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computation times. The reason for this success is that
the unsplit strategy, which consists of solving

DðqÞ

�t
unþ1 � ��unþ1 þrpnþ1 ¼ Snþ1 ½55a�

r � unþ1 ¼ 0; unþ1
j@� ¼ 0 ½55b�

yields a linear system similar to [37], which usually takes
far more time to solve than sequentially solving [54a]
and [54b]. It is commonly reported in the literature that
the ratio of the CPU time for solving [55a]–[55b] to that
for solving [54a–c] ranges between 10 to 30.

See also: Compressible Flows: Mathematical Theory;
Computational Methods in General Relativity: The Theory;
Geophysical Dynamics; Image Processing: Mathematics;
Incompressible Euler Equations: Mathematical Theory;
Interfaces and Multicomponent Fluids;
Magnetohydrodynamics; Newtonian Fluids and
Thermohydraulics; Non-Newtonian Fluids; Partial
Differential Equations: Some Examples; Variational
Methods in Turbulence.
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Introduction

In the famous 1822 treatise by Jean Baptiste Joseph
Fourier, Théorie analytique de la chaleur, the Discours
préliminaire opens with: ‘‘Primary causes are
unknown to us; but are subject to simple and constant
laws, which may be discovered by observation, the
study of them being the subject of natural philosophy.
Heat, like gravity, penetrates every substance of the
universe, its rays occupy all parts of space. The object
of our work is to set forth the mathematical laws
which this element obeys. The theory of heat will
hereafter form one of the most important branches of
general physics.’’ After a brief discussion of rational
mechanics, he continues with the sentence: ‘‘But
whatever may be the range of mechanical theories,
they do not apply to the effects of heat. These make up
a special order of phenomena, which cannot be
explained by the principles of motion and equilibria.’’
Fourier goes on with a thorough description of the
phenomenology of heat transport and the derivation of
the partial differential equation describing heat trans-
port: the heat equation. A large part of the treatise is
then devoted to solving the heat equation for various
geometries and boundary conditions. Fourier’s treatise
marks the birth of Fourier analysis. After Boltzmann,
Gibbs, and Maxwell and the invention of statistical
mechanics in the decades after Fourier’s work, we
believe that Fourier was wrong and that, in principle,
heat transport can and should be explained ‘‘by the
principles of motion and equilibria,’’ that is, within the
formalism of statistical mechanics. But well over a
century after the foundations of statistical mechanics
were laid down, we still lack a mathematically
reasonable derivation of Fourier’s law from first
principles. Fourier’s law describes the macroscopic
transport properties of heat, that is, energy, in none-
quilibrium systems. Similar laws are valid for the
transport of other locally conserved quantities, for
example, charge, particle density, momentum, etc. We
will not discuss these laws here, except to point out
that in none of these cases macroscopic transport laws
have been derived from microscopic dynamics. As
Peierls once put it: ‘‘It seems there is no problem in
modern physics for which there are on record as many
false starts, and as many theories which overlook some
essential feature, as in the problem of the thermal
conductivity of [electrically] non-conducting crystals.’’
Macroscopic Law

Consider a macroscopic system characterized at
some initial time, say t = 0, by a nonuniform
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temperature profile T0(r). This temperature profile
will generate a heat, that is, energy current J(r).
Due to energy conservation and basic
thermodynamics:

cvðTÞ
@

@t
Tðr; tÞ ¼ �r � J ½1�

where cv(T) is the specific heat per unit volume. On the
other hand, we know that if the temperature profile is
uniform, that is, if T0(r) � T0, there is no current in
the system. It is then natural to assume that, for small
temperature gradients, the current is given by

JðrÞ ¼ ��ðTðrÞÞrTðrÞ ½2�

where �(T) is the conductivity. Here we have
assumed that there is no mass flow or other mode
of energy transport besides heat conduction (we
also ignore, for simplicity, any variations in density
or pressure). Equation [2] is normally called as
Fourier’s law. Putting together eqns [1] and [2], we
get the heat equation:

cvðTÞ
@

@t
Tðr; tÞ ¼ r � �ðTÞrT½ � ½3�

This equation must be completed with suitable
boundary conditions. Let us consider two distinct
situations in which the heat equation is observed to
hold experimentally with high precision:

1. An isolated macroscopic system, for example,
a fluid or solid in a domain � surrounded
by effectively adiabatic walls. In this case,
eqn [3] is to be solved subject to the initial
condition T(r, 0) = T0(r) and no heat flux
across the boundary of � (denoted by @�), that
is, n(r) � rT(r) = 0 if r 2 @� with n the normal
vector to @� at r. As t!1, the system reaches a
stationary state characterized by a uniform
temperature �T determined by the constancy of
the total energy.

2. A system in contact with heat reservoirs. Each
reservoir � fixes the temperature of some portion
(@�)� of the boundary @�. The rest of the
boundary is insulated. When the system reaches
a stationary state (again assuming no matter
flow), its temperature will be given by the
solution of eqn [3] with the left-hand side set
equal to zero,

r � ~JðrÞ ¼ r � ð�r~TðrÞÞ ¼ 0 ½4�

subject to the boundary condition ~T(r) = T� for
r 2 (@�)� and no flux across the rest of the
boundary.

The simplest geometry for a conducting system is
that of a cylindrical slab of height h and cross-
sectional area A. It can be either a cylindrical
container filled with a fluid or a piece of crystalline
solid. In both cases, one keeps the lateral surface of
the cylinder insulated. If the top and the bottom of
the cylinder are also insulated we are in case (1). If
one keeps the top and the bottom in contact with
thermostats at temperatures Th and Tb, respectively,
this is (for a fluid) the usual setup for a Benard
experiment. To avoid convection, one has to make
Th > Tb or keep jTh � Tbj small. Assuming unifor-
mity in the direction perpendicular to the vertical
x-axis one has, in the stationary state, a tempera-
ture profile ~T(x) with ~T(0) = Tb, ~T(h) = Th and
�(~T)d~T=dx = const. for x 2 (0, h).

In deriving the heat equation, we have implicitly
assumed that the system is described fully by specifying
its temperature T(r, t) everywhere in �. What this
means on the microscopic level is that we imagine the
system to be in local thermal equilibrium (LTE).
Heuristically, we might think of the system as being
divided up (mentally) into many little cubes, each large
enough to contain very many atoms yet small enough
on the macroscopic scale to be accurately described, at
a specified time t, as a system in equilibrium at
temperature T(r i, t), where r i is the center of the ith
cube. For slow variation in space and time, we can
then use a continuous description T(r, t). The theory
of the heat equation is very developed and, together
with its generalizations, plays a central role in modern
analysis. In particular, one can consider more general
boundary conditions. Here we are interested in the
derivation of eqn [2] from first principles. This clearly
presupposes, as a first fundamental step, a precise
definition of the concept of LTE and its justification
within the law of mechanics.
Empirical Argument

A theory of heat conduction has as a goal the
computation of the conductivity �(T) for realistic
models, or, at the very least, the derivation of
behavior of �(T) as a function of T. The early
analysis was based on ‘‘kinetic theory.’’ Its applica-
tion to heat conduction goes back to the works of
Clausius, Maxwell, and Boltzmann, who obtained a
theoretical expression for the heat conductivity of
gases, � �

ffiffiffiffi
T
p

, independent of the gas density. This
agrees with experiment (when the density is not too
high) and was a major early achievement of the
atomic theory of matter.

Heat Conduction in Gases

Clausius and Maxwell used the concept of a ‘‘mean
free path’’ �: the average distance a particle (atom or
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molecule) travels between collisions in a gas with
particle density �. Straightforward analysis gives
� � 1=���2, where � an ‘‘effective’’ hard-core diameter
of a particle. They considered a gas with temperature
gradient in the x-direction and assumed that the gas is
(approximately) in local equilibrium with density �
and temperature T(x). Between collisions, a particle
moves a distance � carrying a kinetic energy propor-
tional to T(x) from x to xþ �=

ffiffiffi
3
p

, while in the
opposite direction the amount carried is proportional
to T(xþ �

ffiffiffi
3
p

). Taking into account the fact that the
speed is proportional to

ffiffiffiffi
T
p

the amount of energy J
transported per unit area and time across a plane
perpendicular to the x-axis is approximately

J � �
ffiffiffiffi
T
p

TðxÞ � Tðxþ �
ffiffiffi
3
p
Þ

h i
� ���2

ffiffiffiffi
T
p dT

dx
½5�

and so � �
ffiffiffiffi
T
p

independent of �, in agreement with
experiment. It was clear to the founding fathers that
starting with a local equilibrium situation the process
described above will produce, as time goes on, a
deviation from LTE. They reasoned, however, that this
deviation from local equilibrium will be small when
(�=T)dT=dx� 1, the regime in which Fourier’s law is
expected to hold, and the above calculation should
yield, up to some factor of order unity, the right heat
conductivity. To have a more precise theory, one can
describe the state of the gas through the probability
distribution f (r, p, t) of finding a particle in the
volume element dr dp around the phase space point
(r, p). Here LTE means that

f ðr; p; tÞ ’ exp � p2

2mkTðrÞ

� �

where m is the mass of the particles. If one computes
the heat flux at a point r by averaging the microscopic
energy current at r, j = �v(1=2mv2), over f (r, p, t) then
it is only the deviation from local equilibrium which
makes a contribution. The result however is essentially
the same as eqn [5]. This was shown by Boltzmann,
who derived an accurate formula for � in gases by
using the Boltzmann equation. If one takes � from
experiment, the above analysis yields a value for �, the
effective size of an atom or molecule, which turns out
to be close to other determinations of the characteristic
size of an atom. This gave an evidence for the reality of
atoms and the molecular theory of heat.
Heat Conduction in Insulating Crystals

In (electrically) conducting solids, heat is mainly
transported by the conduction electron. In this case,
one can adapt the theory discussed in the previous
section. In (electrically) insulating solids, on the other
hand, heat is transmitted through the vibrations of the
lattice. In order to use the concepts of kinetic theory, it
is useful to picture a solid as a gas of phonons which
can store and transmit heat. A perfectly harmonic
crystal, due to the fact that phonons do not interact,
has an infinite thermal conductivity: in the language of
kinetic theory, the mean free path � is infinite. In a real
crystal, the anharmonic forces produce interactions
between the phonons and therefore a finite mean free
path. Another source of finite thermal conductivity
may be the lattice imperfections and impurities which
scatter the phonons. Debye devised a kind of kinetic
theory for phonons in order to describe thermal
conductivity. One assumes that a small gradient of
temperature is imposed and that the collisions between
phonons maintain local equilibrium. An elementary
argument gives a thermal conductivity analogous to
eqn [5] obtained in the last subsection for gases
(remembering, however, that the density of phonons
is itself a function of T)

� � cvc
2	 ½6�

where, with respect to eqn [5], � has been replaced by
cv, the specific heat of phonons,

ffiffiffiffi
T
p

by c, the (mean)
velocity of the phonons, and � by c	 , where 	 is the
effective mean free time between phonon collisions.
The thermal conductivity depends on the temperature
via 	 , and a more refined theory is needed to account
for this dependence. This was done by Peierls via a
Boltzmann equation for the phonons. In collisions
among phonons, the momentum of phonons is
conserved only modulo a vector of the reciprocal
lattice. One calls ‘‘normal processes’’ those where the
phonon momentum is conserved and ‘‘Umklap pro-
cesses’’ those where the initial and final momenta
differ by a nonzero reciprocal lattice vector. Peierls’
theory may be summarized (very roughly) as follows:
in the absence of Umklap processes, the mean free
path, and thus the thermal conductivity of an insulat-
ing solid, is infinite. A success of Peierls’ theory is to
describe correctly the temperature dependence of the
thermal conductivity. Furthermore, on the basis of this
theory, one does not expect a finite thermal conduc-
tivity in one-dimensional monoatomic lattices with
pair interactions. This seems so far to be a correct
prediction, at least in the numerous numerical results
performed on various models.
Statistical Mechanics Paradigm:
Rigorous Analysis

In a rigorous approach to the above arguments, we
have to first formulate precisely the problem on a
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mathematical level. It is natural to adapt the standard
formalism of statistical mechanics to our situation. To
this end, we assume that our system is described by
the positions Q and momenta P of a (very large)
number of particles, N, with Q = (q1, . . . , qN) 2
�N, � � Rd, and P = (p1, . . . , pN) 2 RdN. The
dynamics (in the bulk) is given by a Hamiltonian
function H(Q, P). A state of the system is a
probability measure 
(P, Q) on phase space. As
usual in statistical mechanics, the value of an
observable f (P, Q) will be given by the expected
value of f with respect to the measure 
. In the case of
a fluid contained in a region �, we can assume that
the Hamiltonian has the form

HðP;QÞ ¼
XN
i¼1

p2
i

2m
þ
X
j 6¼i

�ðqj � qiÞ þ uðqiÞ
" #

¼
XN
i¼1

p2
i

2m
þ VðQÞ ½7�

where �(q) is some short-range interparticle potential
and u(qi) an external potential (e.g., the interaction of
the particle with fixed obstacles such as a conduction
electron interacting with the fixed crystalline ions). If
we want to describe the case in which the temperature
at the boundary is kept different in different regions
@��, we have to properly define the dynamics at the
boundary of the system. A possibility is to use
‘‘Maxwell boundary conditions’’: when a particle hits
the wall in @��, it gets reflected and re-emerges with a
distribution of velocities

f�ðdvÞ ¼ m2

2�ðkT�Þ2
jvxj exp � mv2

2kT�

� �
dv ½8�

Several other ways to impose boundary conditions
have been considered in the literature. The notion of
LTE can be made precise here in the so-called
hydrodynamic scaling limit (HSL), where the ratio
of microscopic to macroscopic scales goes to zero.
The macroscopic coordinates r and t are related to
the microscopic ones q and 	 , by r = �q and t = ��	 ,
that is, if � is a cube of macroscopic sides l, then its
sides, now measured in microscopic length units, are
of length L = ��1l. We then suppose that at t = 0 our
system of N = �Ld particles is described by an
equilibrium Gibbs measure with a temperature
T(r) = T(�q): roughly speaking, the phase-space
ensemble density has the form


0ðP;QÞ � exp �
XN
i¼1

0ð�qiÞ
(

	 p2
i

2m
þ
X
j 6¼i

�ðqj � qiÞ þ uðqiÞ
" #)

½9�
where �1
0 (r) = T0(r). In the limit �! 0, � fixed, the

system at t = 0 will be macroscopically in LTE with
a local temperature T0(r) (as already noted, here we
suppress the variation in the particle density n(r)).
We are interested in the behavior of a macroscopic
system, for which �� 1, at macroscopic times
t 
 0, corresponding to microscopic times
	 = ���t,�= 2 for heat conduction or other diffu-
sive behavior. The implicit assumption then made
in the macroscopic description given earlier is that,
since the variations in T0(r) are of order � on a
microscopic scale, then for �� 1, the system will,
also at time t, be in a state very close to LTE, with
a temperature T(r, t) that evolves in time according
to Fourier’s law, eqn [1]. From a mathematical
point of view, the difficult problem is to prove that
the system stays in LTE for t > 0 when the
dynamics are given by a Hamiltonian time evolu-
tion. This requires proving that the macroscopic
system has some very strong ergodic properties, for
example, that the only time-invariant measures
locally absolutely continuous with respect to the
Lebesgue measure are, for infinitely extended
spatially uniform systems, of the Gibbs type. This
has only been proved so far for systems evolving
via stochastic dynamics (e.g., interacting Brownian
particles or lattice gases). For such stochastic
systems, one can sometimes prove the hydrodyna-
mical limit and derive macroscopic transport
equations for the particle or energy density and
thus verify the validity of Fourier law. Another
possibility, as we already saw, is to use the
Boltzmann equation. Using ideas of hydrodynami-
cal space and time scaling described earlier, it is
possible to derive a controlled expansion for the
solution of the stationary Boltzmann equation
describing the steady state of a gas coupled to
temperature reservoirs at the top and bottom. One
then shows that for �� 1, � being now the ratio
�=L, the Boltzmann equation for f in the slab has a
time-independent solution which is close to a local
Maxwellian, corresponding to LTE (apart from
boundary layer terms) with a local temperature and
density given by the solution of the Navier–Stokes
equations which incorporates Fourier’s law as
expressed in eqn [2]. The main mathematical
problem is in controlling the remainder in an
asymptotic expansion of f in power of �. This
requires that the macroscopic temperature gradient,
that is, jT1 � T2j=h, where h = �L is the thickness of
the slab on the macroscopic scale, be small. Even if
this apparently technical problem could be over-
come, we would still be left with the question of
justifying the Boltzmann equation for such steady
states and, of course, it would not tell us anything



378 Fourier Law
about dense fluids or crystals. In fact, the Boltz-
mann equation itself is really closer to a macro-
scopic than to a microscopic description. It is
obtained in a well-defined kinetic scaling limit in
which, in addition to rescaling space and time, the
particle density goes to zero, that is, �� �.

A simplified model of a crystal is characterized by
the fact that all atoms oscillate around given
equilibrium positions. The equilibrium positions
can be thought of as the points of a regular lattice
in Rd, say Zd. Although d = 3 is the physical
situation, one can also be interested in the case
d = 1, 2. In this situation, � � Zd with cardinality
N, and each atom is identified by its position
xi = iþ qi, where i 2 � and qi 2 Rd is the displace-
ment of the particle at lattice site i from this
equilibrium position. Since interatomic forces in
real solids have short range, it is reasonable to
assume that the atoms interact only with their
nearest neighbors via a potential that depends only
on the relative distance with respect to the equili-
brium distance. Accordingly, the Hamiltonians that
we consider have the general form

HðP;QÞ ¼
X
i2�

p2
i

2m
þ
X
ji�jj¼1

Vðqi � qjÞ þ
X

i

UiðqiÞ

¼
X
i2�

p2
i

2m
þ VðQÞ ½10�

where P = (pi)i2� and analogously for Q. We shall
further assume that as jqj ! 1 so do Ui(q) and
V(q). The addition of Ui(q) pins down the crystal
and ensures that exp [�H(P, Q)] is integrable with
respect to dPdQ, and thus the corresponding Gibbs
measure is well defined. In this case, in order to fix the
temperature at the boundary, one can add a Langevin
term to the equation of particles on the boundaries,
that is, if i 2 @�� the equation for the particle is

_pi ¼ �@qi
HðP;QÞ � � pi þ

ffiffiffiffiffiffiffiffiffi
�T�

p
_wi ½11�

where _wi is a standard white noise. Other thermo-
statting mechanisms can be considered. In this case
we can also define LTE using eqn [9] but we run
into the same difficulties described above – although
the problem is somehow simpler due to the presence
of the lattice structure and the fact that the particles
oscillate close to their equilibrium points. We can
obtain Fourier’s law only by adding stochastic
terms, for example, terms like eqn [11], to the
equation of motion of every particle and assuming
that U(q) and V(q) are harmonic. These added
noises can be thought of as an effective description
of the chaotic motion generated by the anharmonic
terms in U(q) and V(q).
Just how far we are from establishing rigorously
the Fourier law is clear from our very limited
mathematical understanding of the stationary
nonequilibrium state (SNS) of mechanical systems
whose ends are, as in the example of the Benard
problem, kept at fixed temperatures T1 and T2.
Various models have been considered, for exam-
ple, models with Hamiltonian [10] coupled at the
boundaries with heat reservoirs described by eqns
[11]. The best mathematical results one can prove
are: the existence and uniqueness of SNS; the
existence of a stationary nontrivial heat flow;
properties of the fluctuations of the heat flow in
the SNS; the central-limit theorem type fluctua-
tions (related to Kubo formula and Onsager
relations; and large-deviation type fluctuations
related to the Gallavotti–Cohen fluctuation theo-
rem). What is missing is information on how the
relevant quantities depend on the size of the
system, N. In this context, the heat conductivity
can be defined precisely without invoking LTE. To
do this, we let ~J be the expectation value in the SNS
of the energy or heat current flowing from reservoir
1 to reservoir 2. We then define the conductivity
�L as ~J=(A�T=L), where �T=L = (T1 � T2)=L is the
effective temperature gradient for a cylinder of
microscopic length L and uniform cross section A,
and �(T) is the limit of �L when
�T! 0(T1 = T2 = T) and L!1. The existence of
such a limit with � positive and finite is what one
would like to prove.

See also: Dynamical Systems and Thermodynamics;
Ergodic Theory; Interacting Particle Systems and
Hydrodynamic Equations; Kinetic Equations;
Nonequilibrium Statistical Mechanics: Dynamical
Systems Approach; Nonequilibrium Statistical
Mechanics: Interaction Between Theory and Numerical
Simulations.
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Introduction

The Fourier–Mukai transform has been introduced
in the study of abelian varieties by Mukai and can
be thought of as a nontrivial algebro-geometric
analog of the Fourier transform. Since its original
introduction, the Fourier–Mukai transform turned
out to be a useful tool for studying various aspects
of sheaves on varieties and their moduli spaces, and
as a natural consequence, to learn about the
varieties themselves. Various links between geome-
try and derived categories have been uncovered; for
instance, Bondal and Orlov proved that Fano
varieties, and certain varieties of general type, can
be reconstructed from their derived categories.
Moreover, Orlov proved a derived version of the
Torelli theorem for K3 surfaces and also a structure
theorem for derived categories of abelian varieties.
Later, Kawamata gave evidence to the conjecture
that two birational smooth projective varieties with
trivial canonical sheaves have equivalent derived
categories, which has been proved by Bridgeland in
dimension 3.

The Fourier–Mukai transform also enters into
string theory. The most prominent example is
Kontsevich’s homological mirror-symmetry conjec-
ture. The conjecture predicts (for mirror dual pairs
of Calabi–Yau manifolds) an equivalence between
the bounded derived category of coherent sheaves
and the Fukaya category. The conjecture implies a
correspondence between certain self-equivalences
(given by Fourier–Mukai transforms) of the derived
category and symplectic self-equivalences of the
mirror manifold.

Besides their importance for geometrical aspects
of mirror symmetry, the Fourier–Mukai transforms
have also been important for heterotic string
compactifications. The motivation for this came
from the conjectured correspondence between the
heterotic string and F-theory, which both rely on
elliptically fibered Calabi–Yau manifolds. To give
evidence for this correspondence, an explicit descrip-
tion of stable holomorphic vector bundles was
necessary and inspired a series of publications by
Friedman, Morgan, and Witten. Their bundle con-
struction relies on two geometrical objects: a
hypersurface in the Calabi–Yau manifold together
with a line bundle on it; more precisely, they
construct vector bundles using a relative Fourier–
Mukai transform.

Various aspects and refinements of this construc-
tion have been studied by now. For instance, a
physical way to understand the bundle construction
can be given using the fact that holomorphic vector
bundles can be viewed as D-branes and that
D-branes can be mapped under T-duality to new
D-branes (of different dimensions).

We survey aspects of the Fourier–Mukai trans-
form, its relative version and outline the bundle
construction of Friedman, Morgan, and Witten. The
construction has led to many new insights, for
instance, the presence of 5-branes in heterotic string
vacua has been understood. The construction also
inspired a tremendous amount of work towards a
heterotic string phenomenology on elliptic Calabi–
Yau manifolds. For the many topics omitted the
reader should consult the ‘‘Further reading’’ section.
The Fourier–Mukai Transforms

Every object E of the derived category on the
product X	 Y of two smooth algebraic varieties X
and Y gives rise to a functor �E from the bounded
derived category D(X) of coherent sheaves on X to
the similar category on Y:

�E : DðXÞ ! DðYÞ
F 7!�EðFÞ ¼ R�̂�ð��F  EÞ

where �, �̂ are the projections from X	 Y to X
and Y, respectively, and  denotes the derived
tensor product. �E(F) is called Fourier–Mukai
transform with kernel E 2 D(X	 Y) (in analogy
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