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We consider a finite chain of nonlinear oscillators coupled at its ends to two
infinite heat baths which are at different temperatures. Using our earlier results
about the existence of a stationary state, we show rigorously that for arbitrary
temperature differences and arbitrary couplings, such a system has a unique
stationary state. (This extends our earlier results for small temperature differen-
ces.) In all these cases, any initial state will converge (at an unknown rate) to
the stationary state. We show that this stationary state continually produces
entropy. The rate of entropy production is strictly negative when the tem-
peratures are unequal and is proportional to the mean energy flux through the
system.

KEY WORDS: Open systems; nonequilibrium steady states; control theory;
entropy production.

1. INTRODUCTION

In a recent paper, [EPR], we have studied the existence of a stationary
regime in a non-linear non-equilibrium setup. The model considered was
that of a chain of n non-linear oscillators coupled at each of its two ends
to heat baths which are infinite systems at two different temperatures.
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Under suitable conditions which we sketch below, it has been shown that
for sufficiently small temperature differences between the baths, the com-
plete system has a unique stationary state, and that every initial state con-
verges to it. Of course, this stationary state is not an equilibrium state but
a steady state in which supposedly heat flows (on average) from the hot
bath to the cold one. The aim of this paper is to show first that this result
extends to arbitrary temperature differences and that the heat flux across
the chain is positive.

It should be noted that this is not a perturbative result. To prove the
existence and uniqueness of the steady state for non-linear, boundary
driven problems with arbitrary temperature difference is a difficult problem.
See [GLP] and [GKI] for similar results for a gas of particles in a box
with thermostatting boundary conditions. For other boundary driven
models, see [FGS] (a 1-dimensional hard-core gas).

Our model, whose study was started in [EPR], combines several
desirable features, while still allowing for a rather complete set of rigorous
results. The main features are the property of being fully Hamiltonian (as
those studied in [FGS] and [SL]), with non-linear interactions, and a
realistic implementation of the retro-action of the chain on the heat baths.
In particular, the system is self-regulating and we do not need any
Gaussian thermostats [PH, EM, H, CELS, GC1, GC2, G].

The reader should note that in our model the energy of the chain fluc-
tuates wildly in time and there is no external dissipation term which
prevents the energy of the chain from diverging to infinity. The baths can
exchange energy with the chain. Also, since the potentials are not
monotone, several stationary non-equilibrium states could possibly exist,
each corresponding for example to one of the extrema of the potential. We
show here that on the contrary, there is exactly one stationary state, no
matter how large the temperature difference of the baths is.

Once the uniqueness of the steady state is established, we show that,
away from equilibrium, there is a stationary, strictly positive heat flow
through the chain and the (thermodynamic) entropy production is strictly
negative. We also discuss briefly (heuristically) a suitable version of the
Gallavotti�Cohen fluctuation relation [ECM, GC1, GC2, G, K, LS] for
the entropy production in the context of our model.

2. SETUP AND NOTATIONS

To make this paper accessible without the necessity of referring back
to [EPR], we introduce again the model. It deals with an anharmonic
chain driven at its ends by two heat baths.
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The chain consists of n particles moving in Rd, with n arbitrary but
finite, and its dynamics is described by the following Hamiltonian:

HS(q1 ,..., qn , p1 ,..., pn)= :
n

j=1

p2
j

2
+V(q1 ,..., qn)

where the potential V is of the form6

V(q)= :
n

j=1

U (1)
j (qj )+ :

n&1

i=1

U (2)
i (q i&qi+1)

We make the following assumptions on the potential V :

(H1) Behavior at infinity: We assume that V is of the form

V(q)= 1
2 (q&a, Q(q&a))+F(q)

where Q is a positive definite (dn_dn) matrix, a is a vector, and �q i
(&) F # F

for i=1,..., n and &=1,..., d. Here, F denotes the space of those C� func-
tions F on Rdn for which �:F(q) is bounded uniformly in q # Rdn, for all
multi-indices :.

(H2) Coupling: Each of the (d_d ) matrices

Mi (x)#D2U (2)
i (x), i=1,..., n&1

of second derivatives, is either uniformly positive or negative definite for
x # Rd.

Each heat bath is modeled by an infinite dimensional linear
Hamiltonian system, which is a scalar field whose dynamics is governed by
a d-dimensional wave equation:

HB(, i , ?i )= 1
2 | dx( |{,i |

2+|? i |
2) (2.1)

We will denote the heat baths by the subscripts L and R respectively. We
couple the L heat bath to the first particle of the chain and the R heat bath
to the n th particle of the chain. We choose a coupling which is linear both
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in the field variables and in the particle variables. The total Hamiltonian of
the system is then given by

H(q, p, ,L , ?L , ,R , ?R)= :
i # [L, R]

HB(, i , ?i )+HS(q, p)

+q1 } | dx {,L(x) \L(x)+qn } | dx {,R(x) \R(x)

(2.2)

We consider the heat baths at positive temperatures TL and TR respec-
tively, i.e., we will assume that the initial conditions of the heat baths
are distributed according to the Gaussian measure with mean zero and
covariance ( } , } ) i Ti , where ( } , } )i is the scalar product defined by the
quadratic form (2.1), i # [L, R].

The following reduction to (essentially only) the variables of the small
system is explained in detail in [EPR]: We integrate out the variables of
the baths and project the dynamics on the variables of the chain. This leads
to integro-differential stochastic equations. Under suitable assumptions
on the coupling functions \L , \R , they can be expressed as Markovian
equations upon introducing auxiliary variables ri, m with i # [L, R], and
m=1,..., M. At the end, one obtains (see [EPR] for details) the following
system of stochastic differential equations:

dqj (t)= pj (t) dt, j=1,..., n

dp1(t)=&{q1
V(q(t)) dt+ :

M

m=1

rL, m(t) dt

dpj (t)=&{qj
V(q(t)) dt, j=2,..., n&1

dpn(t)=&{qn
V(q(t)) dt+ :

M

m=1

rR, m(t) dt (2.3)

drL, m(t)=&#L, mrL, m(t) dt+*2
L, m#L, mq1(t) dt&*L, m - 2#L, m TL dwL, m(t)

drR, m(t)=&#R, mrR, m(t) dt+*2
R, m#R, mqn(t) dt

&*R, m - 2#R, mTR dwR, m(t), m=1,..., M

which defines a Markov diffusion process on R2d(n+M ). Each wL, m and
wR, m is a standard d-dimensional Brownian motion.

Remark 2.1. In Eqs. (B.3) the variables rL, m , rR, m describe both
the (random) forces exerted by the heat bath on the chain and the (dis-
sipative) forces due to the retroaction of the heat baths on the chain. The
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fact that the variables rL, m , rR, m obey Markovian stochastic differential
equations is a consequence of our choice of coupling functions \L , \R . In
fact, these functions are chosen in such a way that the random forces exerted
by the heat baths are not white noises but have covariances which are
(sums of ) exponentials. Together with the fluctuation theorem relating
these random forces with the dissipative forces, one obtains Markovian dif-
ferential equations on the phase space consisting of the physical variables
p, q, augmented by the auxiliary variables rL, m , rR, m .

Remark 2.2. If the temperatures of the two heat baths are the
same, i.e., if TL=TR , the stationary state of the Markov process which
solves (2.3) can be written explicitly. It is given by the generalized Gibbs
state

+(dr, dq, dp)=+TL, TL
(dr, dq, dp)=Z&1e&G (0)(r, q, p)�TL dr dq dp (2.4)

where the ``energy'' G(0) is given by

G(0)(r, q, p)=HS(q, p)+ :
M

m=1
\

r2
L, m

2*2
L, m

+
r2

R, m

2*2
R, m

&q1 } rL, m&qn } rR, m+
(2.5)

The marginal of this measure on the physical phase space is given by

&(dq, dp)=| +(dr, dq, dp)=
1

Z$
e&Heff �TL dq dp

where the effective Hamiltonian Heff is given by

Heff (q, p)=HS(q, p)&
1
2

q2
1 :

M

m=1

*2
L, m&

1
2

q2
n :

M

m=1

*2
R, m#

1
2

p2+Veff (q)

(2.6)

It can be seen from (2.6) that the coupling between the chain and the heat
baths induces a renormalization of the potential V(q). In particular,
because of Condition (H1), if the coupling constants *im are too large,
Veff (q) is not confining any more, and the measure + is not a probability
measure, but only _-finite. In the sequel we require the following:

(H3) The coupling constants *im , i # [L, R], m # [1,..., M ] are such
that

lim
|q| � �

Veff (q)=�
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3. UNIQUENESS OF THE STATIONARY STATE

In [EPR] we proved, under the conditions (H1)�(H3), the existence
of an invariant measure for any temperature TL , TR , but the uniqueness
was shown only for small temperature differences. In this section, we
extend the uniqueness result to arbitrary temperature differences.

The uniqueness will follow from a dynamical argument: we will show
that the Markov process is transitive. This is done using a (well-known)
relationship between stochastic differential equations and control theory
(see, e.g., [Ku] and references therein).

We explain the method for a general stochastic differential equation of
the form

dx(t)=b(x(t)) dt+_ dw(t) (3.1)

where x # Rk, b(x) is a C� vector field, w(t) is a standard l-dimensional
Brownian motion, and _ is a k_l matrix. We assume that the vector field
b(x) is such that (3.1) has a unique solution for all t>0. One then replaces
dw(t) in (3.1) by u(t) dt. The function u(t)=(u1(t),..., ul(t)) is called a
control. One obtains the system of ordinary differential equations

x* =b(x(t))+_u(t) (3.2)

The correspondence between the two systems is established by the
following result of Stroock and Varadhan [SV]. We fix an arbitrary time
{>0. Let U denote the set of piecewise constant functions u: [0, {] � Rl.
Let W be the set of all continuous functions . from [0, {] to Rk equipped
with the uniform topology and let Wx=[. # W : .(0)=x]. We denote !x

the diffusion process defined by (3.1) with initial condition !x(0)=x. Then
the path !x belongs almost surely to Wx . The support of this diffusion
process !x on [0, {] is, by definition, the smallest closed subset Sx of Wx

such that

P[!x # Sx]=1 (3.3)

where P is the probability induced by the Brownian motion w. We denote
by .u

x : [0, {] � Rk the solution of the differential equations (3.2) with con-
trol u and initial condition x. We next consider the notion of accessibility.
Let x and y be two points in Rk. The point y is called accessible from x at
time { ({>0) if there is a control u such that .u

x({)= y. The set of all
points which are accessible from x at time { is denoted Y{(x).
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Theorem 3.1 [SV]. One has

Sx=[.u
x : u # U] (3.4)

for all x # Rk, and

supp P({, x, } )=Y{(x)

for all x # Rk and {>0, where P({, x, dy) denotes the transition probability
of the process !x .

Remark. The first statement is explicit in [SV] and the second is a
straightforward consequence of the first.

The main technical result of this section is the following

Theorem 3.2. The control system associated with the stochastic
differential equation (2.3) is strongly completely controllable, i.e., Y{(x)=
R2d(n+M ), for all x=(q, p, rL , rR) and all {>0.

Remark 3.3. We will combine this result with Theorem 3.1 and
hypoellipticity to show that the invariant measure has a smooth, strictly
positive density.

Remark 3.4. It should be noted that strong complete controllability
(SCC) can not be deduced from Ho� rmander's hypoellipticity condition
alone. (See, e.g., [IK] for examples of hypoelliptic diffusions with two
invariant measures). Therefore, Theorem 3.2 contains additional informa-
tion. Various sufficient conditions for SCC have been expressed in terms of
differential geometry in [Ku], but these are not applicable to Eqs. (2.3).

Proof of Theorem 3.2. We will show the strong complete controll-
ability of the control problem associated with (2.3) by an explicit approach
using the requirement of effective coupling (condition (H2)) of the chain.

We reconsider the stochastic differential equation (2.3). Following the
procedure described above we replace the Brownian motions wim(t) by
controls uim(t) in (2.3), and rewrite the system thus obtained as a system
of second (and first) order equations. This leads to:

r* L, m=&#L, mrL, m+*2
L, m#L, m q1+uL, m , m=1,..., M (3.5)

q� 1=&{q1
V(q)+ :

M

m=1

rL, m (3.6)

311Entropy Production
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q� j=&{qj
V(q), j=2,..., n&1 (3.7)

q� n=&{qn
V(q)+ :

M

m=1

rR, m (3.8)

r* R, m=&#R, m rR, m+*2
R, m #R, mqn+uR, m , m=1,..., M (3.9)

Here, we have absorbed the constants in front of the Brownian motion in
(2.3) into the controls uim(t). We will only consider controls u of class C�.
Any such function can be uniformly approximated, on any compact interval,
by a piecewise constant function. Since a simple Gronwall estimate of
Eq. (3.2) shows that

sup
t # [0, {]

|.u
x(t)&.v

x(t)|�C({) sup
t # [0, {]

|u(t)&v(t)|

holds with a constant C({) depending on the model, but not on u and v,
we conclude that

[.u
x({): u # C�(R)]/Y{(x)

The proof of Theorem 3.2 will now be done in two parts:

Part 1: Boundary Control of the Chain. We start by considering the
auxiliary problem of controlling a chain of n oscillators by the motion of
the two ends of the chain.

The differential equation reads

q� j= fj (qj&1 , qj , q j+1), j=1,..., n (3.10)

where q#(q1 ,..., qn) is the dynamical variable, whereas q0#uL and
qn+1#uR are the control variables. The smooth functions f j are given by

fj (x, y, z)#&({U (1)
j )( y)&({U (2)

j )( y&z)+({U (2)
j&1)(x& y)

Here, we define U (2)
0 (x)=U (2)

n (x)=x2�2.
Note that by Condition (H2), the functions {U (2)

j are diffeo-
morphisms. It follows that the equation w= fj (x, y, z) can be solved for z:
There exist smooth functions gj such that w= fj (x, y, gj (x, y, w)) for all
x, y, w # Rd. Consequently the differential equation (3.10) is equivalent to
the equation

qj+1= gj (qj&1 , qj , q� j ), j=1,..., n (3.11)
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Obviously, for given q0 and q1 , this equation can be solved inductively,
and in a unique way. To express this solution, let us introduce some nota-
tion. For a smooth function . and an integer :, we shall denote the col-
lection of the first : derivatives of . by .[:]#(., .* ,..., .(:)). We also
set pj#q* j for j=1,..., n. For q0=! and q1=', the inductive solution of
Eq. (3.11) reads

uL= ! #G0(![0])

q1= ' #G1('[0])

p1= q* 1 #G2('[1])

q2= g1(q0 , q1 , p* 1) #G3(![0], '[2])

p2= q* 2 #G4(![1], '[3])

q3= g2(q1 , q2 , p* 2) #G5(![2], '[4])

b b
uR= gn(qn&1 , qn , p* n)#G2n+1(![2n&2], '[2n])

We can organize the 2n+2 maps GJ into a map G: R4nd � R4nd in the
following way: Denote by (a, b) a point of R4nd, with a#(a0 ,..., a2n&2) #
R(2n&1) d and b#(b0 ,..., b2n) # R(2n+1) d. With a[:]#(a0 ,..., a:) and b[:]#
(b0 ,..., b:), define G(a, b)#(a, G� (a, b)) where

G� (a, b)#(G1(b([0]), G2(b[1]), G3(a[0], b[2]),..., G2n+1(a[2n&2], b[2n]))

We have proved that, if (uL , q1 ,..., qn , uR) is a solution of Eq. (3.10) on the
time interval I/R, then

(u[2n&2]
L , q1 , q* 1 ,..., qn , q* n , uR)=G(u[2n&2]

L , q[2n]
1 ) (3.12)

holds on I. A simple consequence of this fact is that G is a bijection.
Indeed, repeated differentiation of Eq. (3.10) gives

q (2)
1 = f1(uL , q1 , q2)=F2(u[0]

L , q1 , q2)

q (3)
1 = �t q (2)

1 =F3(u[1]
L , q1 , q* 1 , q2 , q* 2)

b b

q (2:)
1 = �t q (2:&1)

1 =F2:(u[2:&2]
L , q1 , q* 1 ,..., q:+1)

q (2:+1)
1 = �tq (2:)

1 =F2:+1(u[2:&1]
L , q1 , q* 1 ,..., q:+1 , q* :+1)

b b

q (2n)
1 = �t q (2n&1)

1 =F2n(u[2n&2]
L , q1 , q* 1 ,..., uR)
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and thus we find another functional relation q[2n]
1 =F� (u[2n&2]

L , q1 , q* 1 ,..., qn ,
q* n , uR) for its solutions. It immediately follows that the map F: (a, b) [
(a, F� (a, b)) satisfies

F b G(u[2n&2]
L , q[2n]

1 )=(u[2n&2]
L , q[2n]

1 )

G b F(u[2n&2]
L , q1 , q* 1 ,..., uR)=(u[2n&2]

L , q1 , q* 1 ,..., uR)

on every solution of Eq. (3.10). Since u[2n&2]
L (0) and either q[2n]

1 (0) or
(q(0), q* (0), uL(0)) can be prescribed arbitrarily, we conclude that F=G&1.

To solve our control problem it suffices to remark that the set of solu-
tions (uL , q, uR) satisfying (u[2n&2]

L (t0), q1(t0), q* 1(t0),..., uR(t0))=(a, b) is
identical with the set of solutions satisfying (u[2n&2]

L (t0), q[2n]
1 (t0))=

F(a, b). Since for {>0 and arbitrary (a, b), (a$, b$) # R4nd one can find func-
tions uL and q1 for which

(u[2n&2]
L (0), q[2n]

1 (0))=F(a, b)

(u[2n&2]
L ({), q[2n]

1 ({))=F(a$, b$)

we see that the system (3.10) is strongly controllable.

Part 2: Completion of the Proof of Theorem 3.2. We reduce the
problem of Eqs. (3.5)�(3.9) to the case dealt with in Part 1, by introducing
the auxiliary variables q0 and qn+1 . Recalling the definition U (2)

0 (x)=
U (2)

n (x)=x2�2, we can rewrite the control problem associated with our
stochastic differential equation as

q� j= fj (qj&1 , qj , qj+1), j=1,..., n

:
M

m=1

rL, m=q1&q0

:
M

m=1

rR, m=qn+1&qn (3.13)

uL, m=r* L, m+#L, mrL, m&*2
L, m#L, mq1 , m=1,..., M

uR, m=r* R, m+#R, mrR, m&*2
R, m#R, mqn , m=1,..., M

with the boundary conditions

(rL(0), q1(0), q* 1(0),..., qn(0), q* n(0), rR(0))=x,

(rL({), q1({), q* 1({),..., qn({), q* n({), rR({))= y

314 Eckmann et al.
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The equation �M
m=1 rL, m=q1&q0 serves to compensate the term q1&q0

produced when differentiating f1 in (3.13). Given the boundary data for rL ,
q1 , qn and rR we obtain boundary values for q0 and qn+1 . We can thus
control the first equation by our previous result. This gives us q0 ,..., qn+1 .
Selecting arbitrary functions rL, 2 ,..., rL, M and rR, 2 ,..., rR, M satisfying the
corresponding boundary data, we define

rL, 1#q1&q0& :
M

m=2

rL, m ,

rR, 1#qn+1&qn& :
M

m=2

rR, m

These two functions will also satisfy the boundary conditions. Finally we
use the last two sets of equations to determine the control variables uL, m

and uR, m . This concludes the proof of Theorem 3.2.

Remark 3.5. It is obvious from the proof of Theorem 3.2 that this
theorem is valid under much weaker conditions than those given in (H1).
It is enough to require that the stochastic differential equation (2.3) has a
unique solution for all t>0. In particular we do not need to restrict our-
selves to potentials which are ``quadratic at infinity'' as required in the
proof of the existence of the invariant measure.

The main result of this section is:

Theorem 3.6. If Conditions (H1)�(H3) are satisfied, the Markov
process which solves (2.3) has a unique invariant measure +=+T . The
measure + has a C� density \(r, q, p). This density is an exponentially
decaying, strictly positive function of r, q, and p. The invariant measure is
ergodic and mixing.

Remark 3.7. In fact, combining this result with information from
[EPR], one can show that

\(r, q, p)= f (r, q, p) exp(&G(0)(r, q, p)�T*)

where G(0) was defined in (2.5), and T*=max(TL , TR). The function f is
in the Schwartz space S when TL{TR , (and is a constant otherwise).

Proof. The proof is a combination of Theorem 3.1 and Theorem 3.2
with results in [EPR]. The existence of the invariant measure + is proven
in [EPR, Theorem 2.1]. Furthermore, using hypoellipticity, we showed
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that the density \ of + is C�. Also, the transition probabilities P(t, x, dy)
have a smooth density, p, defined by P(t, x, dy)= p(t, x, y) dy with
p(t, x, y) # C�((0, �), R2d(n+M ), R2d(n+M )).

We next show that the support of + is all of the extended phase space
X#R2d(n+M ). In Theorem 3.2, we have seen that (2.3) is strongly com-
pletely controllable. By Theorem 3.1, we conclude that the support of
P({, x, } ) is the whole phase space for every x # X and all {>0. Therefore,
we have, for all t>0, all x, and all open sets Y, the inequality

P(t, x, Y )>0

Since +(Y )=� +(dx) P(t, x, Y ) (because + is invariant), we conclude that
supp +=X and thus the density \ is Lebesgue almost everywhere positive.

We next show that \(x)>0, for all x. by assuming the contrary and
deriving a contradiction. Assume that there is a y for which \( y)=0. By
the invariance of the measure we have, for any t>0,

0=\( y)=| dx \(x) p(t, x, y)

This implies p(t, x, y)=0 for Lebesgue almost all x. Since the transition
kernel p is smooth, we conclude that the function p(t, } , y) is identically
zero every t>0. On the other hand, since p is the kernel of a strongly con-
tinuous semigroup, we also have p(t, x, y) � $(x& y) as t � 0. This is a
contradiction, and we have shown \( y)>0, for all y # X.

We next show uniqueness. We have just shown that every invariant
measure must have a smooth, strictly positive density. Since every ergodic
component is mutually singular to any other, the invariant measure is
unique (and ergodic). The property of mixing of the invariant measure has
been deduced from uniqueness in the proof of [EPR, Theorem 3.9]. This
concludes the proof of Theorem 3.6.

Remark 3.8. We proved in [EPR, Lemma 3.7] that the density
\=\T is a real analytic function of `=(TL&TR)�(TL+TR). In particular,
this yields the standard perturbative results near equilibrium (`=0).

4. TIME-REVERSAL, ENERGY FLUX, AND ENTROPY
PRODUCTION

In this section, we ask questions which are intimately related to the
Hamiltonian nature of our model. After introducing appropriate notation,
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we introduce time reversal, and draw some consequences. In particular, we
are able to show that the system exhibits non-zero mean energy flux as
soon as TL{TR , and we relate the flux to the entropy production.

4.1. Notation

It will be useful to streamline the notation. It is convenient to intro-
duce first \L, m=(*L, m#1�2

L, m)&1 rL, m and similarly for the rR, m . Then the
equations of motion are

dqj (t)= pj (t) dt, j=1,..., n

dp1(t)=&{q1
V(q(t)) dt+ :

M

m=1

*L, m#1�2
L, m\L, m(t) dt

dpj (t)=&{qj
V(q(t)) dt, j=2,..., n&1

dpn(t)=&{qn
V(q(t)) dt+ :

M

m=1

*R, m #1�2
R, m\R, m(t) dt (4.1)

d\L, m(t)=&#L, m\L, m(t) dt+*L, m#1�2
L, mq1(t) dt&- 2 T 1�2

L dwL, m(t)

d\R, m(t)=&#R, m\R, m(t) dt+*R, m#1�2
R, m qn(t) dt

&- 2 T 1�2
R dwR, m(t), m=1,..., M

We can write this system in vector notation: We write the
Hamiltonian of the chain (the small system) as

HS(q, p)=
p2

2
+V(q)

with q, p # Rnd. The two reservoirs, L and R, are described by the variables
\=(\L , \R) # RMd�RMd. The ``energy'' of the complete system, i.e., chain
and reservoirs, is then given by G(0)(r, q, p)=G(1)(\, q, p), where now

G(1)(\, q, p)=HS(q, p)+ 1
2 \ } 1\&q } *1 1�2\

Here, 1=1L�1R , where 1i is the diagonal (M_M ) matrix
diag(#i, 1 ,..., #i, M), with i # [L, R]. Note that by assumption, the #'s are all
strictly positive. We also define 4 as the (2Md_nd ) matrix given by

q } *\=q1 } 4L\L+qn } 4R\R=q1 :
M

m=1

*L, m\L, m+qn :
M

m=1

*R, m\R, m

317Entropy Production



File: DISTL2 229614 . By:JB . Date:15:06:99 . Time:15:37 LOP8M. V8.B. Page 01:01
Codes: 2372 Signs: 1163 . Length: 44 pic 2 pts, 186 mm

With these notations, the equations of motion can be written as:

dq={pG(1) dt= p dt

dp=&{q G(1) dt=&({qV(q)&41 1�2\) dt

d\=&{\ G(1) dt&(2T 1�2) dw=&(1\&1 1�24Tq) dt&(2T 1�2) dw

Here w=wL�wR=(wL, 1 ,..., wL, M , wR, 1 ,..., wR, M) is a 2Md-dimensional
standard Brownian motion, and T is the (2M_2M ) diagonal temperature
matrix

T=diag(TL ,..., TL , TR ,..., TR)

It is useful to introduce the (final!) change of variables s=\&F Tq, where
F=41 &1�2. In terms of these variables, one can introduce the effective
potential

Veff(q)=V(q)& 1
2q } 44Tq (4.2)

and the ``energy'' is now G(s, q, p)=G(1)(\, q, p) with

G(s, q, p)= 1
2 p2+Veff+

1
2 s } 1s (4.3)

Finally, with the adjoint change in the derivatives {q � {q&F {s , the
equations of motion become

dq={pG dt= p dt

dp=&({q&F {s) G dt=&({qVeff (q)&F1s) dt (4.4)

ds=&({s+F T {p) G dt&(2T 1�2) dw=&(1s+F Tp) dt&(2T 1�2) dw

Notation. In the sequel, we shall write Gp for {p G and Gq for {qG
(these are vectors with nd components), and Gs for {s G (this is a vector
with 2Md components).

The generator L of the diffusion process takes, in the variables s, q, p,
the form

L={s } T {s&Gs } {s+(Gp } {q&Gq } {p)+((FGs) } {p&Gp } F {s)

(4.5)

If f is a function on the phase space X, we let

S tf (x)=(eLtf )(x)=| f (!x(t)) dP(w)
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The associated Fokker�Planck operator LT is the adjoint of L in the space
L2(Rd(2M+2n), dx), i.e.,

LT={s } T {s+{s } Gs&(Gp } {q&Gq } {p)&((FGs) } {p&Gp } F {s)

(4.6)

Remark 4.1. The density \ of the invariant measure is the (unique)
normalized solution of the equation

LT\=0

4.2. The Entropy Production _

We now establish the relation between the energy flux and the entropy
production. Since we are dealing with a Hamiltonian setup, the energy flux
is naturally defined by the time derivative of the mean evolution S t of the
effective energy, Heff (q, p)= p2�2+Veff (q). Differentiating, we get from the
equations of motion

�t S tHeff=S tLHeff

LHeff= p } (&{q Veff+F1s)+{q Veff } p= p } F1s

We define the total flux by 8= p } F1s, and inspection of the definition of
F and 1 leads to the identification of the flux at the left and right ends of
the chain:

8=8L+8R

with

8L= p1 } 4L1 1�2
L sL

8R= pn } 4R1 1�2
R sR

Note that 4L1 1�2
L sL is the net force exerted by the left bath on the chain.

Therefore, 8L= p1 } 4L1 1�2
L \L&Lq1 } 42

Lq1�2 is, up to a time-derivative
which vanishes in the stationary state, the total power dissipated by the left
bath. A similar interpretation holds for 8R . Furthermore, observe that

(8) +=0 (4.7)
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where, generally,

( f ) +#| +(dx) f (x)

The Equation (4.7) holds because 8=LHeff and LT+=0.
We next proceed to define the entropy production in the setting of our

model. Since we have been able to identify the energy flux on the ends of
the chain, we define the (thermodynamic) entropy production _ by

_=
8L

TL

+
8R

TR

= p } FT &11s (4.8)

We refer to [CL] and references therein for a detailed discussion of the
various types of entropy production in non-equilibrium stationary states.
In Subsection 4.4, we will explain, in the context of our model, the rela-
tionship between the entropy production _ and the Gibbs entropy.

4.3. Time-Reversal, Generalized Detailed Balance Condition,
and Negativity of the Entropy Production

Definition. We define the ``time-reversal'' map J by (Jf )(s, q, p)=
f (s, q, &p). This map is the projection onto the space of the s, q, p of the
time-reversal of the Hamiltonian flow (on the full phase space of chain plus
baths) defined by the original problem (2.2).

Notation. To obtain simple formulas for the entropy production _
we write the strictly positive density \ of the invariant measure + as

\=Je&Re&. (4.9)

where we have introduced the quantity

R=R(s)= 1
2s } 1T &1s (4.10)

Let L* denote the adjoint of L in the space H+=L2(X, d+) associated with
the invariant measure + with density \. In terms of the adjoint LT on
L2(X, ds dq dp), we have

L*=\&1LT\ (4.11)
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Let L*=L+*_, where * # R. (This definition is suggested by the paper
[K], see below.) We have the following important symmetry property:

Theorem 4.2. One has the operator identity

Je&J.(L*)* eJ.J=L1&* (4.12)

In particular, one has

Je&J.L*eJ.J&L=_ (4.13)

Remark 4.3. This relation may be viewed as a generalization to
non-equilibrium of the detailed balance condition (at equilibrium, one has
JL*J&L=0).

Remark 4.4. Recently, a lot of interest has been generated in the
wake of papers by Gallavotti and Cohen, [GC1, GC2, G, and references
therein], in which intriguing relations for the fluctuations of the entropy
production have been found. These papers dealt first with numerical
experiments by [ECM], which were then abstracted to the general context
of dynamical systems. In further work, these ideas have been successfully
applied to thermostatted systems modeling non-equilibrium problems. In
the papers [K] and [LS] these ideas have been further extended to non-
equilibrium models described by stochastic dynamics. In the context of our
model, the setup is as follows: One considers the observable

W(t)=|
t

0
d{ _(!x({))

By ergodicity, limt � � t&1W(t)=(_) + , for +-almost all x. We are inter-
ested in the rate function ê for the large deviations of W(t)�(t(_) +), and
want to argue (heuristically) that it satisfies

ê(w)& ê(&w)=&w(_) + (4.14)

In particular this means that at equal temperatures, when (_) +=0, the
fluctuations are symmetric around the mean 0, while at unequal tem-
peratures, the odd part is linear in w and proportional to the mean entropy
production. This is the celebrated Gallavotti�Cohen fluctuation theorem.

The rate function ê is characterized by the relation

inf
w # I

ê(w)=& lim
t � �

1
t

log P \ W(t)
t(_) +

# I+
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Under suitable conditions it can be expressed as the Legendre transform of
the function

e(*)#& lim
t � �

t&1 log (e&*W(t)) +

Formally, &e(*) can be represented as the maximal eigenvalue of L* .
Observing now the relation (4.12), one sees immediately that

e(*)=e(1&*) (4.15)

This in turn implies (4.14). A rigorous derivation of the program outlined
above lacks several technical ingredients, in particularly more spectral
information about L* seems to be necessary.

The relation (4.12) has a number of other consequences which we
enumerate now, before going to the proof of Theorem 4.2. It allows to
prove that the entropy production is negative in our model and it yields an
interesting symmetry relation (see Theorem 4.6).

Proposition 4.5. One has the following identities (between func-
tions):

L.=_+|T 1�2 {s .|2 (4.16)

L*J.=&_&|T 1�2 {sJ.|2 (4.17)

Here, | f |2# f } f.

Theorem 4.6. In the stationary state + the entropy production
satisfies the identity:

(_) +=&( |T 1�2 {s .|2) +=&( |T 1�2 {sJ.|2) +�0 (4.18)

Remark 4.7. In Subsection 4.5, we will show that the heat flux is
non-zero for unequal temperatures by showing that the entropy production
in the stationary state satisfies:

(_) +=0

if and only if TL=TR .
The remainder of this subsection is devoted to the proofs of

Theorem 4.2, Proposition 4.5, and Theorem 4.6.
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Proof of Theorem 4.2. We show the identity

eRJLTJe&R=L+_ (4.19)

Starting with the relation

eR {s e&R={s&({sR)={s&T &1Gs

we get, using the definition of LT,

eRJLTJe&R={s } T {s&Gs } {s+(Gp } {q&Gq } {p)

+(F1s } {p& p } F {s)+Gp } FT &1Gs

Note that the sum of all the terms except the last equals L, while the last
equals

Gp } FT &1Gs= p } FT &11s=
p1FL1LsL

TL

+
pnFR1RsR

TR

=_

We have thus shown (4.19). Combining (4.19) with the expressions (4.11)
and (4.9) for L* and \ we obtain the identity:

L+_=eRJLTJe&R=eRJe&Re&J.L*eJ.eRJe&R=Je&J.L*eJ.J (4.20)

which is (4.12) for *=0, i.e., Eq.(4.13). Observing now that J_J=&_, we
obtain

Je&J.L** eJ.J=L1&*

and thus conclude the proof of Theorem 4.2.

Proof of Proposition 4.5. From (4.12) we obtain the identity

JL*J=e.(L+_) e&. (4.21)

A straightforward computation shows that, for any smooth function f, we
have the following operator identity

e fLe& f=L&2({s f ) } T {s&(Lf )+|T 1�2({s f )| 2 (4.22)

Applying (4.22) with f =. we obtain from Eq. (4.21) the operator identity

JL*J=L&2({s.) } T {s&(L.)+|T 1�2({s.)|2+_ (4.23)
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Since L*=\&1LT\ and LT\=0 we have L*1=0. Applying the operator
identity (4.23) to the function 1 and noting that J1=1 we get

0=JL*J1=&L.+|T 1�2({s .)|2+_ (4.24)

and this is the identity (4.16). With this, (4.23) simplifies to

JL*J=L&2({s.) } T {s (4.25)

Applying the operator identity (4.25) to the function ., and using (4.24) we
get

JL*J.=L.&2 |T 1�2({s .)|2=_&|T 1�2({s .)|2

or, equivalently,

L*J.=&_&|T 1�2({sJ.)|2

which proves (4.17). With this we have concluded the proof of Proposi-
tion 4.5.

Proof of Theorem 4.6. Theorem 4.6 is a simple consequence of
Proposition 4.5. From (4.16), using the invariance of the measure +, we get

(_) +=(L.) +&( |T 1�2({s.)|2) +

=&( |T 1�2({s.)|2) +

which yields the first equality in (4.18). The second inequality is obtained
in the same way using (4.17). We have

(_) +=&(L*J.) +&( |T 1�2({sJ.)|2) +

=&( |T 1�2({sJ.)|2) + (4.26)

where the last equality in (4.26) follows from the identity

(L*J.)+=| dx(LT\J.)=| dx \J.(L1)=0

It is obvious from (4.26) that the entropy production in the stationary state
is a non-positive quantity and this concludes the proof of Theorem 4.6.
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Other Observables for the Entropy Production. The analysis
done for the entropy production _ can be repeated for other observables,
(see also [LS] for a similar generalization). A family of such observables
can be obtained by replacing the conjugation operator eJ.J of (4.12) by
any conjugation operator of the form e f eJ.J, where f =f (q, p) satisfies
Jf =f.7 Interesting examples are obtained when one considers the energy
flux between position j and the j+1 on the chain, j=1,..., n&1. To this end
we write the Hamiltonian Heff as follows:

Heff (q, p)= :
n

i=1

Hi (q, p)

where

H1(q, p)=
p2

1

2
+U (1)

1 (q1)&
1
2

q2
1 :

M

m=1

*2
L, m+

1
2

U (2)
1 (q1&q2)

H i (q, p)=
p2

i

2
+U (1)

i (qi)+
1
2

U (2)
i&1(qi&1&qi)

+
1
2

U (2)
i (qi&q i+1), i=2,..., n&1

Hn(q, p)=
p2

2

2
+U (1)

n (qn)&
1
2

:
M

m=1

*2
R, mq2

n+
1
2

U (2)
n&1(qn&1&qn)

For any j=1,..., n&1, we choose f =&Sj , where

Sj (q, p)=
1

TL

:
j

i=1

H i (q, p)+
1

TR

:
n

i= j+1

Hi (q, p)

We write now the invariant density \ as

\=Je&Re&Sj e&�j

i.e., �j=.&Sj . Variants of computations done above show that we have
the operator identity, similar to (4.20):

eSj eRJLTJe&Re&Sj=L+_ j
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where _j is given by the relation

_j=_&LSj (4.27)

since Sj does not depend on the variable s. Our choice of Sj has been made
in such a way that

_j=\ 1
TL

&
1

TR+ ( pj& pj+1) } {U (2)(q j&qj+1)

i.e., _j is the energy flux between position j and j+1 on the chain multi-
plied by the difference between the inverse temperatures of the heat baths.
Using next that JSj=Sj one derives easily a relation corresponding to
(4.12), namely,

Je&J�j (L+*_ j)* eJ�j J=L+(1&*) _ j (4.28)

We have thus found n&1 ``entropy productions'' _j , which, under the
assumptions made for _, satisfy a fluctuation theorem. Note that these
entropy productions are all different observables, but, because of
Eq. (4.27), the expectations of _ and _j in the stationary state + coincide.

4.4. Relation with the Gibbs Entropy

We give now a second proof of the negativity of entropy production
in our model using the Gibbs entropy.

Let &0 be a probability measure in the variables x=(s, q, p) and let &t

denote the time evolution of &0 given by

&t(dx)=| &0(dx$) P(t, x$, x)

Because of the properties of the transition probabilities P(t, x$, x) proven in
Sect. 3, we see that &t is a probability measure (for any t>0) with a
smooth positive density denoted ft in the sequel. The time evolution of f is
then given by the equation

�t ft=LTft

We define the Gibbs entropy as

S( f )=&| dx f (x) log f (x)
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and we compute next the entropy change in time. We get:

�t S( ft )=&| dx(�t ft )(1+log ft )

=&(LTft , (1+log ft ))

=&( ft , L log ft )

=&( ft , f &1
t Lft )+( ft , |T 1�2 {s log ft |2)#X1

The last term is the (additional) contribution from the second order
derivative (in s) appearing in L when it acts on log f. We can transform X1

further by writing it as

X1=&(LT1, ft )+( ft , |T 1�2 {s log ft |2) (4.29)

Since LT1=Tr 1 the first term in (4.29) is equal to &Tr 1. We use the
definition (4.10) of R and the analog of (4.9) to define .t :

Je&Re&.t= ft (4.30)

Since JRJ=R, we see that &log ft=R+J.t . Expanding the second term
in (4.29) we obtain

( ft , |T 1�2 {s log ft | 2)

=( ft , |T &1�21s|2)+( ft , |T +1�2 {sJ.t |2)+2( ft , 1s } {sJ.t ) (4.31)

Since we have the relation

{s ft=&ft({sR+{s J.t )

we obtain

ft {sJ.t=&ft {sR&{s ft

Using this and integrating by parts, we rewrite the third term in (4.31) as

2( ft , 1s } {s J.t )=&2 | dx 1s } ( ft {sR+{s ft )

=&2( ft , |T &1�21s|2)+2 Tr 1

Altogether we obtain

�t S( ft )=Tr 1&( ft , |T &1�21s| 2)+( ft , |T 1�2 {sJ.t | 2)
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Using the identity,

LR=Tr 1&|T &1�21s|2&_

we obtain finally,

�t S( ft )=| dx ft_+| dx ft LR+| dx ft |T 1�2 {s J.t | 2 (4.32)

In line with the ideas of [CL], we can write this last identity in the form:

�t S( ft)&(_) &t
=( |T 1�2 {s J.t |2) &t

+�t(R) &t

This shows that the (rearrangement) entropy produced in addition to the
thermodynamic entropy _ is a positive quantity, up to a (time-) boundary
term. Also note that if &t=+, i.e., if the system is in the stationary state,
then we get the identity

0=(_) ++( |T 1�2J {s.|2) + (4.33)

which we already found in Theorem 4.6.

4.5. Strict Positivity of the Heat Flux

We first show that the thermodynamic entropy production, as defined
in (4.8), is negative in our model. As an immediate consequence we will
show that, in the stationary state, energy is flowing from the hotter heat
bath to the colder one.

Theorem 4.8. The entropy production _ satisfies:

(_) +=0

if and only if TL=TR .

Proof. Note that if TL=TR , then _=�tS tHeff �TL | t=0 and therefore
(_) +=0. We will show that if TL{TR , then (_) +{0. We will proceed
by assuming the converse, namely (_) +=0, and produce a contradiction.
The assumption implies by (4.18) that ( |T 1�2 {s.| 2) +=0. Since \ is
positive, this means that {s.=0, and therefore . does not depend on the
s variables. From (4.16) we obtain

0=&L.+|T 1�2 {s .|2+_=&L.+_
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Using the definition of L and _ and the fact that . does not depend on s,
we obtain the equation

0=( p } {q.&({qVeff ) } {p .)+F1s } ({p.&T &1p)

Since . does not depend on s we get

p } {q.&({q Veff ) } {p.=0

{p1
.=T &1

L p1 (4.34)

{pn
.=T &1

R pn

We will show that this system of linear equations has no solution unless
TL=TR . To see this we consider the system of equations

p } {q.&({q Veff ) } {p.=0
(4.35)

{p1
.=T &1

L p1

This system has a solution which is given by Heff (q, p)�TL . We claim that
this is the unique solution (up to an additive constant) of (4.35).

If this holds true, then the only solution of (4.34) is given by
Heff (q, p)�TL and this is incompatible with the third equation in (4.34)
when TL{TR .

Since (4.35) is a linear inhomogeneous equation, it is enough to show
that the only solutions of the homogeneous equation

p } {q.&({q Veff ) } {p.=0 (4.36)

{p1
.=0

are the constant functions. Since {p1
.=0, . does not depend on p1 , we

conclude that the first equation in (4.36) reads

p1 } {q1
.+ f1(q1 ,..., qn , p2 ,..., pn)=0

where f1 does not depend on the variable p1 . Thus we see that {q1
.=0

and therefore . does not depend on the variable q1 either. By the first
equation in (4.36) we now get

&{q1
U (2)

1 (q1&q2) } {p2
.+ f2(q2 ,..., qn , p2 ,..., pn)=0

where f2 does not depend on p1 and q1 . By condition (H2) we see that
{p2

.=0 and hence f does not depend on p2 . Iterating the above procedure
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we find that the only solutions of (4.36) are the constant functions. This
concludes the proof of Theorem 4.8.

Corollary 4.9. The stationary state +=+TL, TR
produces a non-

vanishing mean heat flux in the direction from the hotter to the colder
reservoir. The mean heat flux vanishes only if TL=TR .

Proof. The entropy production _ is given by

_=
8L

TL

+
8R

TR

where 8L is the energy flow from the left heat bath to the chain and
similarly for 8R . In the stationary state we have, by (4.7),

(8L+8R) +=0

and therefore

(8L) +=&(8R) +

We obtain from Theorem 4.8, for TL{TR :

0>(_)+=\ 1
TL

&
1

TR+ (8L) +

If, say, TL>TR , we get (8L) +>0 and thus energy flows from the hotter
to the cooler heat bath.
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