrary spin. The degeneracy of the
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ground states is infinite in the thermodynamic limit but we have a spatial ordering of the
particles. Using a restricted ensemble we associate a pure phase to this spatial ordering
by neglecting the spin degrees of freedom. The methods of this paper imply the existence
of only two pure phases in the intermediate temperature range

βt � 1 and βW 
 1.

The temperature is so low that the spatial ordering of the particles survives but so high
that the spins are in adisordered phase. The continuous symmetry (iftxy,↑ = txy,↓) is
not broken in this parameter regime.

These two models illustrate some of the mechanisms arising from the competition
between classical and quantum effects, where the system remains insulating and no
continuous symmetry is broken. Our main result, Theorem 4.4, provides tools to describe
the phase diagram of such models, in particular the coexistence of several phases and
the associated first-order phase transitions.

The main technical ingredient in this paper is a combined low-temperature and high-
temperature expansion for suitable contour models obtained using the perturbation the-
ory developed in [DFFR].

This paper is organized as follows. In Sect. 2 we describe the general formalism of
quantum lattice systems and the perturbation theory of [DFFR]. Section 3 is devoted
to the Pirogov–Sinai theory. In Sect. 4 we state the results of Pirogov–Sinai theory for
quantum systems. The extended Hubbard model is discussed in Sect. 5 as an illustration.
In Sect. 6 we prove our main result by studying a contour model and deriving the required
bounds on the contours.

2. General Framework of Quantum Lattice Models

2.1. Basic set-up. We consider a quantum mechanical system on aν-dimensional lattice
Zν , as considered, e.g., in [Rue,Isr,BR,Sim]. We will need a slight modification of the
usual formalism in order to treat fermionic lattice gases [DFFR] and to accommodate the
fact that fermionic creation and annihilation operators do not commute but anticommute.
A quantum lattice system is defined by the following data:

(i) Hilbert space. For convenience we choose a total ordering (denoted by the symbol
�) of the sites inZν . We choose thespiral order, depicted in Fig.1 forν = 2, and an
analogous ordering forν ≥ 3. This ordering has the property that, for any finite setA,
the setA := {z ∈ Zν, z � A} of lattice sites which are smaller thanA, or belong toA,
is finite. To each lattice sitea ∈ Zν is associated a finite-dimensional Hilbert spaceHa

and, for any finite subsetA = {a1 ≺ · · · ≺ an} ⊂ Zν , the corresponding Hilbert space
HA is given by the ordered tensor product

HA = Ha1 ⊗ · · · ⊗Han . (2.1)

We further require that there be a Hilbert space isomorphismφa : Ha −→ H, for all
a ∈ Zν .

(ii) Field and observable algebras. For any finite subsetA ⊂ Zν an operator algebra
FA, the field algebra, is given. The algebraFA is isomorphic to the algebraB(HA)

of bounded operators onHA, but in generalFA �= B(HA), ratherFA ⊂ B(HA). The
algebraFA is a∗-algebra equipped with aC∗-norm obtained from the operator norm
onB(HA). If A ⊂ B anda ≺ b, for all a ∈ A and allb ∈ B \ A, then there is a natural
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Fig. 1. Spiral order inZ2

embedding ofFA intoFB : An operatorK ∈ FA corresponds to the operatorK⊗1HB\A
in FB . In the following we denote byK both operators. For the infinite system the field
algebra is theC∗ algebra given by

F =
⋃
A↗Zν

FA
norm

, (2.2)

(the limit being taken through a sequence of increasing subsets ofZν , where increasing
refers to the (spiral) ordering defined above).

The algebrasFA contain theobservable algebras OA which have the same embed-
ding properties as the field algebras and, moreover, satisfy the following commutativity
condition: IfA ∩ B = ∅, then for anyK ∈ FA, L ∈ OB we have

[K,L] = 0. (2.3)

For the infinite system the observable algebraO is given by

O =
⋃
A↗Zν

OA

norm
. (2.4)

The group of space translationsZν acts as a∗-automorphism group{τa}a∈Zν on the
algebrasF andO, with

FX+a = τa(FX), OX+a = τa(OX), (2.5)

for anyX ⊂ Zν anda ∈ Zν .

(iii) Interactions, dynamics and free energy. An interactionH = {HA} is given: This
is a map from the finite setsA ⊂ Zν to self-adjoint operatorsHA in the observable
algebra OA. We assume the interaction to be translation invariant or periodic, i.e., there
is a lattice# ⊆ Zν , with dim# = ν, such thatτaHA = HA+a , for all a ∈ # and all
A ⊂ Zν . We will consider finite range or exponentially decaying interactions. The norm
of an interaction is defined as

‖H‖r = sup
a∈Zν

∑
A�a
‖HA‖er|A| , (2.6)

for somer > 0. Here|A| denotes the cardinality of the smallest connected subset of
Zν which containsA. We shall denote byBr = {H : ‖H‖r < ∞} the corresponding
Banach space of interactions.
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For a finite box�, we denoteH� the finite-volume Hamiltonian given byH� =∑
A⊂� HA. Here, we consider only periodic boundary conditions, i.e.� is theν-dimen-

sional torus(Z/LZ)ν , L being the size of�. In the sequel we will consider infinite
volume limits; the notation lim�↗Zν will stand for limL→∞.

If H ∈ Br , the interactionH determines a one-parameter group of∗-automorphisms,
{αt }t∈R onF . These automorphisms are constructed as the limit (in the strong topology)
of the automorphismsα�t given by forK ∈ FA, A ⊂ � by

α�t (K) = eitH� K e−itH� . (2.7)

The proof is standard (see e.g. [BR]). Note that one makes crucial use of the commuta-
tivity condition (2.3).

For an interactionH and at inverse temperatureβ the partition function is defined as

Z
β
� = Tr e−βH� ; (2.8)

thefree energy f (H ) is then

f (H ) = − 1

β
lim
�↗Zν

1

|�| logZβ�. (2.9)

Existence of the limit is a well-known result, see [Isr,Sim]. Notice thatf (H ) is a concave
function of the interactionH .

(iv) KMS states and tangent functionals. A statew onO is a positive normalized linear
functional onO. A statew is periodic if w ◦ τa = w, for all a in a lattice# ⊂ Zν and
invariant if# = Zν . A KMS state at inverse temperatureβ is a statewβ which satisfies
the KMS condition

wβ(Kαt (L)) = wβ(αt−iβ(K)L). (2.10)

For finite systems with periodic boundary conditions it is easy to check that the Gibbs
state given by

wβ�( · ) = (Tr e−βH� )−1Tr(e−βH� · ) (2.11)

satisfies the KMS condition. The set of KMS states is convex, andw is calledextremal
if it cannot be written as a linear combination of KMS states. The statew is clustering if

lim
a→∞w(Kτa(L)) = w(K)w(τaL), (2.12)

for all K, L ∈ O. Note that a statew is extremal if it is clustering. The statew is
exponentially clustering if, for any local observablesK ∈ OA, L ∈ OB we have the
property

w(Kτa(L))− w(K)w(τaL) � CK,L e−|a|/ξ (2.13)

with ξ > 0; hereCK,L depends onK andL only.
If we consider the free energy as a function of the interaction, KMS states at inverse

temperatureβ are in one-to-one correspondence with tangent functionals to the free en-
ergy. The free energyf is a concave function of the interactionH and a linear functional
α onBr is said to be tangent tof atH if for all interactionK ∈ Br we have

f (H +K) � f (H )+ α(K). (2.14)
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To an invariant statew we associate a tangent functionalα defined by

α(K) = w(AK), (2.15)

whereAK = ∑
X�0 |X|−1KX (and similarly for periodic states). The results of Israel

and Araki [Isr,Ara] show that ifα is a tangent functional atH , then the invariant statew
defined in (2.15) is a KMS state at temperatureβ and, conversely, for any KMS state at
temperatureβ there is a unique tangent functionalα. The identification of KMS states
with tangent functionals will be very useful to describe the phase diagrams arising from
Pirogov–Sinai theory.

Example. As an illustration of the general formalism we consider spin 1/2 fermions,
as in the examples treated in this paper. The Hilbert spaceHa is isomorphic toC4. We
denotec†

aσ andcaσ the creation and annihilation operators of a particle at sitea with spin
σ ∈ {↑,↓}. One can construct an explicit representation of the creation and annihilation
operators as operators inB(Ha), see e.g. Sect. 4.2 in [DFFR], butcaσ , c

†
aσ /∈ B(Ha).

The algebrasFA ⊂ B(HA) are chosen to be the algebras generated bycaσ , c†
aσ , a ∈ A,

σ ∈ {↑,↓}. The observable algebrasOA are chosen as the algebras generated bypairs
of creation or annihilation operators. It is easy to check that the elementsFA andOA

satisfy the commutativity condition (2.3).

Classical interactions. A particular class of interactions consists of theclassical inter-
actions. Let {ej }j∈I be an orthonormal basis ofH. Then, forA ⊂ Zν ,

EA = {⊗a∈Aeaja }, with eaja = φ−1
a ej , (2.16)

is an orthonormal basis ofHA. We denote byC(EA) the abelian subalgebra ofOA

consisting of all operators which are diagonal in the basisEA. An interactionV is called
classical, if there exists a basis{ej }j∈I of H such that

VA ∈ C(EA), for all A ⊂ Zν . (2.17)

The set.A of configurations inA is defined as the set of all assignments{ja}{a∈A} of an
elementja ∈ I to eacha. A configurationωA is an element in.A. There is a one-to-one
correspondence between basis vectors

⊗
a∈A eaja of HA and configurations onA:

⊗
a∈A

eaja ←→ ωA ≡ {ja}a∈A. (2.18)

In the sequel we shall use the notationeωA to denote the basis vector defined by the
configurationωA via the correspondence (2.18). Since a classical interactionV only
depends on the numbers

0A(ωA) = 〈eωA |VA|eωA〉 (2.19)

we may view0A as a (real-valued) function on the set of configurations. Similarly the
algebraC(EA) may be viewed as the∗-algebra of complex-valued functions on the set
of configurations.A.
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2.2. Perturbation theory for interactions. The interactions we will study have the form
H = V +λT , whereV is a classical interaction,T is a perturbation andλ a small param-
eter.A typical situation is the following: the classical part of the interaction has infinitely
many ground states, i.e. the number of ground states of the finite-volume Hamiltonian
H� diverges as|�| → ∞, but the perturbationT lifts this degeneracy (completely or
partially). This is usually easy to check this using standard perturbation theory for the
finite-volume HamiltonianV� + λT�. Standard perturbation theory however does not
work in the thermodynamic limit, the norm of the error growing with|�| and other
methods are required. Such methods have been developed in [DFFR] and applied in
[FR,DFF2] (see also [KU] for an alternative approach).

The idea is to construct an interactionH̃ which is equivalent toH and which can be
cast in the form

H̃ = Ṽ (λ)+ T̃ (λ), (2.20)

where now the degeneracy of the ground states ofṼ is lifted andT̃ (λ) is suitably small
with respect toṼ (λ).

Recall that two interactionsH andH̃ areequivalent if there exists a∗-automorphism
of the algebraO of local observables such that

H̃A = γ (HA), (2.21)

for all A. In particular, ifH ∈ Br , there exists̃r such thatH̃ ∈ Br̃ . A convenient way of
constructing equivalent interactions is with a family of unitary transformationsU�. Let
SA, A ⊂ Zν , be a family ofantiselfadjoint operators, periodic or translation invariant,
with SA ∈ OA and‖S‖r < ∞ for somer > 0. We setS� = ∑

A⊂� SA and then
U� = exp(S�) is unitary. It is shown in [DFFR] that if‖S‖r is small enough then the
unitary equivalent Hamiltonians̃H� = U�HU

−1
� define an interactioñH ∈ Br̃ for

somer̃ > 0 andH̃ is equivalent toH .
We consider now an interaction of the formH = V +λT which satisfy the following

conditions:

(P1) The interactionV is classical and of finite range. Moreover, we assume thatV is
given by a translation-invariantm-potential. This last condition means that we can
assume (if necessary by passing to a physically equivalent interaction) that there
exists at least one configurationω minimizing all00X, i.e.,

00X(ω) = min
ω′

00X(ω
′), (2.22)

for all X. For anym-potential, the set of all configurations for which Eq. (2.22)
holds is the set of ground states of00.

(P2) The perturbation interactionT is in some space Banach spaceBr for somer > 0.

Since, by condition(P1), the ground states can be determined locally, there is a corre-
sponding decomposition of the Hilbert spaceHA for all A:

HA = Hlow
A ⊕Hhigh

A , (2.23)

whereHlow
A is the subspace spanned by the ground states ofV . We can decompose any

operatorKA ∈ B(HA) according to their action onHlow
A andHhigh

A :

KA = K ll
A +Khh

A +K lh
A , (2.24)
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with

K ll
AHlow

A ⊂ Hlow
A K ll

AHhigh
A = 0,

Khh
A Hhigh

A ⊂ Hhigh
A Khh

A Hlow
A = 0,

K lh
AHlow

A ⊂ Hhigh
A K lh

AHhigh
A ⊂ Hlow

A .

Accordingly we decompose any interactionT :

T = T ll + T hh+ T lh, (2.25)

The following theorem shows that, for any integern ≥ 1, it is possible to construct
an interactionH (n) equivalent toH with the property thatH (n) is block diagonal up to
ordern. Note that this is a constructive result and an algorithm is given in [DFFR] which
allows one to construct the unitary transformationsU

(n)
� and the interactionsH (n).

Theorem 2.1. Consider an interaction of the form

H = V + λT , (2.26)

where V satisfies Condition (P1) and T satisfies Condition (P2). For any integer n ≥ 1
there is rn > 0 and λn > 0 such that for |λ| < λn there is an interaction H (n) =
V + T (n) ∈ Brn , equivalent to H , with

‖T (n)lh‖rn = O(λn+1). (2.27)

This theorem is useful to analyze the low temperature behavior of quantum spin
systems when the ground states ofV have infinite degeneracy andT lifts this degeneracy
(totally or partially). Consider for example the typical case where the degeneracy is
lifted in second order perturbation theory. In that case we may taken = 1 and we have
T (1)lh = O(λ2):

H (1) = V +
∑
j≥1

λjT
(1)ll
j +

∑
j≥1

λjT
(1)hh
j +

∑
j≥2

λjT
(1)lh
j . (2.28)

We then decomposeH (1) = Ṽ + T̃ into a new “classical part”̃V given by

Ṽ = V +
2∑
j=1

λjT
(1)ll
j , (2.29)

and T̃ contains all remaining terms. The new perturbation satisfies the boundsT̃
ll =

O(λ3), T̃
hh = O(λ), andT̃

lh = O(λ2). If Ṽ is a classical interaction with a sufficiently
regular zero-temperature phase diagram, then Pirogov–Sinai techniques can be applied
to study the phase diagrams ofṼ + T̃ for sufficiently smallλ (see below).

Note that this perturbation scheme is not only useful to analyze the low-temperature
behavior of the model. The new “classical part”Ṽ does not need to be classical at all.
For example, see [DFFR,DFF2], if one applies this perturbation scheme to the Hubbard
model at half-filling,Ṽ is given by the Heisenberg model and this gives a rigorous proof
of the equivalence of both models up to controlled error terms.
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3. Phase Diagrams, Contour Models, and Pirogov–Sinai Theory

A phase diagram in Thermodynamics is a partition of a space of physical parameters in
domains corresponding to phases; the free energy varies very smoothly inside a domain.
However, first derivatives or of higher order may have discontinuities when crossing the
boundary between two domains, and in this case one talks ofphase transitions.

The first proof of a phase transition was proposed by Peierls for the Ising model [Pei].
It was extended by Pirogov and Sinai [PS,Sin] to situations where different phases are
not related by a symmetry. Important extensions and simplifications of the Pirogov–
Sinai theory include Kotecký and Preiss [KP], Zahradník [Zah], Bricmont et al. [BKL]
and [BS], Borgs and Imbrie [BI], Borgs and Kotecký [BK,BK2]. An exposition of the
Pirogov–Sinai theory can be found in [EFS].

Another extension of the Peierls argument was done in Fröhlich and Lieb [FL] using
reflection positivity [FSS,DLS].

3.1. Phase diagrams. We consider the Banach spaceBr of periodic interactions, with
the norm defined in (2.6). Herer is any positive number, but further assumptions (bounds
for the weights of the contours, see below) can be verified in given models only ifr is
large enough. To a given interactionH ∈ Br and temperatureβ we associate the set of
all translation invariant (or periodic) KMS states or, equivalently [Ara, Isr], the set of all
tangent functionals to the free energyf (H ). The set of periodic KMS states forms a
simplex, so that it is enough to describe the extremal states, or the corresponding tangent
functionals. We denote the set of extremal states byEβ(H ).

In order to define a phase diagram we consider a smooth(p−1)-dimensional manifold
on the Banach spaceBr of periodic interactions; it is described by an applicationu )→
H u, from a connected open setU ⊂ Rp−1 into Br . Form = 1,2,3, . . . , we introduce
E(m) = {H ∈ Br : |Eβ(H )| = m}; accordingly, we partition the setU as

U =
∞∪
m=1

U (m), (3.1)

whereu ∈ U (m) iff H u ∈ E(m). The decomposition (3.1) is called the phase diagram of
H u.

The phase diagram ofH u, u ∈ U ⊂ Rp−1, is said to satisfy theGibbs phase rule if
the following conditions hold. Here, we call “boundary” ofU (i) the set(Ū (i) \U (i))∩U ,
with Ū (i) the closure ofU (i).
(i) U = U (1) ∪ · · · ∪ U (p).
(ii) (a) U (1) consists ofp connected components, each of which is a(p−1)-dimensional

manifold. The boundary ofU (1) is U (2) ∪ · · · ∪ U (p).
(b) U (2) consists of

( p
2

)
connected components, each of which is a(p−2)-dimen-

sional manifold. The boundary ofU (2) is U (3) ∪ · · · ∪ U (p).
(c) U (q) consists of

( p
q

)
connected components, each of which is a(p− q)-dimen-

sional manifold. The boundary ofU (q) is U (q+1) ∪ · · · ∪ U (p).
(d) U (p) consists of a single pointu0.

In other words, the phase diagram ofH u satisfies the Gibbs phase rule iff it is
homeomorphic to a connected, open neighborhoodU ′ of the boundary of the positive
octant ofRp, in such a way thatu0 is mapped onto the origin,U (p−1) is mapped onto
the union of axis∪i{ai > 0, aj = 0, j �= i}, and so on...
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Connected components ofU (1) are theone-phase region, orpure phase region,U (2)
is the region of coexistence of two phases,. . . , U (p) is the point of coexistence of all
p phases.

We will call a phase diagram which satisfies the Gibbs phase ruleregular if the free
energy is a real analytic function ofu in each one-phase region, and if all connected
components of the manifoldU (j) are smooth (C1).

3.2. Contour models. A contour A is a pair(A, α), whereA ⊂ Zν is a finite connected
set and is thesupport of A; to describeα, let us introduce the closed unit cellC(x) ⊂ Rν

centered atx, i.e.C(x) = {y ∈ Rν : |y − x|∞ � 1
2}. Theboundary B(A) of A ⊂ Zν

is the union of plaquettes

B(A) = {C(x) ∩ C(y) : x ∈ A, y /∈ A}. (3.2)

The boundaryB(A) decomposes into connected components; each connected compo-
nentb is given a labelαb ∈ {1, . . . , p}, andα = (αb).

Let� ⊂ Zν finite, with periodic boundary conditions.A set of contours{A1, . . . ,Ak}
is admissible iff

• Ai ⊂ �, and dist(Ai, Aj ) � 1 if i �= j .
• Labelsαj are matching in the following sense. LetW = � \ ∪kj=1Aj ; then each

connected component ofW must have the same label on its boundaries.

For j ∈ {1, . . . , p}, letWj be the union of all connected components ofW with labels
j on their boundaries.

For eachj ∈ {1, . . . , p}, we give ourselves a complex functiongβ,uj (“free energy of
a restricted ensemble”), that is real analytic inu ∈ U . We suppose that the limitβ →∞
of gβ,uj exists, and we write

eui = lim
β→∞Regβ,ui , 1 � i � p, (3.3)

eu0 = min
i
eui . (3.4)

We consider the partition function (2.8) for an interactionH u = V u + T , where the
periodic interactionT is a perturbation ofV u. We assume that the partition function can
be rewritten as

Z
β,u,T
� =

∑
{A1,...,Ak}

k∏
j=1

wβ,u,T (Aj )

p∏
i=1

e−βg
β,u
i |Wi | , (3.5)

where the sum is over admissible sets of contours in�.1 The weight wβ,u,T (A) of a
contourA is a complex function ofβ, u, andT , that behaves nicely forβ large andT in
a neighborhood of 0. Precisely, we assume that there exists a setW ⊂ R+ × Br , that is
open and connected, and whose closure contains(∞,0); furthermore, we suppose that
for all u ∈ U and all(β,T ) ∈W, and all contoursA,

1 The sum includes the casek = 0, and the corresponding term is
∑p
j=1 e−βg

β,u
i
|�| . It is however

irrelevant, since it does not contribute to the infinite-volume free energy (3.6).
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• wβ,u,T is periodic with period=, i.e. we havewβ,u,T (τaA) = wβ,u,T (A) for all
a ∈ (=Z)ν and allA. Hereτa is the translation operator.
• |wβ,u,T (A)| � e−βeu0|A| e−τ |A| for a large enough constantτ (depending onν, p,

and=). Furthermore,

| ∂
∂ui

wβ,u,T (A)| � β|A|C e−βeu0|A| e−τ |A|

and

| ∂
∂η
wβ,u,T+ηK(A)| � β|A|C‖K‖r e−βeu0|A| e−τ |A|

for a uniform constantC.
• limβ→∞ limT→0w

β,u,T (A) = 0.This means that the weights represent the correction
to the situation(β = ∞,T = 0).
• wβ,u,T (A) is real analytic inu; for all K ∈ Br ,wβ,u,T+ηK(A) is real analytic inη in

a neighborhood of 0 (the neighborhood depends onK).

Finally, the free energy is

f β,u,T = − 1

β
lim
�↗Zν

1

|�| logZβ,u,T� . (3.6)

We also assume the following properties forf β,u,T :

• f β,u,T is real, and concave as a function ofT ;
• wheneverH u + T = H u′ + T ′, we have

f β,u,T = f β,u′,T ′ . (3.7)

Although these properties seem difficult to verify in the context of a contour model, they
are usually clear in the original physical model.

3.3. The Pirogov–Sinai theory. The results of the Pirogov–Sinai theory are usually pre-
sented in terms of existence of many Gibbs states for a given interaction. However, it is
more convenient to think of the Pirogov–Sinai theory as to express the free energy in a
suitable form for the description of first-order phase transitions: the free energy is given
as the minimum ofC1 functions (“metastable free energies”), that intersect themselves
by making angles, hence a first-order phase transition when varying parameters so as to
cross an intersection.

The free energy at zero temperature is given by (3.4); in typical situations this is the
minimum over energies of some important configurations (the “potential ground states”).
The Pirogov–Sinai theory shows that in contour models, this structure extends at low
temperatures. In the quantum situation one is also interested in adding a perturbation to
a “nice” model; the metastable free energies then depend not only onβ, but also on the
quantum perturbation.

We claim that the Pirogov–Sinai theory allows to construct metastable free energies
that satisfy the following properties.
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Properties of the metastable free energies. We consider a contour model that satisfies the
structure described in Sect. 3.2. Then there exist p real functions f β,u,Ti for (β,T , u) ∈
W × U , such that

(a) f β,u,T = mini f
β,u,T
i ;

(b) limβ→∞ limT→0 f
β,u,T
i = eui , and limβ→∞ limT→0

∂
∂uj
f
β,u,T
i = ∂

∂uj
eui ;

(c) for all K ∈ Br , there exists a neighborhood NK of 0 such that f β,u,T+ηKi is C1 as

a function of (u, η) in U ×NK , and | ∂
∂η
f
β,u,T+ηK
i | � C‖K‖r for a constant C

depending on ν, p, = only;
(d) f β,u,Ti is a real analytic function of u in M{i} =

{
u : f β,u,Ti < f

β,u,T
j ∀ j �= i}.

Notice that the point (d) implies that the free energyf β,u,T is a real analytic function
of u in ∪iM{i} (which is the region of uniqueness, as will be seen below).

The proof of these properties involves the full artillery of the Pirogov–Sinai theory.
The item (c) is not really standard and may appear as superfluous technicalities, but it
plays a role when establishing the properties of the phase diagram, see Theorem 3.1
below. Since the present paper is only aimed at studying a special class of quantum
models, we content ourselves with an outline of the proof, so as to make it plausible for
readers who have knowledge of the details of the Pirogov–Sinai theory. A review of the
Pirogov–Sinai theory is expected to appear shortly and will contain a detailed proof of
these properties.

Sketch of the proof of these properties. We heavily rely on [BKU], which itself follows
[PS,Sin,Zah,BI,BK,BK2]. Our metastable free energies are defined as the real part of
the metastable free energies of [BKU], which are complex in general.

The first step consists in defining the metastable free energies. This can be done by
introducing truncated contour activities and truncated partition functions following the
inductive procedure of [BKU], Eqs. (5.6)–(5.12). One obtains metastable free energies
f
(n)
j (that depend onβ, u,T ). One can then prove the claims of Lemma A.1 i), iii), iv),

v), vi) of [BKU]. We then setf β,u,Tj = limn→∞ f (n)j .
At this point we have well-defined metastable free energies depending onβ, u and

T (that is, they are functionals on the Banach space of interactions), and the free energy
of the system is given by the minimum of the metastable free energies, as stated in item
(a). It is also clear that limβ→∞ limT→0 f

β,u,T
i = eui , and thatf β,u,Ti is real analytic in

u onM{i}. What remains to be done is to check differentiable properties.

For givenT andK, we considerf β,u,T+ηKj as a function of(u, η). This is a mild
complication of the situation in [BKU], since the metastable free energies here depend
on p parameters instead ofp − 1. One then gets the items ii) and vii) of Lemma A.1
– the partial derivatives with respect toη of the truncated contour activities and of the
partition function with given external label satisfying the claims of the lemma with a
constantC0‖K‖r instead ofC0.

Finally, the metastable free energies are given as convergent series of clusters of
contours, the weights of those obeying suitable bounds. This leads to item (c)./0

We show now that these metastable free energies allow for a complete characterization
of tangent functionals, under the extra assumption that the situation at zero temperature
and without perturbation satisfies the Gibbs phase rule in a strong sense.
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The stronger condition for the Gibbs phase rule is that, for someu0 ∈ U , we have
that all “potential ground state energies” are equal,e

u0
i = e

u0
j for all i, j , and that the

matrix of derivatives ( ∂

∂uj

[
eui − eup

])
1 � i,j � p−1

(3.8)

has an inverse that is uniformly bounded.Actually, energieseui may not be differentiable;

in this case, we consider the same matrix with Reg
β,u
i instead ofeui , and we suppose

that it has an inverse for allβ large enough, the inverse matrix being uniformly bounded
with respect tou ∈ U , andβ � const.

Theorem 3.1 (Stability of the phase diagram). Assume that there exist metastable free
energies f β,u,Ti , 1 � i � p, that satisfy all points (a)–(d) of the properties above.
We assume in addition that the strong version of the Gibbs phase rule, described above,
is satisfied.

Then for β large enough and ‖T ‖r small enough (depending on p and on the bound
of the inverse of the matrix of derivatives (3.8)), there exists U ′ ⊂ U such that the phase
diagram for H u + T , u ∈ U ′, at inverse temperature β, satisfies the Gibbs phase rule
and is regular.

Theorem 3.1 states that there existsu′0 ∈ U ′ such that the set of tangent functionals to

the free energy atH u′0+T is a simplex withp extremal points. More generally, we have
the decompositionU ′ = U ′(1) ∪ · · · ∪ U ′(p) such that foru ∈ U ′(q), the set of tangent
functionals atH u + T is aq-dimensional simplex.

This “completeness” of the phase diagram was addressed in [Zah] and [BW]. The
approach was however different and involved studying the Gibbs states, which is more
intricate and does not easily extend to the quantum case. It is simpler to look at tangent
functionals, and then to use existing results on their equivalence with DLR or KMS
states.

Notice that the Pirogov–Sinai theory also provides various extra information, such
as the fact that the limit ofU ′(q), asT → 0 andβ → ∞, is equal toU (q). Also, the
extremal equilibrium states can be shown to be exponentially clustering. We do not claim
these properties here however, because doing so would require extra assumptions and
technicalities in the description of the abstract contour model.

Proof of Theorem 3.1. Items (b) and (c) of the properties of metastable free energies

(with η = 0) imply that there existsu′0 such thatf
β,u′0,T
i = f β,u′0,Tj for all i, j , and that

the matrix of derivatives( ∂

∂uj

[
f
β,u,T
i − f β,u,Tp

])
1 � i,j � p−1

(3.9)

has a bounded inverse, uniformly inu in a neighborhoodU ′ of u′0. Let us define

Mi = {u ∈ U ′ : f β,u,Ti = min
j
f
β,u,T
j }, (3.10)

and, forQ ⊂ {1, . . . , p},
MQ =

⋂
i∈Q

Mi \
⋃
i /∈Q

Mi (3.11)
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(notice thatM{i} � Mi). By the implicit function theorem, eachMQ is described by
a C1 function from an open subset ofRp−|Q| into U ′. If we setU (q) = ∪|Q|=qMQ

the phase diagram satisfies the Gibbs phase rule, provided there are exactly|Q| tangent
functionals atH u + T for eachu ∈MQ.

Each metastable free energyf β,u,Tj , j ∈ Q, defines a tangent functionalαj : for all

K ∈ Br , we setαj (K) = ∂
∂η
f
β,u,T+ηK
j |η=0. Notice that item (c) ensures boundedness

of the tangent functional.2 We show now that these tangent functionals are linearly
independent, and that any other tangent functional is a linear combination of these ones.

We examine the manifold whereq phases coexist; without loss of generality, we can
chooseũ ∈ MQ with Q = {1, . . . , q}. The determinant of (3.9) can be written as a
linear combination of determinants of

( ∂

∂ukj

[
f
β,ũ,T
i − f β,ũ,Tq

])
1 � i,j � q−1

, (3.12)

with k1, . . . , kq−1 beingq − 1 different indices. Since the determinant of (3.9) differs
from 0, at least one of the determinants in the previous equation differs from 0. Without
loss of generality we can assume that

( ∂

∂uj

[
f
β,ũ,T
i − f β,ũ,Tq

])
1 � i,j � q−1

(3.13)

is not singular.

Our analysis is local, so we can takeũ = 0 andH u = H 0 +∑p−1
j=1 ujKj . Then

(3.7) implies thatαj (K i ) = ∂
∂ui
f
β,u,T
j |u=0, and non-singularity of (3.13) shows that

αj , 1 � j � q, are linearly independent. Furthermore, it also implies that for all
tangent functionalsα′ the system of equations forξ = (ξ1, . . . , ξq),

α′(K i ) =
q∑
j=1

ξj αj (K i ), i = 1, . . . , q − 1, (3.14)

has a unique solution with
∑
j ξj = 1 . Now we consider anyK ∈ Br ; we define

gj (u, η) = f β,u,T+ηKj , 1 � j � q, and

g(u, η) =


g1(u, η)− gq(u, η)

...

gq−1(u, η)− gq(u, η)


 . (3.15)

We haveg(0,0) = 0, ∂
∂u
g(0,0) is an isomorphism, andg(u, η) is a map of classC1

by item (c) of the properties metastable free energies. By the implicit function theorem

2 One may wonder whether the functionalαj is linear. It is actually, becauseαj can be obtained as the
limit of linear functionals that are tangent to the free energy, uniquely defined for all points ofM{j} – a region
of parameters where the concave free energy has a unique tangent functional.
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there exists a mapu(η) such thatg(u(η), η) = 0. We introduce the interactions

R(η) = K + 1

η

q−1∑
j=1

uj (η)Kj , (3.16)

R = lim
η→0

R(η) = K +
q−1∑
j=1

u′j (0)Kj . (3.17)

Then using (3.7) we have

f β,0,T+ηR(η) = f β,0,T+ηR(η)1 = · · · = f β,0,T+ηR(η)q . (3.18)

Differentiating with respect toη, we obtain (recall thatα′ is tangent tof β,0,T+ηR(η) at
η = 0)

α′(R) = α1(R) = · · · = αq(R). (3.19)

Then obviouslyα′(R) = ∑
j ξjαj (R), and it follows by linearity of the tangent func-

tionals that

α′(K) =
q∑
j=1

ξj αj (K). (3.20)

/0

4. Results of the Quantum Pirogov–Sinai Theory

We summarize in this section the results obtained in [BKU,DFF,DFFR,KU], and in
the present paper. All results concern the situation where the interaction has the form
H = V + T , whereV is a classical interaction satisfying the standard Pirogov–Sinai
framework, andT is a small perturbation. The temperature will be assumed to be small.
The results however split into four classes, according to whether we use the perturbation
methods of [DFFR] (Sect. 2.2), and whether we include high temperature expansions to
analyze phases at intermediate temperatures.

In this section, we implicitly assume all properties of the metastable free energies,
see Subsect. 3.3, to be valid – without these properties the statements below would not
include completeness, i.e. we could not ascertain to have identifiedall the periodic Gibbs
states of the systems.

4.1. Quantum perturbation of classical model with finitely many ground states. In this
case the classical interactionV has finitely many ground states and the phase diagram
of V +T is, at low temperatures and for sufficiently smallT a small deformation of the
zero temperature phase diagram ofV . The extension of the Pirogov–Sinai theory to this
class of quantum systems goes back to [Pir] and was proved in [BKU,DFF].

(a) Structure. We denote by. = {1, . . . ,M}Zν the space of classical configurations;
the dimensionν of the physical space is always supposed to be bigger or equal to 2. The
interaction has the formH = V +T , whereV is a block interaction and is diagonal with
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respect to the basis of classical configurations: ifA = U(x) ≡ {y : |y − x|∞ � R}
for somex ∈ Zν ,

VA |e〉ω = 0x(ωU(x)) |e〉ω, (4.1)

andVA = 0 if there is nox withU(x) = A. The function0x depends onµ ∈ U ⊂ Rp−1,
and we assume that its derivatives∂

∂µj
0x(ωU(x)) are bounded uniformly inx,µ, ω, j .

A finite setG = {g(1), . . . , g(p)} ⊂ . of periodic configurations is given, that
contains all ground states ofV for all µ (see below the precise assumption). We write
GA = {gA : g ∈ G}. We suppose that0x(gU(x)) is independent ofx, for all g ∈ G, and
this value is denoted byeµg (this is the mean energy of the configurationg).

(b) Assumptions.

(A1) A gap separates the excitations: for allωU(x) /∈ GU(x),
0x(ωU(x))−min

g∈G0x(gU(x)) � D

(uniformly in µ).
(A2) The zero temperature phase diagram is (linearly) regular: there isµ0 ∈ U such

thateµ0
g = eµ0

g′ for all g, g′ ∈ G, and the inverse of the matrix of derivativesMµ
G,

see (3.8), is uniformly bounded.

(c) Properties of Gibbs states.

Theorem 4.1. Assume (A1) and (A2) hold true. There exist β0, c < ∞ (depending on
ν, R, p,M and on the periods of {g(j)} and H only) such that if βD � β0 and
‖T ‖c/D � 1, the phase diagram of the quantum model satisfies the Gibbs phase rule
and is regular in a neighborhood U ′ ⊂ U of µ0.

In the single phase region, i.e. if µ ∈Mβ({g}), the KMS state wβ,µ,T (·) is close to
the ground state g: for all K ∈ OA, limβ→∞,‖T ‖r→0w

β,µ,T (K) = 〈eg|K|eg〉.
The condition‖T ‖c/D � 1 means thatT is a perturbation with respect toV ; c

plays the role of the perturbative parameter: from Definition (2.6) of the norm‖ · ‖c,
‖TA‖ must be very small ifc is very large.

The proof of this theorem follows from [BKU,DFF].

4.2. Models with infinite degeneracy. Consider a model whose classical part has in-
finitely many ground states, and a perturbation which lifts this degeneracy completely.
The pertubation methods of [DFFR] (see Sect. 2.2) permits one in certain cases to ana-
lyze this by constructing an equivalent interaction with a new classical part which has
finitely many ground states. In this case the new perturbation has a slightly more com-
plicated form than in Sect. 4.1 and the following theorem deals with this situation. This
situation was considered in [DFFR] (for a different approach see [KU]).

(a) Structure. The space of classical configurations is again. = {1, . . . ,M}Zν . We
consider two setsG,D ⊂ ., with D ⊂ G finite,D = {d(1), . . . , d(p)} is a finite set
of periodic configurations;G may be infinite and will represent the configurations of
low energy. ForA ⊂ Zν , the Hilbert spaceHA has the following decompositionHA =
Hlow
A ⊕Hhigh

A , whereHlow
A is the subspace spanned by the low energy configurations

gA ∈ GA. The interaction has the formH = V + T , whereV is a classical block
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interaction with uniformly bounded derivatives∂
∂µj

0x(ωU(x)), andT is a perturbation

that is submitted to some restrictions, see the assumptions below.

(b) Assumptions.

(B1) A gap separates high and low energies: for allωU(x) /∈ GU(x),
0x(ωU(x))−max

g∈G 0x(gU(x)) � D0.

(B2) Gap with the ground states: we assume that0x(dU(x)) is independent ofx for
d ∈ D, and for allωU(x) /∈ DU(x),

0x(ωU(x))−min
d∈D0x(dU(x)) � D

(and we assume thatD � D0).
(B3) The perturbation may be decomposedT = K +K ′ +K ′′; for all A,

K ′AHlow
A = 0, K ′AHhigh

A ⊂ Hhigh
A ;

K ′′AHlow
A ⊂ Hhigh

A , K ′′AHhigh
A ⊂ Hlow

A

(there is no assumption onK).3

(B4) The zero temperature phase diagram is (linearly) regular, i.e. all energiese
µ
d are

equal for someµ0 ∈ U , and the matrixMµ
D [see (3.8)] has a uniformly bounded

inverse.

(c) Properties of Gibbs states.

Theorem 4.2. Assume (B1)–(B4) hold true. There exist β0, c < ∞ (depending on
ν, R, p,M and on the periods of {d(j)} andH only) such that if βD � β0, ‖K‖c/D �
1, ‖K ′‖c/D0 � 1, ‖K ′′‖c/D0 � 1 the phase diagram of the quantum model satisfies
the Gibbs phase rule and is regular in U ′ ⊂ U , U ′ � µ0.

In the single phase region, i.e. if µ ∈Mβ({d}), the KMS state wβ,µ,T (·) is close to
the ground state d: for all K ∈ OA, limβ→∞,‖T ‖r→0w

β,µ,T (K) = 〈ed |K|ed〉.
The proof of this theorem is given in [DFFR]. A somewhat different method yielding

similar results has been developed later in [KU].

4.3. Combined high and low temperature expansions. Here we consider models whose
classical partV has partially ordered ground states, typically described by periodic con-
figurations of holes and particles but still with infinite degeneracy due to, e.g., degeneracy
of the spin at each site. Together with the quantum perturbation the system may have
a continuous symmetry. We will suppose that the temperature is low and, in addition,
thatβ‖T ‖c is actually small (i.e. the temperature is large compared toT ) and we will
prove that in this case one phase corresponds to each periodic configuration of holes and
particles and that in this phase the spin degrees of freedom are in a disordered phase.
This situation has many similarities with that of [BKL], and could be called “a theory
of restricted ensembles in quantum lattice systems”.

3 Motivation comes from (2.25). It is however slightly more general, and it is just what is required in the
proof of Theorem 4.2.
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(a) Structure. As before, let. = {1, . . . ,M}Zν . Intermediate temperature phases will be
characterized by “motives” giving partial information on the underlying configurations.
In order to describe this, we consider a partition of{1, . . . ,M}:

{1, . . . ,M} =
N⋃
j=1

Ij with Ii ∩ Ij = ∅. (4.2)

We denoteN� = {1, . . . , N}� (andN ≡ NZν ). For n ∈ N , we write.n = {ω ∈
. : ωx ∈ Inx ∀x}. LetG = {g(1), . . . , g(p)} ⊂ N be a finite set of periodic configura-
tions; this is the set of motives and a pure phase will be associated with each of these
configurations. We write.G = ∪g∈G.g.

The interaction has the formH = V+T , whereV is a classical block interaction with
uniformly bounded derivatives w.r.t.µ, andT is a perturbation. We introduce restricted
partition functions for eachg ∈ G: let

Z
g
� =

∑
ω�∈.g,�

e−β
∑
x,U(x)⊂� 0x(ωU(x)) (4.3)

and

hβ,µg = − 1

β
lim
�↗Zν

1

|�| logZg�. (4.4)

The ground energies areeµg = limβ→∞ hβ,µg , g ∈ G.

(b) Assumptions.

(C1) For all configurationsωU(x) /∈ .G,U(x), we have

0x(ωU(x))− min
ω′∈.G

0x(ω
′
U(x)) � D.

Moreover, we assume that

min
ωU(x)∈.g,U(x)

0x(ωU(x)) = eµ(g)

independently ofx, for all g ∈ G.
(C2) We need a condition that ensures that no phase transition takes place in a restricted

ensemble.g; in other words, spatial correlations should decay quickly enough.
The following condition is stronger, and amounts to saying that there isno correla-
tion between different sites. For allg ∈ G, we suppose that there exists an on-site
interaction0g such that for allx:

0x(ωU(x)) = 0gx(ωx)
for all ω ∈ .g.

(C3) The zero temperature phase diagram is regular withe
µ0
g = e

µ0
g′ , g, g′ ∈ G, for

someµ0 ∈ U , and the matrixMµ
G, see (3.8), has a uniformly bounded inverse.4

4 If {eµg } are notC1, we consider the matrix of derivatives ofhβ,µg for β large; it must have an inverse that
is bounded uniformly w.r.t.µ and largeβ.
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(c) Gibbs states at intermediate temperature.

Theorem 4.3. Assume (C1)–(C3) hold true. There exist β0, c < ∞ (depending on
ν, R, p,M and on the periods of {g(j)} and H only) such that if β0 � βD < ∞
and β‖T ‖c � 1, the phase diagram satisfies the Gibbs phase rule and is regular in
U ′ ⊂ U , U ′ � µ0.

In the single phase region, i.e. if µ ∈ Mβ({g}), the KMS state wβ,µ,T (·) is close
to the motive g: for all K ∈ OA, limβ→∞,‖T ‖r→0w

β,µ,T (K) = (Tr(PA))−1Tr(KPA),
where PA is the projection given by

∑
ωA∈.g,A |eωA〉〈eωA | .

Remark. It follows from our assumptions thatT is small compared toV ; more precisely,
‖T ‖c/D � 1/β0.

This theorem is actually a consequence of Theorem 4.4 below, see the remark after
Theorem 4.4.

4.4. Infinite degeneracy, high and low temperature expansions. Here we consider sys-
tems where phases result from subtle interplay between potential and kinetic energy,
combining the effect described in Sects. 4.2 and 4.3. The quantum perturbation lifts par-
tially the degeneracy of the classical interaction, leading at intermediate temperatures,
to spatially ordered phases. Hereafter we describe the general framework in a rather ab-
stract way; it will be illustrated in Sect. 5, and the reader may gain better understanding
by working out a concrete application.

(a) Structure. The space of classical configurations is. = {1, . . . ,M}Zν ; we consider
a partition like in (4.2) and define similarlyN and.n. We consider a (possibly infinite)
setG ⊂ N that represents low energy configurations; the Hilbert spaces decompose in
the following way:HA = Hlow

A ⊕Hhigh
A , whereHlow

A is the subspace spanned by the
low-energy configurationsgA ∈ GA. The interaction has the formH = V + T ; V is a
block interaction with uniformly bounded derivatives∂

∂µj
0x(ωU(x)); the perturbation

T decomposes furtherT = K + K ′ + K ′′; we shall require different assumptions on
K,K ′,K ′′, motivated by the perturbation theory of Sect. 2.2.

We suppose that a finite setD = {d(1), . . . , d(p)} ⊂ G is given, that corresponds to
possible ground states. For eachd ∈ D, we define the corresponding restricted partition
function

Zd� =
∑

ω�∈.d,�
e−β

∑
x,U(x)⊂� 0x(ωU(x)) (4.5)

and the corresponding restricted free energy

h
β,µ
d = − 1

β
lim
�↗Zν

1

|�| logZd�, (4.6)

andeµd = limβ→∞ hβ,µd .

(b) Assumptions.

(D1) A gap separates high and low energies: for allωU(x) /∈ .G,U(x),
0x(ωU(x))− max

ω′∈.G
0x(ω

′
U(x)) � D0.
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(D2) Gap with the ground states: for allωU(x) /∈ .D,U(x),
0x(ωU(x))− min

ω′∈.D
0(ω′U(x)) � D.

(D3) For alld ∈ D, there exists an on-site interaction0d such that for allω ∈ .d and
all x,

0x(ωU(x)) = 0dx(ωx).
Moreover, we suppose that

min
ωx∈Idx

0dx(ωx) = eµd

independently ofx.
(D4) The quantum perturbationT = K +K ′ +K ′′ has the same properties as in (B3),

with respect to the decomposition into low and high energy states.
(D5) There isµ0 ∈ U such thateµ0

d = e
µ0
d ′ , d, d ′ ∈ D, and the matrix of deriva-

tives (3.8) has a uniformly bounded inverse (see the footnote of (C3) ife
µ
d is not

differentiable).

(c) Properties of Gibbs states.

Theorem 4.4. Assume (D1)–(D5) hold true. There exist β0, c < ∞ (depending on
ν, R, p,M and on the periods of {d(j)} and H only) such that if β0 � βD < ∞,
β‖K‖c � 1, ‖K ′‖c/D0 � 1, ‖K ′′‖c/D0 � 1, and β‖K ′′‖2c/D0 � 1, the phase
diagram satisfies the Gibbs phase rule and is regular in an open set U ′ ⊂ U that contains
µ0.

In the single phase region, i.e. if µ ∈ Mβ({d}), the KMS state wβ,µ,T (·) is close
to the motive d: for all K ∈ OA, limβ→∞,‖T ‖r→0w

β,µ,T (K) = (Tr(PA))−1Tr(KPA),
where PA is the projection given by

∑
ωA∈.d,A |eωA〉〈eωA | .

This theorem follows from the contour representation obtained in Sect. 6, together
with the Pirogov–Sinai theory.

Remarks. 1. Theorem 4.3 is an immediate consequence of Theorem 4.4. Indeed, we
clearly recover the setting of Sect. 4.3 by choosingG = . (i.e. all configurations have
low energy), andK ′ = K ′′ = 0.

2. These two theorems also generalize results of [Uel]: they can be applied to the
Hubbard model

H = −t
∑
<x,y>
σ=↑,↓

(c†
xσ cyσ + h.c.)+ U

∑
x

nx↑nx↓, (4.7)

to show that the high temperature phase extends to

{
(β, t, U) : βt small

}
and

{
(β, t, U) : βt2/U small

}

(standard high temperature expansions apply when bothβt andβU are small).
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5. Example: Extended Hubbard Model

This is a Hubbard model where particles interact among each other when their distance
is smaller than or equal to 1. Explicitly,

H� = −t
∑

<x,y>⊂�
σ=↑,↓

(c†
xσ cyσ + h.c.)+ U

∑
x∈�

nx↑nx↓ +W
∑

<x,y>⊂�
nxny − µ

∑
x∈�

nx.

(5.1)

Here,c†
x,σ , cxσ are creation, annihilation, operators of a fermion of spinσ at sitex;

< x, y > stands for a set of nearest neighbor sites;nxσ = c
†
xσ cxσ is the number of

particles of spinσ atx (it has eigenvalues 0 and 1);nx = nx↑ + nx↓ is the total number
of particles atx. The coefficientt represents the hopping, and will be taken to be small
compared to the nearest-neighbor repulsionW ;µ is the chemical potential. The classical
limit t → 0 was studied in [J¸ed,BJK]. The stability of the chessboard phaseM(0,2) (see
below) with smallt is a straightforward application of [DFF]; a later study devoted to it
is [BK3].

We start by analyzing the classical interactions. The configuration space is. = {0,↑,
↓,2}Zν and the corresponding classical interaction can be written as (takingR = 1

2)

0x(ωU(x)) = U

2ν
∑

y∈U(x)
δωy,2+

W

2ν−1

∑
<y,z>⊂U(x)

qyqz − µ

2ν
∑

y∈U(x)
qy. (5.2)

Here we introducedqy ∈ {0,1,2}:

qy =




0 if ωy = 0
1 if ωy =↑ orωy =↓
2 if ωy = 2.

(5.3)

The interaction can also be written as a sum over pairs of n.n. sites; this simplifies
the analysis of the zero temperature phase diagram, and the search for symmetries (see
below). This pair interaction is given by

0<x,y>(qx, qy) = U

2ν
(δqx,2+ δqy,2)+Wqxqy −

µ

2ν
(qx + qy). (5.4)

This model has a hole-particle symmetry. Introducing the unitary operatorU such that
Uc

†
xσU

−1 = cxσ andUcxσU−1 = c†
xσ , we see thatUT�U−1 = T�.As for the potential,

the effect of the symmetry can be exhibited by considering classical configurations;
definingq ′x = 2− qx , andµ′ = U + 4νW − µ, we easily check that

0µ
′
<x,y>(q

′
x, q
′
y) = 0µ<x,y>(qx, qy)+ C, (5.5)

whereC = −U/ν − 4W + 2µ/ν does not depend on(qx, qy). As a result, the phase
diagrams(U,µ) are symmetric along the line

µ = U

2
+ 2νW, (5.6)

for any temperature.
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(a) (b)

U
ν|W |

µ
ν|W |

2 4

-2

M2
M1

M0
U
νW

µ
νW

2

4

2

M2

M1

M0

M(0,2)

M(0,1)

M(1,2)

Fig. 2. Zero temperature phase diagrams of the extended Hubbard model,(a) whenW < 0 and(b) when
W > 0. The dashed line represents the hole-particle symmetry, see (5.6)

The zero temperature phase diagrams witht = 0 are depicted in Fig. 2, in both cases
W < 0 andW > 0.

In the caseW < 0, it decomposes into three domainsM0, M1, andM2; M0 and
M2 have a unique translation invariant ground state with respectively 0 and 2 particles
at each site. InM1, any configurations with one particle per site is a ground state; there
is degeneracy 2|�| since each particle has spin↑ or ↓.

The situationW > 0 presents a richer structure with six domains. DomainsM0, M1
andM2 have the same features as with attractive n.n. interactions. In between domains
M(0,2), M(1,2) andM(0,1) now appear.M(0,2) consists in two ground states, the two

chessboard configurations with alternatively 0 and 2 electrons per site.M(0,1) has 2·21
2 |�|

ground states of the chessboard type, one sublattice being empty, while the other has
exactly one particle of spin↑ or ↓; M(1,2) is similar, with 2 particles per site on one
sublattice and one on the other.

We are interested in the case where the temperature is small, but bigger than 0, and
with small hopping. The phase diagrams for largeβ and smallβt are presented in Fig. 3.

(a) (b)

U
ν|W |

µ
ν|W |

2

4

-2

M
β,t
2

M
β,t
1

M
β,t
0 U

νW

µ
νW

2

4

2

M
β,t
2

M
β,t
1

M
β,t
0

M
β,t
cb

Fig. 3. Phase diagrams of the extended Hubbard model at intermediate temperature and with small hopping,
(a) whenW < 0 and(b) whenW > 0. Bold lines denote first-order phase transitions. White is the regionPε
that resists rigorous investigations, where second-order transitions are expected

In the caseW < 0, all three domains survive at low temperature and witht �= 0; a
first-order phase transition occurs when crossing the border between any two domains.
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The point( U
νW
= 2, µ

νW
= 1) belongs toMβ,t

1 : this phase has residual entropy (it
also has more quantum fluctuations, although this has much less effect). The Gibbs
state corresponding to the domainM

β,t
1 is thermodynamically stable and exponentially

clustering. The restriction to intermediate temperatures (βt � ε) is important, because,
for ν � 3, a phase transition is expected when the temperature decreases, leading to
an antiferromagnetic phase that breaks both symmetries of translations and of rotations
of the spins.

The phase diagram at finiteβ and nonzerot is especially interesting forW > 0.
There are not six, but only four domainsMβ,t

0 , M
β,t
1 , M

β,t
2 and M

β,t
cb ; see Fig. 3.

Indeed, the three domains corresponding to chessboard phases have merged into a single
domain (this was first understood and proven in [BJK] in the absence of hopping). The
free energy is real analytic in the whole domainM

β,t
cb . The transition betweenMβ,t

2

andM
β,t
cb is presumably second-order, but our results do not cover the intermediate

region between these domains. The boundary betweenM
β,t
cb andM

β,t
1 contains a part

where a first-order phase transition occurs that can be rigorously described. Crossing the
boundary elsewhere presumably results in a second-order transition. Due to the thermal
fluctuations, the segment from (2,2) to (2,4) belongs toM

β,t
1 .

Our results for this model are summarized in the next two theorems.

Theorem 5.1 (Hubbard model with attractive n.n. interactions). Let ν � 2. There
exist constants β0 < ∞ and ε0 > 0 (depending on ν) such that the phase diagram
(U,µ) for β|W | � β0 and βt � ε0 is regular; domains M

β,t
a , a ∈ {0,1,2} satisfy

limβ→∞ lim t→0 M
β,t
a = Ma . If (U,µ) belongs to a unique M

β,t
a , there is a unique

Gibbs state. Furthermore, the density of the system is close to a,
∣∣〈nx〉 − a∣∣ � ε(β, t),

for all x. ε(β, t) can be made arbitrarily small by taking β large and t small.

In order to describe the situationW > 0 we first introduce the region of the phase
diagramPε where we have no results. Let

L =
[(

M(0,2) ∪M(1,2) ∪M(0,1)
) ⋂(

M0 ∪M1 ∪M2
)] \ [

M(0,2) ∩M1
]
, (5.7)

and forε > 0,

Pε =
⋃

(U,µ)∈L
Bε(U,µ), (5.8)

whereBε(U,µ) is the open ball of radiusε centered on(U,µ). We restrict our consid-
erations to the complement ofPε .
Theorem 5.2 (Hubbard model with n.n. repulsions). Let ν � 2 and ε > 0. There
exist constants β0 <∞ and ε0 > 0 (depending on ν and ε) such that if β0 � βW <∞
and βt � ε0, we have the decomposition

Pc
ε =M

β,t
0 ∪M

β,t
1 ∪M

β,t
2 ∪M

β,t
cb ,

and
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(i) M
β,t
0 ⊂ M0, M

β,t
2 ⊂ M2, M

β,t
1 (�⊂ M1) are domains with a unique Gibbs state.

Densities are close to 0, 2, 1 respectively in the sense



〈nx〉 � ε(β, t) in M

β,t
0

〈nx〉 � 2− ε(β, t) in M
β,t
2

|〈nx〉 − 1| � ε(β, t) in M
β,t
1

with ε(β, t) arbitrarily close to 0 if β is large and t small.

(ii) M
β,t
cb ⊂ M(0,2) ∪M(1,2) ∪M(0,1) is a domain with two extremal Gibbs states of

the chessboard type. The free energy is a real analytic function of β and µ in the
domain {

(β, µ) : β0/W � β � ε0/t and (U,µ) ∈M
β,t
cb

}
.

(iii) M
β,t
cb ∩M

β,t
1 is a line of first-order phase transition, with exactly three extremal

states.

Remarks. The proofs of Theorems 5.1 and 5.2 use Theorem 4.3. But using Theorem 4.1,
one could establish stability of domainsM0,M2,M(0,2) for all β|W | � β0, without
the restriction that the temperature be not too small. Another possible improvement, for
U,W > 0, would use Theorem 4.4 to replace the conditionβt � ε0 byβt2/U � ε0.
The latter clearly allows lower temperatures.5

6. Combined High-Low Temperature Expansions

In this section we simultaneously perform a low and a high temperature expansion. The
temperature is low, in such a way that excitations above the low energy states (Hlow

� ) are
rare. At the same time, the temperature is high relatively to the quantum perturbations
K andK ′′. These expansions allow to write the partition functions as one of acontour
model, that can be treated by the Pirogov–Sinai theory, see Sect. 3.2.

We rewrite the quantum model as a contour model, by making a mixed low and
high temperature expansion (Sect. 6.1); we define suitable weights, so that the partition
function takes the form required in Sect. 3.2. Section 6.2 is devoted to proving that the
weights are small compared to their size. Finally, we explain in Section 6.3 how other
requirements of Sect. 3.2 are fulfilled.

6.1. Expansion of the partition function. Our intention is to expand inK + K ′ + K ′′;
in order to simplify the notation, we introduceB = (B, i), B ⊂ Zν , i = 1,2,3, and
we writeKB = TB with B = (B,1), K ′B = TB with B = (B,2), andK ′′B = TB with
B = (B,3). We refer toB as atransition.

5 Furthermore, the restriction to intermediate temperatures arises because of possible antiferromagnetism
due to “quantum fluctuations” of strengtht2/U ; it should be stable forβt2/U > const; therefore this new
condition is qualitatively correct.
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Using Duhamel’s formula, we obtain

Tr e−βH� = Tr e−β
∑
B⊂� VB +

∑
m � 1

∑
B1,...,Bm

∑
ω1
�,...,ω

m
�

∫
0<τ1<···<τm<β

dτ1 . . .dτm

e−τ1
∑
x∈� 0x(ω1

U(x)
) 〈ω1

�| TB1 |ω2
�〉e−(τ2−τ1)

∑
x∈� 0x(ω2

U(x)
)
. . .

. . . 〈ωm�| TBm |ω1
�〉e−(β−τm)

∑
x∈� 0x(ω1

U(x)
)
. (6.1)

At this point, it is natural to define the supports of contours as all sites that belong
to ∪jBj , or for which there existsωj such thatωjU(x) /∈ .D,U(x). But two technical

difficulties arise:d(1), . . . , d(p) are periodic rather than translation invariant; and the
weight of a contour should not depend on the configuration outside of its support (but
it may depend on the labelingα). The later difficulty is specific to systems with phases
given by a restricted ensemble instead of a single configuration. To account for these
difficulties, we introduce a partition of the lattice into cubes of size=, where= is the lcm
of the periods of{d(i)} (considering all spatial directions).

Let B̄ = ∪x∈BU(x); we define excited cubes.

• A cubeC is quantum excited if there isBi such thatC ∩ B̄i �= ∅.
• Otherwise, it isclassically excited if there isωj andx ∈ C such thatωjU(x) /∈ .D,U(x).
Consider the setQ of quantum excited cubes, the setE of classically excited cubes, and
the setN of cubes that are neighbors ofQ∪E (two cubesC �= C′ are neighbors iff there
existx ∈ C andy ∈ C′ with |x−y|∞ = 1). Connected components ofQ∪E ∪N form
the supports of the contours. Connected components of the complement ofQ ∪ E ∪N
are characterized by a configurationd ∈ D, and this information may be stored in the
labelingα. The union of all components corresponding tod is denotedWd . Then

� = Q ∪ E ∪N ∪ (∪d∈DWd), (6.2)

see Fig. 4 for illustration.Wd is a union of cubes, each cubeC contributing in (6.1) by
a factor [we use (D3)]

∑
ωC∈.d,C

e−β
∑
x∈C 0dx(ωx) = e−βh

β,µ
d =ν . (6.3)

Summing first over admissible sets of contours{A1, . . . ,Ak}, we can rewrite (6.1)
in the following way:

Tr e−βH� =
∑

{A1,...,Ak}

[∏
d∈D

∑
ωWd ∈.d,Wd

e−β
∑
x∈Wd 0

d
x(ωx)

]

k∏
j=1

∑
Q⊂A

∑
m � 0

∑
B1,...,Bm

B̄i⊂Q

∑
ω1
Aj
,...,ωmAj

∫
0<τ1<...<τm<β

dτ1 . . .dτm

e
−τ1 ∑

x∈Aj 0x(ω
1
U(x)

) 〈ω1
Aj
| TB1 |ω2

Aj
〉 . . . 〈ωmAj | TBm |ω1

Aj
〉e−(β−τm)

∑
x∈Aj 0x(ω

1
U(x)

)
.

(6.4)
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�

A1

A2 A3

A4

Fig. 4. The space� is divided into cubes; contours are formed by excited cubes (in black) and by their
neighbors. There are four contours on this picture

We used here the fact that the contribution of different contours factorizes. There are
several restrictions to the sums over transitions{Bi} and configurations{ωiAj }: each cube

of Q is intersected by at least onēBi ; {ωiAj } are compatible with the labelingαj ; excited
cubes ofAj \ Q do not touch the boundary ofAj ; and non excited cubes inAj have

at least one neighbor that is excited. In the last line appears configurationω
j

U(x) with
U(x)∩Wd �= ∅, hence depending onωWd

. However, in such a casex belongs to a cube

that is not excited, so thatωjU(x) ∈ .d,U(x). From (D3) we can substitute0x(ω
j

U(x))

with0dx(ω
j
x), which does not depend any more on the configuration outside the support

of the contour.6 Then we obtain

Tr e−βH� =
∑

{A1,...,Ak}

∏
d∈D

e−βh
β,µ
d |Wd |

k∏
j=1

z(Aj ), (6.5)

where the sum is over admissible sets of contours, andz(A) is the weight of the contour
A. The explicit expression forz(A) looks rather tedious, but the main point is to establish
the properties of Sect. 3.2. The expression ofz(A) is

z(A) =
∑
m � 0

∑
Q⊂A

∑
B1,...,Bm

B̄i⊂Q

∑
ω1
A,...,ω

m
A

∫
0<τ1<...<τm<β

dτ1 . . .dτm

e−τ1
∑
x∈A 0x(ω1

U(x)
) 〈ω1

A| TB1 |ω2
A〉 . . . 〈ωmA | TBm |ω1

A〉e−(β−τm)
∑
x∈A 0x(ω1

U(x)
)
, (6.6)

with some restrictions on the sums over{Bi} and{ωiA}, see above.

Remark. We constructed contours out of cubes, while the supports of contours in
Sect. 3.2 are any connected sets. There is no contradiction, if we define the weight
z(A) to be 0 if the support ofA is not a union of cubes.

6 This is why cubes that are neighbors of excited cubes need to be considered as part of contours.
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6.2. Bounds for the weights of the contours. We turn to the proof of the exponential
decay of the weight of contours, as required in Sect. 3.2. We give the following “space-
time” interpretation to the collection of sums and integrals in (6.6): we view(B̄j , τj ) as
a subset ofA×[0, β]per, with periodic boundary conditions along the “vertical” interval
[0, β]. Furthermore, to each “time”τ ∈ [0, β]per corresponds the configurationωj for
which (τj−1, τj ] � τ . We define

B =
m⋃
j=1

B̄j × {τj }
⋃

Q× {0};

E =
m+1⋃
j=1

E(ω
j

Q)× [τj−1, τj ], |E| =
m+1∑
j=1

|E(ωjQ)|(τj − τj−1),

(with τ0 ≡ 0,τm+1 ≡ β, andωm+1 ≡ ω1). Here, we set̄B = ∪x∈BU(x), andE(ωQ) =
{x ∈ Q : ωU(x) /∈ .G,U(x)}.

From assumptions (D1) and D2) we can bound

|z(A)| � e−βe
µ
0 |A|

∑
m � 0

∑
Q⊂A

∑
B1,...,Bm

B̄i⊂Q

∑
ω1
A,...,ω

m
A

∫
0<τ1<···<τm<β

dτ1 . . .dτm

e−βD|E |/=ν e−D0|E|
m∏
j=1

‖TBj
‖, (6.7)

where the sums over{Bj } and{ωjA} satisfy the restrictions explained above.
We view eachB̄j as a connected subset ofRν+1 (one can e.g. add links between

nearest neighbors). ThenB ∪ E is a subset ofRν+1 made out of vertical segments
and horizontal sets. We consider connected components ofB ∪ E. For a connected
component withm horizontal sets andm′ � m − 1 vertical segments, we deleted
m′ −m+ 1 of the latter, in such a way that the component remains connected. One of
these components containsQ×{0}, possibly with extra vertical segments and horizontal
sets. Other components havem horizontal sets andm− 1 vertical segments. Because of
the structure(D4), or (B3), components not linked withQ × {0}, either consists in a
single transition of typeK, or include at least two transitions of typeK or K ′′.

A connected object withm horizontal sets, and(m − 1) vertical segments that end
on the horizontal sets, is called agather and is denoted by the letterG. It is illustrated in
Fig. 5. We introduce the following sets of gathers:

• Gm: gathers withm horizontal sets, one containing the origin{x = 0} × {τ = 0};
G = G∞.
• G′: gathers ofG1 that consist in a unique transition of typeK.
• G′′m: gathers ofGm, with at least two transitions of typeK or K ′′; G = G′′∞.

The connected component ofB ∪E that containsQ× {0} can be viewed as a set of
gathers, each gather being connected toQ× {0} by a vertical segment.

Since a choice of{Bi} and{ωiQ} leads to a set of gathers, we obtain a bound by first
integrating over sets of gathers, then summing over compatible space-time configurations
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A

β

0

B̄j

Fig. 5. A “gather” with 6 transitions and 5 vertical segments

ωA, and choosing which gathers are linked toQ× {0}. Therefore

|z(A)| � e−βe
µ
0 |A|

∑
k � 0

1

k!
∫

dG1 . . .dGk

∑
ωA

∑
links

e−βD|E |/=ν e−D0|E|
k∏
j=1

( ∏
B∈Gj

‖TB‖
)
. (6.8)

The shortcut
∫

dG means a sum over the numberm of transitions, a sum over transitions
B1, . . . ,Bm, an integral over ordered timesτ1, . . . , τm, and a sum over(m−1) vertical
segments that link

{
B̄i × {τi}

}
together.

We define

z̃(G) = e−D0|G| ∏
B∈G
‖TB‖e2ν=ν(logM+τ)|B̄| , (6.9)

where|G| is the total length of the vertical segments ofG. If βD/=ν � 2ν(logM + τ),
we can write

z(A)|eτ |A| � e−βe
µ
0 |A|

∑
k � 0

(2|Q|)k
k!

(∫ β

0
dτ e−D0τ

∫
G

dGz̃(G)
)k

∑
k � 0

|Q|k
k!

(∫ β

0
dτ

∫
G′∪G′′

dGz̃(G)
)k
,

(6.10)

where the first sum corresponds to the number of gathers linked toQ × {0}, and the
second sum is the number of independent gathers. The shortcut

∫
G dG is identical to∫

dG, except for the absence of an integral overτ1, which is set to 0; integrals overG′
andG′′ are similar.

One easily obtains an upper bound for the gathers with a unique transition:∫
G′

dGz̃(G) =
∑
B,B̄�0

‖KB‖e2ν=ν(logM+τ)|B̄| � (2R + 1)ν‖K‖c (6.11)
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with c = 2ν=ν(2R + 1)ν(logM + τ); this is smaller thanD0 if c is large enough in the
assumptions of Theorem 4.4.

For general gathers, we proceed by induction. First,
∫

G1

dGz̃(G) � (2R + 1)ν
(‖K‖c + ‖K ′‖c + ‖K ′′‖c). (6.12)

Next, we use the recursion inequality:
∫

Gm

dGz̃(G) �
∑

B,B̄�0

‖TB‖e2ν=ν(logM+τ)|B̄|

∑
k � 0

1

k!
(
2

∑
y∈B̄

∫ β

0
dτ e−D0τ

∫
Gm−1,0

dGz̃(G)
)k
.

(6.13)

Integrating overτ , and since‖K ·‖c/D0 � 1 for a large enoughc, we get
∫

Gm

dGz̃(G) �
∑

B,B̄�0

‖TB‖e2ν=ν(logM+τ)|B̄| e2|B̄|

� (2R + 1)ν
(‖K‖c + ‖K ′‖c + ‖K ′′‖c).

(6.14)

This holds independently ofm. This allows to estimate the integral over gathers that
contain at least two transitions of typeK or K ′′. Let G′m ⊂ Gm be gathers with at least
one transition of typeK or K ′. One easily obtains

∫
Gm

dGz̃(G) � (2R + 1)ν
(‖K‖c + ‖K ′′‖c). (6.15)

Then the integral over gathers with two transitions of typeK or K ′′ can be done by
integrating first on the time for such a transition, then over vertical segments and gathers
at their ends, at least one of which must belong toG′m−1. We obtain

∫ β

0
dτ

∑
B,B̄⊂Q

(‖KB‖ + ‖K ′′B‖)e2ν=ν(logM+τ)|B̄|
∫ β

0
dτ ′ e−D0τ

′
∫

G′m−1

dGz̃(G)

∑
k � 0

1

k!
(
2

∑
y∈B̄

∫ β

0
dτ e−D0τ

∫
Gm−1,0

dGz̃(G)
)k

� β|Q| (‖K‖c + ‖K
′′‖c)2

D0
.

Plugging these estimates in (6.10), one easily gets

z(A)eτ |A| � e−βe
µ
0 |A| e3|A| . (6.16)

Exponential decay of the weights of the contours is now clear.
The bound on the derivative can be proven in the same way. Looking at (6.6), we see

that the integrand gets a factor bounded byβ|A| supx,µ,ω,j | ∂∂µj 0x(ωU(x))|.
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6.3. Other properties of the weights. The weight of the contours can be viewed as a
series in powers of{KB}, {K ′B}, {K ′′B}. Since it is absolutely convergent uniformly in
K, K ′, K ′′ (provided they be small enough), we have by the dominated convergence
theorem

lim
K,K ′,K ′′→0

z(A) = 0. (6.17)

Analyticity of z(A) as a function ofµ andβ is clear, as well as a function ofη if we
add a new perturbationηL, in a neighborhood of 0 that depends onβ‖L‖. Periodicity
is also obvious.
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