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Abstract: We study the statistical mechanics of a finite-dimensional non-linear Hamil-
tonian system (a chain @ihharmonicoscillators) coupled to two heat baths (described

by wave equations). Assuming that the initial conditions of the heat baths are distributed
according to the Gibbs measures at tifierenttemperatures we study the dynamics

of the oscillators. Under suitable assumptions on the potential and on the coupling be-
tween the chain and the heat baths, we prove the existence of an invariant measure for
anytemperature differencég., we prove the existence steady stated~urthermore,

if the temperature difference is sufficiently small, we prove that the invariant measure is
uniqgueandmixing In particular, we develop new techniques for proving the existence

of invariant measures for random processes on a non-compact phase space. These tech-
nigues are based on an extension of the commutator methodrofatider used in the

study of hypoelliptic differential operators.

1. Introduction

In this paper, we consider the non-equilibrium statistical mechanics of a finite-dimen-
sional non-linear Hamiltonian system coupled to two infinite heat baths which are at
differenttemperatures. We show that under certain conditions on the initial data the
system goes to a unique non-equilibristeady stateSeveral of the ideas of this paper
have been developed in the Ph.D. thesis of one of us [R-B1].

To putthis new resultinto perspective, we situate itamong other results in equilibrium
and non-equilibrium statistical mechanics. First of all, for the case ofamieat bath
one expects of course “return to equilibrium.” This problem has a long history, and a
proof of return to equilibrium under quite general conditions onrtbe-linearsmall
system and its coupling to the heat bath has been recently obtained in [JP1-4], see also
[GLR]. Viewed from the context of our present problem, the main simplifying feature
of the one-bath problem is that the final state can be gueas®ri, to be the familiar
Boltzmann distribution.
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For the case of two heat baths, there are no results of such generality available,
among other things precisely because one cannot guess in general what the steady state
is going to be. Since we are dealing with systems on a non-compact phase space and
without energy conservation, there is nothing like an SRB Ansatz for our problem [GC].
Worse, even the existence of any stationary state is not obvious at all. The only notable
exceptions are problems where the small system and its coupling to the heat baths are
linear. Then the problem can be formulated in terms of Gaussian measures, and approach
to a steady state has been proved in this case in [RLL, CL, OL] for Markovian heat baths
and in [SL] for the general case. For other “boundary driven models” see [GLP, GKI,
FGS].

Our approach in the present paper will consist in using the spirit of [FKM] and [FK]
to give a microscopic derivation of the equations of motion: under suitable assumptions,
we will reduce the study of the dynamics of the coupled system (an infinite dimensional
Hamiltonian system) to the study of a random finite dimensional dynamical system.
However, we will not achieve the generality of [JP1-4]. Each heat bath is an infinite
dimensional linear Hamiltonian system, in our case it will be chosen as the classical field
theory associated with the wave equation. The small system is a non-linear Hamiltonian
system with an arbitrary (but finite) number of degrees of freedom, in our case itis chosen
as a chain of anharmonic oscillators with nearest neighbor couplings. The potential must
be of quadratic type near infinite energies. The two heat baths are coupled respectively to
the first and the last particle of the chain. The initial conditions of the heat baths will be
distributed according to thermal equilibrium at inverse temperatgresg. Integrating
the variables of the heat baths leads to a system of random integro-differential equations:
the generalized Langevin equations. They differ from the Newton equations of motion
by the addition of two kinds of force, on one hand there is a (random) force exerted by
the heat baths on the chain of oscillators and on the other hand there is a dissipative
force with memory which describes the genuine retro-action from the heat bath on the
small system. We will choose the couplings between the baths and the chain such that
the random forces exerted by the baths have an exponentially decaying covariance. With
this assumption (see [Tr]), the resulting equations are quasi-Markovian. By this, we
mean that one can introduce a finite number of auxiliary variables in such a way that
the evolution of the chain, together with these variables, is described by a system of
Markovian stochastic differential equations.

With this set-up, we are led to a classical problem in probability theory: the study
of invariant measures for diffusion processes. In our problem, the main difficulties stem
from the facts that the phase space is not compact and that the resulting diffusion process
is degenerate and not self-adjoint. The standard techniques used to prove the existence
of invariant measures do not seem to work in our case and, in this paper, we develop new
methods to solve this problem, which rely on methods of spectral analysis. Our proof
of existence is based on a compactness argument, as often in the proof of existence of
invariant measures. More precisely we will prove that the generator of the diffusion pro-
cess, a second order differential operator, given in our problem, has compact resolvent,
in a suitably chosen Hilbert space. This is done by generalizing the commutator method
of Hormander, [H], used in the study of hypoelliptic operators. Similar methods have
been used to study the spectrum of Schinger operators with magnetic fields, see [HM,

He, HN].

The restriction to a chain is mostly for convenience. Other geometries can be ac-
commodated with our methods, and the number of heat baths is not restricted to two.
Furthermore, the techniques developed in this paper can be applied to other interesting
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models of non-equilibrium statistical mechanics, for example, an electric field acting on
a system of particles [R-B2].

2. Description of the Model and Derivation of the Effective Equations

In this section we define a model of two heat baths coupled to a small system, and derive
the stochastic equations which describe the time evolution of the small system. The heat
baths are classical field theories associated with the wave equation, the small system is
a chain of oscillators and the coupling between them is linear in the field.

We begin the description of the model by defining the “small” system. It is a chain
of d-dimensional anharmonic oscillators. The phase space of the cHaf"iswith n
andd arbitrary and its dynamics is described bgd Hamiltonian function of the form

n 2 n n—1 n 2
p; P
Hs(p,) =D 5 +> Ujla) + D U 0) = D5 +V(0),  (2.1)
i=1 j=1

J=1 J=1

Whereq = (q].7 ce 7qn)! p= (pla s 7p")i with Pir @i € Rd'

The potential energy will be assumed “quadratic + bounded” in the following sense.
Let 7 be the space af*> functionsF’ on R for which 9 F(¢) is bounded uniformly
in ¢ € R for all multi-indicesa. Then our hypotheses are

H1) Behavior at infinity: We assume thitis of the form

V(g) = 3(q—a,Q(qg — a)) + F(q),

whereQ is a positive definitedn x dn) matrix, a is a vector, an@q@F € F for
i=1....nandv=1,...,d. '
H2) Coupling: Each of thed x d) matrices

Mi:i*'l(q) = Vlh‘ V‘Ii+lUi(2)(qi7 qi+l)a 1= 1> s — 17
is either uniformly positive or negative definite.

Remark.The first hypothesis makes sure the particles do not “fly away.” The second
hypothesis makes sure that the nearest neighbor interaction can transmit energy. As such,
this condition is of the hypoelliptic type.

Example.A typical case (in dimensiod) covered by these hypotheses is given by

Ui(g) = ¢?+5sin(v/1+¢2), UP(q,q)=(q—¢)?*+sin(v/1+(q— ¢)?)/(2d).

As a model of a heat bath we consider the classical field theory associated with
the d-dimensional wave equation. The fieldand its conjugate momentum fietdare
elements of the real Hilbert spage = HL(RY) @ L&(R?) which is the completion of
Cs°(RY) @ C5°(R?) with respect to the norm defined by the scalar product:

(ﬁ) 7 (ﬁ)H :/dX (IV(@)]? + [m(2)?) (2.2)
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The Hamilton function of the free heat bath is
1
Ha(p.m) = 5 [ o (V@) +[n(@)P).

and the corresponding equation of motion is the ordinary wave equation which we write

in the form
o)\ _ (¥
(56)==(2)

:- (33)

Let us turn to the coupling between the chain and the heat baths. The baths will be
called “L” and “R", the left bath couples to the coordinagteand the right bath couples to
the other end of the chaig,(). Since we consider two heat baths, the phase space of the
coupled system, for finite energy configurationdR#€" x # x H and its Hamiltonian
will be chosen as

H(p, q, L, 0, R, TR) = Hs(p, q) + Ha(pv, m) + He(pr, TR)
e [ ST . [ @Vl

where

Here, thep;(z) € LY(RY) are charge densities which we assume for simplicity to be
spherically symmetric functions.

The choice of the Hamiltonian Eq. (2.3) is motivated by the dipole approximation of
classical electrodynamics. For notational purposes we use in the sequel the shorthand

[P

)

We seta; = (a,f.l), ... ,agd)),z' € {L,R}, with
)

Here and in the sequel the “hat” means the Fourier transform

7 _ 1 —ik-x
With this notation the Hamiltonian becomes

H(p,q,¢L,¢r) = Hs(p, q) + He(¢L) + He(¢r) + q1 - (b, L) m + @n - (PR, OR) 3,

whereHg(¢) = 3||¢||3,. We next study the equations of motions. They take the form
®=p;®), i=1,...,n,
p1(t) = =V, V(g(®) — (6L (1), ),
pi(t) ==V, V(g®), j=2,...,n—-1
pn(t) = Vg, V(q@)) — (9r(1), aRr)n,
SL(t) = L (GL(t) + o - qu(8)),
R(t) = L (@r(1) * ar - 4u(t)) -

(2.4)
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The last two equations of (2.4) are easily integrated and lead to
t
oL(t) = e~ (0) + / ds Le“ Dy - qy(s),
0

t
Or(t) = R (0) + /0 ds LS g - g (s).

where thep;(0),i € {L, R}, are the initial conditions of the heat baths. Inserting into the
first 2n equations of (2.4) gives the following system of integro-differential equations:

Qj(t):pj(t), j:l,...,n,
p(t) = =V, V(q®)) — (¢L(0), BfﬁtOéL)H - /0 ds Dy (t — s)qu(s),
p;i(t) = =V, V(q()), j=2,...,n—1

Pult) = —Va, V(a(®) — (6r(0), ¢ “'ag),, — /0 ds Dr(t — 5)ga(s),

(2.5)

where thel x d dissipation matrice@l(.“"’)(t —s),i € {L,R}, are given by
DIt — s) = (oz(“) L',eﬁ(t_s)a(f’))
(] 1 ’ 1 H

1 N .
=~ 0 [ K[ PIK SGHI(E -~ ).
The last expression is obtained by observing that

ce _ [ cos(klt) |k|~tsin(k|t)
T\ —|k|sin(klt) cos(k|t) )

written in Fourier space.

So far we only discussed the finite energy configurations of the heat baths. From now
on, we will assume that the two reservoirs are in thermal equilibrium at inverse tem-
peraturesf. and Sr. This means that the initial conditiors(0) = {¢.(0), $r(0)}
are distributed according to the Gaussian measure with mean zero and covariance
(0i(N)P;(g9)) = 6:;(1/B:)(f, 9)n- (Recall that the Hamiltonian of the heat baths is
given by >, gy (6i, 6:)%.) If we assume that the coupling function§” are in,

i € {L,R},andv € {1,--- ,d} then thet;(t) = #;(0)(e~*'c;) becomed-dimensional
Gaussian random processes with mean zero and covariance

1 o
(&i)8;(s)) = 5i,jgci(t —s), 4,j€{L,R}, (2.6)
and thed x d covariance matriceS);(t — s) are given by
CHI( — 5) = (a(#)7 ec(tfs)a(u))

H

= 20 [ AR cos ke — )
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The relation
Ci(t) = Di(1), (2.7)

which is checked easily by inspection, is known as the fluctuation dissipation theorem.
It is characteristic of the Hamiltonian nature of the system. After these assumptions
and transformations, the equations of motion (2.5) become a system of random integro-
differential equations oR??" which we will analyze in the sequel.

Finally, we impose a condition on the random force exerted by the heat baths on the
chain. We assume that

H3) The covariances of the random proces§ég with i € {L,R} satisfyCE”’”)(t —
8) = 0w Soby A2, el with ;4 > 0 @andA; > 0.

This can be achieved by a suitable choice of the coupling functidn}, for example

M 1
pi(k) = const | | T2

where all they, ,,, are distinct. To keep the notation from still further accumulating, we
chooseM the same on the left and the right. We will call the random process given
by Eqg. (2.5) quasi-Markovian if ConditioA3 is satisfied. Indeed, using Conditiet8
together with the fluctuation-dissipation relation (2.7) and enlarging the phase space one
may eliminate the memory terms (both deterministic and random) of the equations of
motion (2.5) and rewrite them as a system of Markovian stochastic differential equations.

By Condition H3 we can rewrite the stochastic processgs) as 19 stochastic
integrals

m=1

Bi
where thew; ,,,(s) ared-dimensional Wiener processes with covariance
E [(wg“gl(t) - wi%(s)) <w§”7)n, ') — w%)n, (s’))}
= (Si,jéu,uém}m’ |[Sa t] N [8/7 t/]|7

M Oy t
&M= Nim Tem / e 1= dw; 1 (s),
m=1 e

(2.8)

wheres < ¢t ands’ < ¢, E is the expectation on the probability space of the Wiener
process and - | denotes the Lebesgue measure. We introduce new “effective” variables
TLm» TR.m € R%, withm = 1,..., M, which describe both the retro-action of the heat
bath onto the system and the random force exerted by the heat baths:

t
TL,nL(t) = AEJH'YL,m/ ds ei’yL’m(tis)ql(S)
0

2% m !
“Am M, / e*'YL,m(tfs)de~m(S)’
» /BL e ,

t
TR,m(t) = /\2R7m’YR7m/ ds e_’YR’m(t_S)qn(s)
0

2 t
— )\R,m ’?F;m / €77R’m(tis)dwR,m(S)-
\/ —o0
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We get the following system of Markovian stochastic differential equations:

dg;(t) = p;(t)dt, j=1,...,n,
M
dpa(t) =~V VD)t + > (Dt

m=1

dp;(t) = =V, Viet)dt, j=2,....,n—1,

M
dpn(t) = _vqn V(Q(t))dt + Z TR,m(t)dt) (29)
m=1
— 2 27L,m
dTL,m(t) = _7L,mrL,m(t)dt + /\L,erL,mQI(t)dt - /\L,m 4 de,m(t)a
— 2 27R,m
dTR,m,(t) - _fYR,er,m(t)dt + )\RJU’YR,an(t)dt - >\R,m ﬂR dwR,m(t)a

which defines a Markov diffusion process BA(™*M)_This system of equations is our
main object of study. Our main results are the following:

Theorem 2.1. If ConditionsH1-H2 hold, there is a constamt* > 0, such that for
IALmls [ARm| € (0,A*) withm = 1,... M, the solution ofEq. (2.9)is a Markov
process which has an absolutely continuous invariant megswith aC> density.

Remark.In Proposition 3.6 we will show even more. Lig#(5) be the Gibbs distribution
for our system when the heat baths are both at temperatgréflh denotes the density
of the invariant measure found in Theorem 2.1, we find that(5) is in the Schwartz
spacesS for all 8 < min(G., Br). This mathematical statement reflects the intuitively
obvious fact that the chain can not get hotter than either of the baths.

Concerning the uniqueness and the ergodic properties of the invariant measure, our
results are restricted to small temperature differences. We have the following result.

Theorem 2.2. If ConditionsH1-H2 hold, there are constants* > 0 ande > 0 such
that for | AL .|, [Ar.m| € (0, ) withm = 1,..., M, and|B. — Br|/(BL + Br) < €, the
Markov process (2.9) has a unigue invariant measure and this measure is mixing.

Remark. The restriction on the couplings between the small system and theXaths

AR,m IS NON-perturbative: it is a condition of stability of the coupled small system plus
heat baths. Indeed, the baths have the effect of renormalizing the deterministic potential
seen by the small system. The constahtdepends only on the potentill(q): if the
coupling constants, ,,,, Ar.n, are too large, the effective potential ceases to be stable
and, at least at equilibriunm.¢., for 5. = 8r), there is no invariant probability measure
for the Markov process (2.9), but onlycafinite invariant measure (see Eq. (3.7) and
Eqg. (3.9)). This restriction is related to ConditibtL on the potential: for potentials
which grow at infinity faster than quadratically, this restriction would not be present (see
[JP1]). On the other hand, the restriction on the temperature differentperturbative
origin.
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Remark.Another, more physical interpretation of the problem addressed above has been
made by a referee. One starts from a translation invariant coupling between the chain
and either of the baths, which is of the form

/ dx p()p(z — a1).

The dipole expansion for this coupling leads to the terms of the form

2
0 [ dxp@Vo) + L7 [ o

We have only taken the first term in (2.3). If one takes both terms, one carktgke
and\r ., arbitrarily large.

A more physical formulation of the results of Theorem 2.2 is obtained by going back
to Eq. (2.5), which expresses all the quantities in terms of the phase space of the small
system and the initial conditior(0) of the heat baths. Let us introduce some notation:
For given initial conditionsdb(0), we let®; «()(p, ¢) denote the solution of Eq. (2.5).
Finally, define

v(@p.dq)= [ u(dp.cio o)
reR2dM
wherey is the invariant measure of Theorem 2.1.

Corollary 2.3. Under the hypotheses of Theorem 2.2, the system Eq. (2.5) reaches
a stationary state and is mixing in the following sense: For any observables

G € L?(R%¥" y(dp,dq)) and for any probability measurey(dp, dg) which is abso-
lutely continuous with respect tddp, dq) we have

Jm_ [ro(dp.da)(F o ©1.0,) 00} = [+(ep.ca)F (p,0)
Jm_ [ (e da(F o 000) 0. 0G0 0))  (2:20)
= [v(eh.da)F(p.q) [v(dp.ca)ite.0)

Here, (-) denotes the integration over the Gaussian measures of the two heat baths,
introduced earlier.

We explain next the strategy of our argument. Our proof is based on a detailed study
of EQ. (2.9). Letx = (p, q,r). For a Markov process(t) with phase spac& and an
invariant measurg(dx), its ergodic properties may be deduced from the study of the
associated semi-group’ on the Hilbert space 4(X, 1.(dx)). To prove the existence

of the invariant measure in Theorem 2.1 we proceed as follows: We consider first the
semi-grougd™ on the auxiliary Hilbert spacto = L2(X, u0(dx)), where the reference
measure.p(dx) is a generalized Gibbs state for a suitably chosen reference temperature.
Our main technical result consists in proving that the generatof the semi-group

T onHp and its adjointL* have compact resolvent. This is proved by generalizing the
commutator method developed bypktiander to study hypoelliptic operators. From this
follows the existence of a solution to the eigenvalue equafféjr g = g in Ho and this
implies immediately the existence of an invariant measure. To prove Theorem 2.2 we use
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a perturbation argument, indeed at equilibridra.(for 5. = §r) the invariant measure
is unigue and 0 is a simple eigenvalue of the generaiorH,. Using the compactness
properties ofL, we show that 0 is a simple eigenvalue of the generatar H, for
|6L — Br|/(6L + Br) small enough. And this can be used to prove the uniqueness claim
of Theorem 2.2, while the mixing properties will be shown by extending the method of
[Tr].

This paper is organized as follows: In Sect. 3 we prove Theorem 2.1 and Theorem 2.2
except for our main estimates Proposition 3.4 and Proposition 3.5 which are proven in
Sect. 4. In Appendices A, B, and C, we prove some auxiliary results.

3. Invariant Measure: Existence and Ergodic Properties

In this section, our main aim is to prove Theorem 2.1 and Theorem 2.2. We first prove
some basic consequences of our AssumptiéhandH2. In particular, we define the
semi-groupl™ describing the solutions of Eq. (2.9) on the auxiliary Hilbert spHge
described in the introduction. Furthermore we recall some basic facts on hypoelliptic
differential operators. Once these preliminaries are in place, we can attack the proof of
Theorem 2.1 and Theorem 2.2 proper.

3.1. Existence and fundamental properties of the dynamiiet. X = R24"*M) gnd
write the stochastic differential equation (2.9) in the abbreviated form

dx(t) = b(z(t))dt + odw(t), (3.2)

where
(i) bisacC vector field which satisfies, by Conditid#i,

sup |0%b(z)| < oo,
reX

for any multi-indexa such thata| > 1. In particular
B =||divb||e < 0. (3.2)

(i) o:R*M _ X is alinear map. We also define
1 T
D= 590 > 0. (3.3)

(i) w e W = C(R;R?M) s a standard @\/-dimensional Wiener process.

Equation (3.1) is a customary abbreviated form of the integral equation

E(t,wyx)=x+ /tds b(&(s, w; x)) + o(w(t) — w(0)). (3.4)
0

It follows from an elementary contraction argument (see e.g. [Ne], Theorem. 8.1) that
(3.4) has a unique solution

R>t — z(t) = £, w; x) € C(R; X),

for arbitrary initial conditionr € X andw € W.
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The differencew(t) — w(0) has the statistics of a standard Brownian motion and
we denote byE[-] the corresponding expectation. By well-known results on stochastic
differential equations, this induces §ft, w; x) the statistics of a Markovian diffusion
process with generator

V-DV +b(z) - V. (3.5)

More precisely (see [Ne] Theorem 8.1): L&{,(X) denote the continuous functions
which vanish at infinity with the sup-norm and &t be theos-field generated by and
{w(s) —w(0); 0< s < t}, then for 0< s < tandf € C(X) we have

E [f@@)|F] =T"*f(x(s)) as, (3.6)

whereT* is a strongly continuous contraction semi-group of positivity preserving op-
erators orC,(X) whose generator reduces to (3.5)gR(X).

In the sequel we denote by the differential operator (3.5) with domaib(L) =
C&(X).

To prove the existence of an invariant measure we will study the semi-grbop
rather an extension of it on the auxiliary weighted Hilbert spaigedescribed in the
introduction. To definé{, precisely, we consider the “effective Hamiltonian”

(Lt 1 7R
G(p7q:r):HS(p7Q)+Z<)\2 é +)\2 é
R,m

m=1 L,m

—q1"TLm —Qqn " rR,m) .
(3.7)

We note that, due to ConditioH1, G(x) — +oco as|z| — oo as long asAL |,
|Ar,m| < A* for someA* depending only on the potentill(q).

We choose further a “reference temperatusg,’ which is arbitrary subject to the
condition

Bo < 2min(@, Br). (3.8)

For example we could takg, as the inverse of the mean temperature of the heat baths:
Byt = (87 + B 1)/2. For the time being, it will be convenient not to fis. Then, we

Ho = L*(X, Zy te=P¢ dx), (3.9)
and we denote (-)3, and|| - ||, the corresponding scalar product and norm.
Remark.With a proper choice ofy, it is easy to check that the quantity

Zo—le*ﬁoc(qvpﬂ“) dx
||§ the| i|n>\\/aria|1nt r;easure for the Markov process Eq. (2.9) wher 5r = (o and
Lonls [ARm| < A%

Lemma 3.1. Ifthe potentiall” satisfies Conditioh1 and if Gy < 2 min(G., Gr) there is
aX* > 0such that if the couplings satisfy |, |Ar.m| € (0, A*), then the semi-group
T* given byEq. (3.6)extends to a strongly continuous quasi bounded semi-gfgyp
onHo:

||T7t-to||7'lo < eatv
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whereq is given by

iy 1 (B Bo/2B0/2 1 /(e Bo/2)00/2
= d; (’YL,m <2 - ﬂL + TR,m é - 6R

. (3.10)

The generatoi.y, of T;{D is the closure of the differential operatérwith domainCg®
given by

M 2
AL,m’YL , M

L= Z T (VTL,m - 6LWL,m,) . erym
m=1

M 2

A m
+y Rﬂ;}% (Vra. — BeWaim) - Vee . (3.11)

m=1
M M

+ § TLm - Vpl + LS + E TRm * Vpnv
m=1 m=1

with the abbreviations
Wim = A2 m — @1, Weim = AR Ram — s (3.12)

and whereLs is the Liouville operator associated with the Hamiltoni&ig(q, p):
Ls=> pj- Vg, —(Vg, V) Vp,. (3.13)
j=1

Moreover,T{l0 is positivity preserving:
Tif >0 if f>0, (3.14)
and
Th1=1 (3.15)
Remark.We havex = 0 if only if 5. = Br = fo.

Proof. The proof uses standard tools of stochastic analysis and is given in Appendix A.

Having shown a priori bounds using Conditibtl, we will state one basic conse-
guence of Conditiotd2. We recall that a differential operatét is called hypoelliptic
if

sing suppu = sing suppPu for all u € D'(X).

HereD'(X) is the usual space of distributions on the infinitely differentiable functions
with compact support and far € D’(X), sing suppu is the set of points € X such
that there is no open neighborhoodzofo which the restriction ofi is aC> function.

Let P be of the form

J
P=) Y7+, (3.16)
j=1
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whereY;, j € {0,...,J} are realC> vector fields. Then by bfimander’s Theorem,
[HO], Thm. 22.2.1, if the Lie algebra generatedWy j < {0,...,J} has rank dimX
at every point, ther® is hypoelliptic.

Differential operators arising from diffusion problems are of the form (3.16)ILet
be the differential operators given in Eq. (3.11), I8t denote its formal adjoint, then
one may easily check that Conditibt2 implies that any of the following operators:

L, L', §,+L, 9, +L",

satisfies the condition ofstinander’s Theorem and thus is hypoelliptic. As an immediate
consequence we have:

Corollary 3.2. If ConditionH2 is satisfied then the eigenvectorsiofind L™ are C>
functions.

Next, letP(t,z, F), t > 0,z € X, E € B denote the transition probabilities of the
Markov procesg (¢, w; x) solving the stochastic differential equation (2.9) with initial
conditionz, i.e.,

P(t,z, E) =P ((t,w: 2) € E),

whereP denotes the probability associated with the Wiener process. Then by the forward
and backward Kolmogorov equations we obtain

Corollary 3.3. If ConditionsH1 and H2 are satisfied then the transition probabilities
of the Markov Proces§(t, w; ) have a smooth density

P(t,z,y) € C((0,0) x X x X).

3.2. Proof of Theorem 2.1 and Theorem A#er these preliminaries we now turn to
the study of spectral properties of the generdigg of the semi-grouﬁ;ﬂo.

The proof of the existence of the invariant measure will be a consequence of the
following key property which we prove in Sect. 4.

Proposition 3.4. If the potentiall’ satisfies Conditionsl1, H2 and if 3o < 2 min(G._,4Rr)
there is a\* > 0 such that if the couplings satisf¥_ |, |[A\r,m| € (0, A*), then both
L3, and L3, have compact resolvent.

A useful by-product of the proof of Proposition 3.4 are some additional smoothness and
decay properties of the eigenvaluesgf, and L3, onHo.

Proposition 3.5. Let g denote an eigenvector dfy, or L3, . If the assumptions of
Proposition 3.4 are satisfied then we have

ge PG/% e 8(X),
whereS(X) denotes the Schwartz space.

Using these results, we come back to the Markov process defined by Egs.(2.9), and
whose semi-groufi” was defined in Eq. (3.6). We prove the existence of an invariant
measure with a smooth density and give a bound which shows that, in some sense, the
chain does not get hotter than the hottest heat bath.

Proposition 3.6. Under the assumptiond1-H2 there is a\* > 0 such that if the
couplings satisfy\ |, |Ar.m| € (0,\*) the Markov procesg™ has an invariant
measuren, which is absolutely continuous with respect to the Lebesgue measure. Its
densityh satisfies the followingh exp(3G) € S(X) for all 3 < min(8., BRr).
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Proof. The function 1 is obviously a solution dff = 0 with L defined in Eq. (3.11).
Note next that the function 1 is iHo, as is seen from Eq. (3.9) (ik_ .| and|\r ,,,| are
sufficiently small). Since, by Proposition 3.4, the operdigy, has compact resolvent
on Ho, it follows that 0 is also an eigenvalue 6f, . Let us denote the corresponding
eigenvector by. We will choose the normalizatiory(1);,, = 1. We assume first that
g > 0. Then the function

h(zx) = Zo_lg(x)e_’g"c(z), (3.17)

with Gy andG defined in Egs.(3.8) and (3.7), is the density of an invariant measure for
the proces§™: Indeed, we note first thafi || 1 x ax) = (1, 9), is finite and thug(dx)
is a probability measure.
Let E be some Borel set. Then the characteristic funcfignof £ belongs taH,.
We have

[ u@0xe = 25" faxe 501

= Z5* [axe O, o)
= u(E),
and thereforg(dx) is an invariant measure for the Markov process (2.9).
To complete the first part of the proof of Proposition 3.6 it remains to show that

g > 0. We will do this by checking that > 0. We need some notation. LEf denote
the formal adjoint of.. Then one ha& "k = 0. This follows from the identities

/ dx fLTh =275 / dx fL" (ge™%)

= Zal /dx (Lf)ge_ﬂoa
= (Lfa g)Ho = (f? L;—[OQ)HO = (fa 0)7‘[0 = 07

which hold for all f € C§°(X). Consider now the semi-grodfy’ acting on the space
Coo(X) defined at the beginning of Sect. 3. The operdtoinduces an actiorif(*)* de-
fined on the dual spack,_ (X)) which consists of finite measures. Sirdeis Markovian,
(T*)* maps probability measures to probability measures. Furthermore, if a measure
has a density in L1(X,dx), then {)*v is a measure which has again a density in
LY(X, dx): Indeed, by Corollary 3.3 the transition probabilities of the Markov process
P(t,z,y) are inC> ((0,00) x X x X). If we denote by T*)" the induced action of
(T%)* on the densities, we have for> 0,

() (g()lx) = / dy g(u)P(t, 3, d¥)
= dx / dy o) P(t, 9, 7) = (") g) (),

and (1) glu: = llglls. _
Coming back to the invariant density we know that

(TH"h = h.
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We next showT*)T|h| = |h|. Since|h| = h > 0, we have T*)T(|h| + h) > 0. This can
be rewritten as

(T h| < (T")T|A.
Therefore,
k| = [(T")Th| < (T")T|A.

Since (") preserves the :=norm, we conclude that
|h] = (@)T|h]. (3.18)

This shows the existence of an invariant measure.

Now, by Proposition 3.5, we haveexp(3G/2) € S(X) for all 8 < 2min(8., Ar)
and so fors < min(G., Gr) it follows thath exp(3G) € S(X). This concludes the proof
of Proposition 3.6. [

We next prove the uniqueness of the invariant measure and the ergodic properties
of the Markov process. We start by fixing an inverse temperaipiref 5. = Sr = 5o,
the two heat baths are at the same temperature, and the equilibrium state of the system
is known, since it is given by the generalized Gibbs distributitite %%, For the
equilibrium case, this distribution is the unique invariant measure. The existence is ob-
vious from what we showed for the case of arbitrary temperatures. To show uniqueness,
assume that there is a second invariant measure. Sinischypoelliptic, then by Corol-
lary 3.2 this measure has a smooth density. Since different smooth invariant measures
have mutually disjoint supports ard®% has support everywhere, uniqueness follows.

If the invariant measure is unique, it is ergodic and hence, (see [Yo] and [Ho]) O is a
simple eigenvalue aof 1.

The case of different temperatures will be handled by a perturbation argument around
the equilibrium situation we just described. This perturbation argument will take place
in the fixedHilbert spaceH, defined in Eq. (3.9). Thus, we will consider values&pf
and (g such that

Lol L,y Bl (3.19)

%_5(@. Br BL+Br

for some smalk > 0 (which does not depend g¢g).
We first show that O remains a simple eigenvalue of the genefaipiwhen the
temperature difference satisfies (3.19) for a sufficiently small

Lemma 3.7. Under the assumptiond1-H2 there are constanta* > 0 ande > 0
such that if the couplings satisf¥_ .|, | \rm| € (0, A\*) and moreovep,, Or satisfy
(3.19), therD is a simple eigenvalue of the generafoy,.

Proof. It will be convenient to work in the flat Hilbert spacé(X, dx). Note thatlC =
exp (—5oG/2)L exp (+8oG/2) is a functionkC = K (6., Br, Bo)- We write this as

K:(ﬁLv 6R7 60) = K:(ﬁOa ﬁOa 60) + 5Za

_PR—A
Br+ 0L

where
0
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One finds
m7|- m 2 5 d
IC(BO; 603 ﬁo) Z L <ﬁov721,m - 7OWL m )\2 >
L,m
M 2
)‘R m"YR m 2 2 ﬁo d
+ — - Zwz
27 (ﬂov’“m 2"
+ZTLm Vp1+LS+ZTRm' Pno
m=1
and
M |_ m'YL m 2 50
Z V + WL,m : VT‘Lym + V’I"‘|_,7n : WL + ?WL m
M
Y m
- M ( ViR WR7m : V"‘R m + v"’F\’ m WR + @WR m)
m=1 2 ﬁ " , Y 2

Furthermore, by Proposition 3.&y = (1 — K(Bo, 5o, F0))~* is a compact operator,
and therefore the simple eigenvalue 1R¥ is isolated. From now on we assume for
conveniencethat = «(3_, Ar) is strictly smaller than one. Note that this is no restriction
of generality: ifo € [n — 1,n) with n > 1, we replace (+ K)~* by (1— 2K)inthe
following discussion.

We show next that the resolveR(3., g, 50) = (1 — K(BL, Br, Bo))~* depends
analytically on the parametér It is convenient to write the perturbatidghas

N
Z =Y E;F;,
j=1

where theE; and F; are of the form cons® ., or const W)

1,m’
zm

1,...,M,andN = 8dM. With the matrix notation

i € {L,R}, m =

Iy
F= ) ET:(EL""EN)’
Fy

we can writeZ asZ = ET F. We will use the following resolvent formula:
R(3L, e, ) = Ro (1 +6ReE™ (1~ 6FRE™) " FRo).  (3.20)

To justify Eq. (3.20) we have to show that fbsmall enough the operator-valued matrix
(1— 6FRoE™) is invertible. It is enough to show that RoEy, is a bounded operator,
forall j, k. For this we decompose-IC(3g, Bo, Fo) into its symmetric and antisymmetric
parts:

1- K(ﬁm /607 50) =X+ ZK
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where

M 42
AL Lm 2 Bo 1
x=1 +3 St [ Zgz Loy g
2 < /80 TL,m 2 L,m AEJW,

m=1

M 2
AR mIR,m 2 2 50 2 1
+ —_ | —— + — —d——|.
Z 2 ( BO VTR‘m 2 WR,m A% m

m=1

From the simple estimates

1E; fI12 < (f, X ),
IE fI1? < (f, X ),

which hold for f € C§°(X), and sinceX is a strictly positive operator we see that
E;X~Y2 andF; X ~%2 are bounded operators. From the identity

E;RoFy = Ej(X +iY) ' Fy
= B X V2L +ix Y2y X Y2 -ix-V2p,

we see thall; RoF'), are bounded operators for allk. Therefore, the r.h.s. of Eq. (3.20)

is well defined for sufficiently smald. An immediate consequence of the resolvent
formula (3.20) is that for sufficiently smallthe spectrum oR(5, , Or, Bo) has the same
form as the spectrurRy: 1 is an eigenvalue and there is a spectral gap and, in particular
1is a simple eigenvalue. This concludes the proof of Lemma 3.7]

Next we use this lemma to prove uniqueness of the invariant measure. We have the
following

Theorem 3.8. Under the assumptiortd1-H2 there are constanta* > 0 ande > 0
such that if the couplings satisf¥_ .|, [Ar,m| € (0, A*) and the temperatures satisfy
1Br — BL]/(BL + Br) < ¢, the Markov proces§™ has a unique (and hence ergodic)
invariant measure.

Proof. The proof uses a dynamical argument. By Proposition 3.4 we have in the Hilbert
spaceH, (with 3o given as in (3.19)) the eigenvalue equatitip 1 = 1 and (7}, )*g =

g. Let the eigenvectors be normalized such that)f;,, = 1. By Lemma 3.7, 0 is a
simple eigenvalue of the generatoy,, if (Gr — 5.)/(5L + Or) is small enough and by
Proposition 3.6, the measurédx) = Zo_lg exp (—GoG) is an invariant measure for the
Markov process. Itis absolutely continuous with respect to the Lebesgue measure which
we denote by.

Assume now that is another invariant probability measure. By the hypoellipticity
of L it must have a smooth density. Therefore there is a Bored setX, which we may
assume bounded, with the following properties: we hai€) > 0 and\(4) > 0 but
1(A) = 0, because the measures have disjoint supports; A éenote the characteristic
function of the setd. By the pointwise ergodic theorem, see [Yo] and [Ho], we have,
denotingo () the ergodic averages(z) = (1/s) fos dt Tty a(z),

lim o,() = v(4), v-ae. (3.21)
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SinceT" is a contraction semi-group dB(X, B), andy 4 < 1 we find||o||.. < 1, for
all s > 0. From the easy bound

losliao < lloslloo,

we see thatthe s¢ts, s > 0} is a bounded subset &f, and hence weakly sequentially
precompact. Therefore, there is a sequenice oo such that

w-limo, =o%,

n—oo

where w—lim denotes the weak limit#y. SinceT™ is a bounded operator for all> 0,
we have
w—limT%o, =T"c".

n—00

We next show
TYc* =o*. (3.22)

Indeed,

n

1 Ssptu
TY o, () = S—/ dt Tty a(x)
“ 1 1 fentu (3.23)
=0, — = / dt Tty a(z) + 5—/ dt Tt x a(z).
n JO nJs

n

The last two terms in (3.23) are bounded dys,, and we obtairil™c* = ¢* for all
u > 0 by taking the limitn — oo in (3.23).

Therefore,o* is in the eigenspace of the eigenvalue ﬂé[o, t > 0 and so, by
Lemma 3.70* = ¢1. To compute: we note that = (g, 0*)4, and, using the invariance
of the measure, we get

: 1 /o
c= lim (g,/ dth%XA)
n—00 sn Jo Ho

1 Sn
= |i — d d t = .
im /O ‘ / H(d) T = u(A)

n—oo Sy

So we have: = u(A) andu(A) = 0 by hypothesis. Using this information, we consider
(x4,0s, )n,- We have, on one hand,

im (xa,0s,)31 = (xa,0 )2, =0,
n— 00

and on the other hand we have, by Eq. (3.21) and by the dominated convergence theorem,

im (cr.on, i = [ dxu(A)cazgte e > 0

and this is a contradiction. This shows that there is a unique invariant measure for the
Markov procesd™ and as a consequence the measure is ergodicl

We will now strengthen the last statement by showing that the invariant measure is
in fact mixing. This will be done by extending the proof of return to equilibrium given
in [Tr].
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Proposition 3.9. Assume that the conditions of Theorem 3.8 are satisfied. Then the
invariant measurg.(dx) for the Markov procesg* is mixing, i.e.,

i [ u@0r@1's@) = [ s [ n@),

for all £, g € L2(X, u(dx)).

Proof. We denoteH = L?(X, u(dx)) and its scalar product by, ¢)3; and by|| - || its

norm. By [Yo], Chap. XIlI.1, Thm. 17" defines a contraction semi-group #h Since
T is a strongly continuous semi-group 6g (X) (see [Ne]) and sincé,.(X) is dense
in 7, we can extend™ to a strongly continuous semi-grol, on . The property of
mixing is equivalent to

vgzllron Thf=(@, f)y foral feH. (3.24)

By a simple density argument it is enough to show (3.24) for a dense sub%ét of
Let C?(X) denote the bounded continuous functions whose first and second partial
derivatives are bounded and continuous. Then — [GS], P&® K, if f ¢ C2(X), then

T f € C?(X) and for anyr < oo, T}, f is uniformly differentiable w.r.t¢ € [0, 7] and

0

—Ttf=L

at Hf fa

where L is the differential operator given in (3.11). Lt € C?(X). Using the fact,

see Proposition 3.5 and Proposition 3.6, that the density of the invariant measure is of
the formh(z) = ge—»%/2 with ¢ € S(X), we may differentiate under the integral and
integrate by parts and using the invariance of the measure we obtain

d
G IThF By = T T+ (TS LT P
2)‘22m71'.,m
== X Ty Tl (3.25)
ie{L,R} 4 '

me{l,...,M}
ve{l,...,d}

whered «, is the differential operator with domait*(X). Thus|| T}, f||3, is decreasing,

bounded below and continuous and so.lim, || 7%, f||2, exists. As a consequence we
find

10, T3, f13, € LX(O, 00), dt). (3.26)
Following [Tr] and [Br], we call a sequendg,, } a (x)-sequence if,, 1 co and
; tn 2 _
The existence of«)-sequences for our problem follows easily from (3.26). Further we
define an almost{)-sequence as a sequengel oo for which there exists af-sequence

{t.} with |s,, — t,| — 0 asn — occ. As in [Tr] we next show that w—lin, . 75} f =
w=lim,,_, . T f. Indeed, let us choose< min(ty, s1). From the inequality
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12
dt
which holds fort > 7, we have

T fllae = | T3, LT, flla < | LT fl2,

T = T3) Nl < lsn = tal ILTR flle = O, 0 — o,

which shows thaf’j; f and7; f have the same weak limit.
The set{T},f,t > 0} is bounded and hence sequentially weakly precompact, so
that by passing to a subsequence, we may assume that

w-lim Ty f =, vy e,

Next we show that for alk{)-sequences w—lim.., T;j is alocally constant function
1 — a.e. We begin by showing that does not depend on the variabtes
Letd”,, denote the adjoint of, ) inH and lety € Cg°(X). By the smoothness

propertieéncl)f the density of the invariant measure we see that the functi®m the
domain ofd”,, and we have, using (3.27)

(1,00 V) = M (T 1,070 O = I @, Thy £, = 0.

Written explicitly,

[dpdacn .00, (60.0.0h0.q.1) =0, (3.28)

foranyy € C§°(X). Sincey € H,wemay sety = 0onthesetl = {x € X ; h(z) = 0}
and-y is locally integrable and thus defines a distributiorDif{ X). By Eq. (3.28) the
support of the distributio® ., v(p, ¢, ) does not intersect the sdtand thusy(p, ¢, )
is u-a.e. independent of

Lett > 0. Then w—lim,_,o. T} ™ f = T#,~. Sincet +t,, 1 oo, it is easy to show,
see [Br], that,, +¢ has an almostd)-subsequence, and from the above arguments we
conclude thaf’},~ is independent of.

Nextwe show inductively, using Conditi¢i? thaty does not depend on the variables
p, ¢. Let (T%,)* denote the semi-group dual14, onH and denote” its generator.

Note that fory) € Cg°(X) we have, upon integrating by parts

d
2

\° im _
. / dpdadr 3 L (G (G, B Th TS

. Bs
ety (3.29)

- / dp dq dr(Zo(Th)) T, f,

whereLyg is given by

M M n
Lo=Y " Vi Y TRm - Vp, ¥ Y ;- Vg, = (Vg V) Vy,.
=1

m=1 m=1
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SinceCg°(X) is in the domain ofZ, we get
S W Thw = (@0, T = im (20, LT P
= (20 T =~ [ dpdadr(Lo@h) Tier
The last equality follows from (3.29) sincg,~ is independent of. We next choose

Y(p,q,7) € Cgo(X) of the form ¢(r,p,q) = @1(r)p2(p, )b (p,q,7) with
supplea(r)e2(p, ¢)) N A =0 and [drea(r) = 0. For this choice of) we have

(W, Tl = / dpda () (. 4) Bl ) - / dry(r) = 0,
and therefore

0= / dp dq dry(p, ) Lo(@1(r)7o(p 0)

M
- / dp Ao, @)V B, 4) - / ar S 1)
m=1

M
+ [dpdenv. 0V, 200 [ar - renga)

m=1

Sincep;(r) is arbitrary, it follows that

[P Vate0) = [dp .0V, 7olp o) =0
and thus, by a similar argument as aboy@, q) must beu-a.e. independent @f and

pn: Thus~ is a functiony(pa, . . ., Pn—1).
Using this information, we choose now

VP, q,7) = ©1(p1, Pn)P2(D2, - - - s Pr—1, Q) 03(r)h " (D, 4, 7),

with supp(p1¢2¢3) N A = 0 and [dp,dp, ¢1(p1,p») = 0. For such a choice af we
obtain

0= / dp dq drLo(@:7,75)Y
= /dp2 e dpnfldq'Y(vlh@Z) : /dpl dpn p1¢1 /dr¢3
+/dp2---dpn_ldqv(Vq”@)-/dmdpnpnal/dr%’

and from the arbitrariness @f;, v», 3 we conclude that is independent ofy, ¢,, (all
our statements hold-a.e.). Finally, choose

w(Z% q, T) = ‘Pl(QL Qn)%(pza <oy Pn—-1,42, - . 7qn*1)903(p13pn7 T)h_l(pa q, T)a
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with supp(p1p23) N A = 0 and [da,dq, ¢1(g1, ¢») = 0. Then we obtain

0= [dpy...dp, 100 da, (V%) [dayda, (V1) [ dpicp, s
v [dp,...dp, 1000, 15(T,, 7
- [dauda, (7, V)% [ dp,drs

From the arbitrariness of the, we conclude in particular that

0= /dpz- ..dp,_1dg,...dq, _; 1 (Vp,P5) - /d%dqn (Ve V)er-  (3.30)

We may choose1(q1, qn) = 8q(,,/)<5(q17 qn) for somer’ € {1,...,d} and a positive
1
©(q1, g»)- By ConditionH2 we see that

X (q2) = / da,dq, (9,0 V)e1(a1, ¢n) = — / dayda,, (9,019, V)P1(a1, 4n)

is uniformly positive or negative. We can rewrite (3.30) as

0= Z /dp2 ...dp, ,dq,...dq, , ’yap(sz”’”/(%)@z,
}

ved{l,....d

and we conclude that is independent gf,. A similar argument shows thatis inde-
pendent of,, _; and iterating the above procedure we concludethstocally constant
u-a.e.

So far, we have shown that for all)¢sequencest,,} one has w—lim_, ., Tf_ff =
~ = const From the invariance of the measyrend its ergodicity we conclude that

V= = / H(d)f ().

We conclude as in [Tr]: suppose that w-Jim., 7%, f # (1, f)». Then by the weak
sequential precompactness {&f}, f ; ¢t > 0}, there exists a sequeneg 1 oo for
which w—lim,_, 75, f = n # (1, f)n. But, referring again to [Br], the sequence
{u,} has an almost«)-subsequencés,, }. This implies that there is a<J-sequence
{tn} such that w—lim_, o, T;_ff = . This is a contradiction, since we have seen that
W—lim,, oo T4 f = (L, f)n for all (x)-sequences. By a simple density argument this
implies that

i [ u@0r@Te) = [ u@s) [ .

for all f, g € ‘H and the proof of Proposition 3.9 is complete.(J

With Proposition 3.9 the proof of Theorem 2.2 is now complete.
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4. Commutator Estimates and Spectral Properties ofl4,

In this section, we prove Proposition 3.4 and Proposition 3.5. We generalize the commu-
tator method of ldfmander to study the spectral properties of the opetaigrwhich

is, by Lemma 3.1, the closure of the differential operdiavith domainCg°(X') which

we defined in Eq. (3.11). We recall the definition:

— al AE,m,‘YL,m
L= Z T (Vn_,m - ﬁLWL,m) : VTL,m
m=1

M )\2, YR,m
3 R (i) T 4
m=1

M M
+ E TLm - Vp, * Lst E TRm * Vo
m=1 m=1

with the abbreviations
Wi = A5 mm — @1 Weim = AR ™Rim — s (4.2)

and wherel s is the Liouville operator associated with the Hamiltonfdg(q, p):
Ls=Y p;j Vg —(Vg,V) - V,,. (4.3)
j=1

For the following estimates it will be convenient to work in the flat Hilbert space
L?(X,dx). The differential operatof. is unitarily equivalent to the operatd¢ on
L2(X, dx) with domainC§e(X) given by

K = e~ HG/2 [ ¢0G/2

M 2 M 2
)\L YL,m AR TR,m (44)
=a— Y R R R -y R RE R+ Kas
m=1 ﬂl‘ - B m=1 6R " " *

whereq is given by (3.10) and

RL,m = V’I'Lml + V (ﬂL - ﬂO/Z)BO/ZWL,ma
RR,m = VTR‘m, + V (BR - ﬂO/Z)BO/z WR,nw
M

M
Icas: § TLm - Vpl + LS + § TRm * vpn

m=1 m=1
M 42
ﬁL - ﬂR AL,m'YL,m
M \2
BL — Br AR, m YR,m
¥ 6L + ﬁR Zl 2 (VTR"’" ’ WR,m + WR,m ’ V"R.m) .
m=

All subsequent estimates will be valid for affiye S(X) and thus for all functions in
the domain ofC.
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It is convenient to introduce the following notations: We introduce new variables,
and recall some earlier definitions: Let = [n/2] denote the integer part af/2. We
define

P; =V, +avLpy, j=1,...,7n/,
P; =V, +arpj, j=n'+1...,n,
Qj =V, +aW(q,7), j=1,...,n,
Qj = Vg, +arW;(q,7), j=n'+1...,n,

RL,'m =v7’|_,m +aLWL,m(Q7T)7 m= 17"'3M7
RR,m = V’I‘R,m + aRWR,m(Q7 T)7 m = 17 LRI M’

where

aL = ((BL — Bo/2)0/2) ™7,
ar = ((Br — o/2)B0/2) "%,

M
Wl(qa ’I") = vq1‘/v(q) - Z"l,m?
m=1
Wi(q,r) =V, V(g), j=2,...,n—1
M
WTL(Q? T) = van(Q) - Z TR,m;
m=1
WL,m(Q» T) = Al:inTL,m — 41, m = l, e ,M,
WR,m(q7 ’I") = )\F;%nrR,m — Qn, m = :I.7 e ,M.

We next define the operatof,, K, andA which will be used in the statement of our
main bound:

n n M 1/2
A= (1 + Z PrP;+ Z QQ; + Z(R,’f’mRLm + Rﬁ’mRR’m)> ,

j=1 j=1 m=1
Ko = Kas, (4.5)
M
K=a-K=-Ko+» (bL.mB Rl +brom Rty Brim).
m=1

Here, we use
bl = A m /By DRim = NamYRom/Br-

Our main estimate is

Theorem 4.1. Under the Assumptiortdl, H2 on V/, there are are > 0 and aC < oo
such that for allf € S(X) one has

[AZFIl < CE A+ (4.6)

Proof. The proof will be an easy consequence of the following
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Proposition 4.2. There are finite constants;, C}, andC' such that for allf € S(X)
one has with' = [n/2],

1A% 2P fll < Ci(IIE A+ D), 5=1,... 00, 4.7)

AT Ppr f < CIEFI+ NN, G=1...,n—n/,  (4.8)
IAS2Q, fIl < CLUIE I+ A1), 4=1,....0, (4.9)

1A% Quej—rf | < CH(IK A+ AN, G=1,....n—n',  (4.10)
IBLm fIl+ | Rrm | < C(IKFI+1IF), m=1,...,M, (4.12)

wheres; = 4% ande), = 474,

Proof of Proposition 4.2For theR; ,,,, we have the easy estimate

||Rsz||2 = (fa R* Rz mf) < bz_yj;l Re(f, Kf)
< b BN < bk (1K 1+ 1171

This proves Eq. (4.11) for these cases.

For the other cases, the proof will proceed by induction: It will proceed by bounds
on Py, Q1, P, ...,Q,, and a totally symmetric argument, which is left to the reader,
can be used from the other end of the chain, proceeding@ye®,,, P,,_1, until the
bounds reach the “center” of the chain. We next prepare the inductive proof. To make
the result of this calculation clearer, we define the matrices

(4.12)

M=V VeV, 4 k=1....n
In components, this means, forv € {1,...,d},
MY = Ve VoV, jk=1...n

By our choice of potentiaV all the M ;, vanish, excepiM; ;, with j = 1,...,n and

M1 = M je1, Withj = ,n— 1. Furthermore, by Conditior1, all theM(“ ¥)
are uniformly bounded functlons of Finally, by AssumptiorH2, the matrlces(\/tj j+1
are definite, with uniformly bounded inverse.

One verifies easily the relations:

[RL,ma KO] = Pl + CmRL,'nu

[P1, Ko] = Q1,
M
[Q1, Ko] = —M11P — Mo Py + Z Cn(BLm + R ),
m=1 (4.13)
[PjaKO]:Qja j:27"'7n_la
[QjaKO]:_ i— 17 MJ77P M7+1J G+, j:2,...,n—l,

where

Cm = fYL,m(/BL - 60)/5L7
= b maL (Bl — Bo).
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Symmetrical relations hold at the other end of the chain. With these notations, we can
rewrite (among several possibilities):

Py =[RL1,Ko] — c1Ry 1,

Ql = [Pl7 KO],
M
B M Mt S L), @
m=1
Q; =[P;,Ko]l, j=2,...,n,
Pj"'l = _M;&I_,j ([Q]7 KO] + Mjfl)jpjfl + Mj,ij), j= 27 o ’n/’

with symmetrical relations at the other end of the chain. We can streamline this repre-
sentation by definin@o = R, 1, and Mo = —1. Then we can write, fof = 1,...,n':

Py =—M;7_(1Qj-1, Kol + 5;), (4.15)
Q; = [P}, Kol (4.16)

where the operatorS; depend linearly o Py, ..., Pj_1}, {Q1,...,Q;j_1}, and the
R\ . The relations Egs.(4.15) and (4.16) will be used in the inductive proof.

Such relations are of course reminiscent of those appearing in the study of hypoel-
liptic operators. The novelty here will be that we obtain bounds which are valid not only
in a compact domain, but in the unbounded domain opth@ndg’s.

The following bounds will be used repeatedly:

Proposition 4.3. Let Z denote one of the operato€g;, Q;, Pj, or P;. Let M denote
one of theM; ;.. Assume that € (0, 2). Then the following operators are bounded in
L2(X, dx):

1) APIM, AN, if B+ < a+1,

2) APZAYifB+y < —1,

3) AP[Ko, Z]AY,if B+~ < —1,

4) AP[Z, AN, if B+y < a+1,

5) AP[A™, Ko]AY,if B+~ < a.

Proof. The proof will be given in Appendix B.

Because we are working in an infinite domain, and work with non-linear couplings, we
will not bound the I.h.s. of Eq. (4.7) directly, but instead the more convenient quantity

R;(f) = (A% "My ;1P f, A5TTP;f).
We have the

Lemma 4.4. There is a constar® such that for allj € {1,...,n} and all f € S(X)
one has the inequality

A= 2P £ < C(IR; ()] + I £1I%)-

1 For readers familiar with the method obkiander, we wish to point out that this device seemed necessary
because we do not have good bounds &p,[Q1, Ko]l.
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Therefore, to prove Eq. (4.7), it suffices to prove the corresponding inequality fAy;the
Proof of Lemma 4.4.et M = M; ;_1, e = ¢, andP = P;. Then, by our Assumption
H2, there is a constamt > O for which M > m. Therefore,
IASPf|2 = (AP f, ATIPS)
<m Y(MASTIPS, AP
<mTH(ATTIMPS, AP +mTH (AT MIPS, AP
<m7HR (NI +mTH((ATATTE MIA)(A TIPS, (ATMP)S).

The proof of Lemma 4.4 is completed by using the bounds 1) and 2) of Proposition 4.3.
O

The inductive stepiWe begin by the induction step for the,. We assume now that
the bounds (4.7) and (4.9) have been shown fojj all k. We want to show (4.7) for
j =k+1.Using Eqg. (4.15) and Lemma 4.4, we start by writing

Ry+1(f) (AEkﬂ_lMIﬁl,kPIHlfv AE'“”_lPkﬂf)

<A2€k+ll[f<o, Qul, AlPk+1f>

- (Azek*llskﬂf, AlPk+1f>
= Xl - Xz.

We first boundX,. Note thatSj.; is a sum of terms of the formmT whereT is equal
to P; or Q; with j < k, and M is either a constant or equal to one of they, ,.
Therefore, we obtain, using Proposition 4.3, the inductive hypothesis, and the choice
2ep41 < minjgk(é‘j,é‘} = 6;6:
(AP IMT f, A7 P )
< ‘(MAZEk#»l*le, AilPk+lf)| + |(([A26k+171’ M]A) (AilT)f, AilPkH_f)‘

< O@(IK I+ 1111+ 0@ £ < 0@ £+ I1£1)™

This proves the desired bound.
We now come to the “interesting” tertk;. The commutator is rewritten as

[Ko, Q] = —QrK — K*Qp + 3 (Qr(K + K*) + (K + K*)Qy,)
= X3+ X4+ Xs.
We discuss the 3 corresponding bounds:
Term X3. In this case, we are led to bound, withr €441,

T3 = [(QrK f, A* ?Puaf)| = (K f, Q1A ?Praf)|
= [(Kf, @A (A P )
S|Kf, (A Pea)@RAZ DN+ I(K S, [QpAZ ™Y AT Pl )|
= X331+ X3».

(4.17)
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We start by bounding(s 1. SinceA ~1P.; is bounded by Proposition 4.3, it suffices to
show that

1QRAZ=L I < CIK £+ I£1])- (4.18)
To see this we first write, using = Qx,
[Q*AZET1F|2 = (f, AZ=TIQQ A1)
= |AZQF|2+ (f, [AF1Q, Q" A=Y ).

The first term is bounded by the inductive hypothesis®®1)(|| K f| + ||fH)2 and

the choice of:;.1, while the second can be bounded BY1)| f|?> by expanding the
commutator (and using Proposition 4.3):

[A2571Q’ Q*AZefl] - (1\257162*1\725)1\25[@7 AZefl]
+A2€71[Q’ Q*]Ak*l + ([1\26717 Q*]AZE)Ale.

This proves Eq. (4.18).
To boundX3,, we use Py, ,, Q] = 0 and we write

[QZAZE_la A_lPk+1]
= (QZA_l)[AZE_l, Pk+1] + ([QZ) A—l]AZE) (A_ZEP]C+1A26_1).

Since each factor above is bounded by Proposition 4.3, the desired bound follows:

5 < OQ(IKF] +|1£1)°

TermX,. Here, we want to bound = |(K*Qy.f, A* 2P.1f)|. We get

To = [(K*Qrf, A* 2P f)| = |(Qrf, KAZ 2Ppif)|
SAFTIQrS, AT TPeaK ) + (@S, (K, A ?Pua)f)] (419)
= X471 + X472.

Using the inductive hypothesis, and the boujd™*Py..1|| < O(1), the termXy ; is
bounded by

_ _ 2
A= QI A P K f| < OQ)(IE £l + 1 £11)"
We write the commutator ok » as
[K, A*7?Ppa) = A* HATYE, Prg] + A7 Ko, A> A YA Pru)),

since K — Ko commutes withA. Using Proposition 4.3 and the inductive hypothesis
this leads to the following bound foX, »:

Xa2 < (AZ7Qrf, ATYK, Pealf)|
+ |(A2€_1Qkf, (A_l[Ko, A2—2£]A28—1)(A—1Pk+1)f)|
< O)EKFIF+ILFIDCALLID-

This completes the bounds involvidg,.
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Term Xs. Here, we bound
5= §((Qu + K9+ (8 + K@) . A% 2P ).

Assume firs& > 1 (and in any case we ha¥e< n). Looking at the definition ofC, we
see that in this cag@, commutes With%(K + K*) = ReK, and we can rewritds as

Tg = 2<(R9K)f, QZAZE_ZPkﬂf)-

Using the Schwarz inequality and the positivity of Rewe get a bound

TS < ((ReK)f, £)Y*((ReK)QiAZ 2Py f, QEA% 2P f)"?

(Re( f, 1)) (Re(K Q; A* 2 Pessf, QEAZ2Ppaf))™’
(Re( f, )" (Re(A = KQ; A% 2Ppsf, AXQiAZ 2P f))
(Re( f, 1)) "*(Re(fs, f2))/2.

1/2

The first factor is clearly bounded WY K f|| + ||f||)1/2. To boundf1, we expand again:

fl - A72EKQ*A2672PJ¢- - (A72€Q*A2671)(A71P)Kf
+ A72E[K’ Q*]A2€72Pf + Aing*[K, A2572]Pf
+ A72EQ*A2€72[K7 P]f

The norm of the first term is bounded BY(1)(||X f|| + || f]|). Using Proposition 4.3,

the other terms are bounded &1)|| f||. To boundf, we write
f2 - AZEQ*A28—2Pf - A—po*A4E—lf
+ AzaQ*A_ZE_l[A%_l, P]f
+ AZE[C?*7 A_za_l]PA“E_lf.
We control the first term using the inductive hypothesis (it is here that we use the factor

4ei11 < ) and the two others by Proposition 4.3. Combining these bounds, we finally

get the bound’s < O(1)(|| K f| + ||f||)2, and hence the inequality (4.7) is shown for
all 5.

It remains to discuss the cases 0, 1 for the termXs. The commutators of RE
with Qo = Ry 1 or with Q1 do not vanish and hence there are additional ternigin
They are of the form

M
> b m((RE R, RLalf, A% 72 Peaf),

m=1

M

> b m((RE Rim, Qalf, A% 2P f).
m=1

Since [’} ,,, R m, B 1] = const R 10,1 and [R} ,,, R, Q1] = const R, this is
obviously bounded b@(1)(|| K || + (I £1]) I £
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We have discussed now all the cases for the inductive bound @) tfibe discussion
of this step for the)); is the same, except that some simplifications appear because of
the simpler relation§); = [P;, Ko]. The proof of Proposition 4.2 is complete. [

Proof of Theorem 4.1Lete < ¢/ ,,. We rewrite

n+l n
A2 = Azs—z(l + Z QiQ; + Z PrP;). (4.20)
=0 7=1

Note now that forQ = Q;,

AZE—ZQ*Q — Q*AZE—ZQ + [A2€—17 Q*]Q

Using Proposition 4.2 and Proposition 4.3, we get a bound

(f, A=72Q°Qf) < OQ(IK fIl + I £11)* + OQIf )1

Of course, theP satisfy analogous relations. Singa® 2 f|| < O(1)||f||, the assertion
(4.6) follows by summing the terms in Eq. (4.20) . The proof of Theorem 4.1 is complete.
O

Using Theorem 4.1 we can now prove Proposition 3.4. We have

Proposition 4.5. If the potentiall/ satisfies Conditiond1, H2 and if 3o < 2 min(G._,Rr)
there is a\* > 0 such that if the couplings satisf¥_ .|, | \r.m| € (0, A*) then both
L3, and L3, have compact resolvent.

Proof. We show that the operatdt on L2(X, dx) has compact resolvent. From Theo-
rem 4.1 we get the bound

1A=l < C(I0C — o= DfI +[IF1]) (4.21)

forall f € S(X). Since, by Lemma 3.15°(X) is a core ofC, we see, by taking limits,
that the estimate (4.21) holds for dllin D(/C).

We note thatA? has compact resolvent. Indeed, recall the definition Eq. (3.7) of
the effective Hamiltonia-. It is easily checked that, first of ally grows quadratically
in every direction ofR24"*M)_for sufficiently small|\; .,|. Second, it is also easily
verified that

n M
A2 = 1 - Z(Apj + qu) + Z(ATL,m + ATR,m) + W(pa q, 7“),
7j=1 m=1

and, by construction

’
n

W(p,q,r) = Y al (Vy, G +(Vg,G?) + Y a& ((Vp,G)* +(V,,G)?)
j=1 J=n/+1
M

+3 (a (Vi GY + a&(Vie . G)) ,

m=1
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up to bounded terms. Thi (p, ¢, r) diverges in all directions dR24"**)_Using the
Rellich criterion (see [RS], Thm. XI1.67) we conclude th@t has compact resolvent
for everye > 0.

Therefore, Eq. (4.21) implies, using again the Rellich criterion, fatg —1)* (K —
«a — 1) has compact resolvent. We claim this implies thatself has compact resolvent.
Indeed, sinceC — o — 1 is strictly m-accretive, its inverse exists, and therefore the
operator((K — a — 1)*(K — o — 1)) = (K - a - 1))"YK — a — 1)L exists and is
compact. This implies thak{— o — 1)~1 is compact and hendé has compact resolvent
as asserted. [

Finally, we prove Proposition 3.5. We have the following

Proposition 4.6. Let g denote an eigenvector df, or L;, . If the assumptions of
Proposition 3.4 are satisfied therexp(6oG/2) is in the Schwartz spac®(X).

Proof. We prove the corresponding statement for the operitam L2(X, dx). We
consider the set af> vectors ofe’?, i.e., the set

Cx(K) = {f € L¥(X,dx) ; X' f € C°(R*, L3(X, dx))}.

The setC>°(K) obviously contains all eigenvectors Kt Therefore Proposition 4.6 is a
direct consequence of the following proposition.

Proposition 4.7. C*(K) = S(X).
Proof. By Theorem 1.43 in [Da] we have the following characterizatiod Of{«C):
C*(K) = NuzoD(K™),

whereD(K™) = {f € D(K"~ 1), K"~1f € D(K)}.
SinceS(X) € D(K) andKS(X) C S(X), we have the easy inclusion

S(X) € N, DK™) =C>(K).

To show the inclusion in the other direction we will need the following theorem
which we will prove in Appendix C. This is a (slight) generalization of the core theorem,
[Da], Thm. 1.9.

Theorem 4.8. Let B be a Banach space. Let : D(A) — B be m-accretive. For all
n=12 ...,if DisasubsetoD(A")and is dense if8 and furthermoreD is invariant
under the semi-group*?, thenD is a core forA™.

Given this result we first show th&(X) is invariant undee®*. Fors > 0 we consider
the scale of space¥/; given by N, = D(A®), with the norm||f||¢5) = [|A®f]|. For
s < 0 we let\; be the dual of\_,. From the definition ofA?, it is easy to see that
{II - lls); $=0,1,---}is a system of semi-norms for the topology&(fX) and hence
S(X) = NN

To show thatS(X) is left invariant by the semi-group™t generated byc, it is
enough to show that

NN, c N, forall s > 0.
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For f, g in S(X) we have the identity
(AfselC*tASf’ g) - (f, AseKtAfsg)

= (f, 9) +/O dr (f, ASKETA%g)

t (4.22)
=(f, 9) +/ dr(f, (K+B)A*eX™A=%g)
0
t
= (£,9) % [ dr(aeS A + B )
0
where
B =[A®, K]A™?,
is a bounded operator by Proposition 4.3. From (4.22) we see that
%A’Se’c*tAsf = A7SMEAS(KT + BY)f. (4.23)

Now C* is the generator of a strongly continuous quasi-bounded semi-gigiujs

bounded and so, [Ka], Chap. 9, Thm. 2k7; + B* with domain D(K~) is the gen-
erator of a strongly continuous quasi-bounded semi-gedtip 2 ) with || 57|

< el*lIBTDt From (4.23) we see that

e()(:**'B*)t = A_seK*tAs.
Thus we obtain
||A756’C*tAS|| < 6(a+|\B*H)t’

and soe"t : N, — N_,, s > 0, is bounded. By duality®* : N, — N, s > 0, is
also bounded. This implies that

elct-/\/s C Msa s> 0,

and thereforeS(X) is invariant undee*?.
We now use Theorem 4.1. Léte S(X), then replacing’ by A™ f in Eq. (4.6), we
obtain

||fH(m+s) < O(l) (”ICAme + ”fH(m))
< O@) (IIK fllgmy + ILE, A™TEN+ 11 F oy -

Since
IUC, A™1fI = [[A™[C, A™™A™ £l

and sinceA™[KC, A~™] is bounded by Proposition 4.3 we obtain the bound
[ fllem+ey < OQ@) (1K fllemy + 1 fllemy) - (4.24)
Using (4.24) it is easy to see, by induction, that,/for 1,2, - - - we have

Il < 0@ () W1 (4.25)

J=0
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SinceS(X) is a core forkC™ by Theorem 4.8, we see, by taking limits, that

D(K™) C Npe.
Therefore
C®(K) =N, DK™ C NuNye = S(X).

And this concludes the proof of Proposition 4.7.00

Appendix A: Proof of Lemma 3.1

If 2(t) = £(t, w; x) denotes the solution of (3.1), it has the cocycle property

£, 77w; £(s, wi x)) = £( + s, w; @),
which holds for allt, s € R, x € X andw € W. Here we have introduced the shift
(rtw)(s) = w(t + s) on W. In particular the map — £(t, w; 2) is a bijection with

inversez +— &(—t, 7'w; ). A standard argument shows that these maps are actually
diffeomorphisms (see e.g. [IW], Ch. V.2). The Jacobiag(@fw; -) is given by

Tt w7 = Qe (1 wi )] = oo toEC),
and according to (3.2) the Jacobian satisfies
e Bt < J(t, w; z) < Bl
Remark.In our case we have in fact

divb=—d» ~yim=-T <0,
so that
J(t,w; ) =e ",
Lemma 3.1 is an immediate consequence of the following lemmata.

LemmaA.l. T* extends to a strongly continuous, quasi-bounded semi-group of posi-
tivity preserving operators oh?(X, dx). Its generator is the closure df.

Proof. Let f € Cg°, then we have
|7 I = lim /| T @ = fim / dXX (i< [E[S 0 &, wia)]
x| <

< lim /dXX{|m|<R}E[|f|2 o &(t, w; )]

IN

Jim E[/dXX{\m|<R}|f|2 o &(t, w; )|

IN

Jim_ EL [ ayxorcn 0 67w ) FEGI 7w )

IA

Jim_E| / dy 3£ ()] = B £
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ThusT"* extends to a bounded operator of(X, dx) by continuity. A simple approx-
imation argument shows thdt is weakly continuous at = 0, and hence, since it is
obviously a semi-group, strongly continuous. Positivity is evident. Now letCg° (X),
then

(/)T = 1)f — Lf)(x) = /0 ds(1/t)(T° — D)L f(x),

from which we conclude that the generafoof 7% on L?(X, dx) satisfies., C L.

From the inequality Ref, Lf) = —3|lc”V f||> — (f, divbf) < B| f|? and the
fact thatCs® c D(L*) and Ref, L* f) = —3|[cTV f||? + (f, divbf) < BJf||? one
concludes that:

(i) L isaccretive.
(i) Therange of § — L) is dense for Re\) > B.

Hence, by the Lumer—Phillips Theorem (see for example [Da], Theorem 2.25), the
closureL generates a quasi-bounded semi-group &L dx). Since such generators
are maximal accretive, we conclude tiat L.

We shall now consider the Markov semi-group on weightégpaces (such &)
of the form

Hs = LA(X, e %dx),

whereS € C*(X), ande™® € LY(X, dx) is normalized|(e~°||1 = 1). We also assume
that
bS =DVS

with D as in Eq. (3.3) satisfies the condition
ldiv bg|lee < o0. (A1)

The action ofl" on? is obviously equivalent to that ef °/27%¢5/2 on L2( X, dx).
For f € C§°(X), Ito’s formula gives

(e*S/ZTteS/Z)f(x) =E [e(S(x(t))fS(r(O)))/Zf(x(t))‘x(o) = x]
= E[eh Jo 0 NN [T VD 1 1)) 2(0) = ]

=E[D(@0)et b a(t)]a(0) = ],
where
D(t) = oo (3T V) a(N~} [ ds| 30T VS (s
1 . 1
Rs() = (LS)(@) + (VS - DVS)(x) = div (bs) + (b + 5bs) - V.
By the Girsanov formula we obtain
(=521 () = E[e2 Jo PO (g 1) y(0) = 2],

wherey(t) is the Markovian diffusion process defined by the equation

y(t) =y(0) + /O ds (b+bs)(y(s)) + o (w(t) — w(0)).
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Assuming thatRs is bounded above:

¥s = SUpRs(x) < oo,
zeX

and denoting byr's, the semi-group on #(X, dx) associated with the procegg), by
LemmaA.1 we get

(52752 f)()| < e2™sH(Th| f|)(@),

from which one concludes that %/2T*e5/2 extends to a strongly continuous, quasi-
bounded semi-group of positivity preserving operatord.6(X , dx).

By the Feynman—Kac formula (or Cameron—Martin) we can conclude that the gen-
erator of this semi-group is given, ¢if°(X), by

1
Ls=V-DV+(b+bg)-V+ Shs = e 92Led/2,

Repeating the argument of Lemma A.1 we conclude fhatis the generator. Since
C§°(X) is invariant bye*5/2 we get

LemmaA.2. LetS € C*°(X) be such that
(i) bs = DVS satisfies Condition (A.1),
(i) sup,cx(b+ 1bs)  VS(z) < oco.

Then the semi-group? extends to a strongly continuous quasi-bounded semi-group on
‘Hs. MoreoverCge(X) is a core for its generator.

Now Lemma 3.1 is adirect consequence of LemmaA.2. Indeed we apply LemmaA.2

to
S(IC) = BOG(pv q, T)a

whereG is given by (3.7). We see that Condition (i) of Lemma A.2 is satisfied, since
G(p, q,r) is of the form quadratic + bounded. An explicit computation shows that the
assumption

Bo < 2min(GL, Br),

implies that Condition (ii) of Lemma A.2 is satisfied and that the semi-group satisfies
the bound|T?|| < e®* wherea is given by Eq. (3.10). O

Appendix B: Proof of Proposition 4.3

To prove the claims it is useful to introduce some machinery which replaces the pseudo-
differential calculus, which seems unavailable for the class of operators we want to
consider. This may be useful in its own right.

Let F, as in the Hypothesé41, H2 denote the class of functions @& R which
are bounded together with all their derivatives. Matenote the linear space of operators
spanned by

F@qmoy proy ror, (B.1)

where f € F. (The notation is sloppy, we really mean components 1,...,d of
each of these quantities.) We shall say that the quantities in Eq. (B.1) are of degree
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m+m’ +n+n’+{+/{. We let)* denote the subspace Bfspanned by the expressions
of degree less than or equal4oClearly, the operatorg and M of Proposition 4.3 are
in Y1 and)°, respectively, whilekl, and A2 are in)?. Below, we shall use this, but
also an additional property of the potential We have

Lemma B.1. One has the inclusion
[A%,D°] € Y+ (B.2)
Furthermore,Y € )° defines a bounded operator.
Proof. By inspection. [
Proposition B.2. Assume that” € )7, for somej € {0,1,...}. Then

APY A7 (B.3)
defines a bounded operator d8(X, dx), when
Bty < -]
Let Z be an operator in). Assume thetA?, Z] € )7, for somej € {0,1,...}. Then
AP[A™, ZINY (B.4)

defines a bounded operator @8(X, dx) for all «, 5 and~y satisfying
Bry<a—j+2

We will give bounds on various quantities involvipy. For this, we will use throughout
the following device:

Lemma B.3. Let A, be a bounded continuous operator-valued function aihd let
F(\, z) be areal, positive continuous bounded function. Then

||/ dz A.F(A, z)u| < sup||Ay| ||u|\/ dz supF (), 2). (B.5)
0 y>0 0 A>1
If furthermoreA = A, is independent of, one has the bound
|| ARG, 2l < 1] full sup [ 0z FO2). (8.6)
0 A>1J0
Proof. Note first that

||/O dzAzF(A,z)ung/o dz || AL || [ (A, 2)ul.

SinceA, as an operator, satisfidas> 1 we also have from the spectral theorem:
[F(A, 2)|| < SUpF(A, 2).
A>1

Thus, Eqg. (B.5) follows. In a similar way:
I ds APl < Al [ dz Pl
< Al Jull sup [ dz FOv2),
A>1Jo

which is (B.6). The proof of Lemma B.3 is complete. [
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We shall also make use of the following identity, valid foe (0, 2), [Ka] Thm. V.3:
A= M/ dz 2 /2(z + A2) L. (B.7)
T 0

We also letC'_,, = sin(ra/2)/7.

Proof of Proposition B.2lt is obvious that if we show the claim fgt + v = —j, then it
also follows for3+~ < —j. By the definition ofy?, and observing that(q) is bounded,
and by the explicit form of\?, we see that the claim holds wherr 0. We next consider
the casegd +v < 0, —1 < v < 0. In this case we write

APY AT =Y AP + AP[Y, AV].

The first term is clearly bounded as in the case 0, by considering adjoints. The
second term can be written as

AP[Y,A]=C, / dz z7/2A8 [Y, = 2]
0 z+ A
L (B.8)

2+ A%

00 A,B
= CA,/ dz 27/2—— Y, A?]
0 z+ A

By Lemma B.1, we see that] A?] € }7*! and thus, we get, using Eq. (B.5),

AP o
AP[Y, A7]|| < C., sup| —[Y, A2 / dz 272 su .
A7 Il < 7y20|q|y+A2[ Nl [ e Azrl)z+>\2

The norm is bounded becauges [—1,0) andthus3 —2+j+1< +~+4j=0.The
sup over\ is (1 +2)~! and the integral converges becayse [—1, 0).
We now proceed to the other choicesyaby induction. We first deal with negative

~. Assume we have shown thAt(’YAV’ is bounded for ally’ € [—7, 0], and assume
thaty € [-7 — 1, —7), andY € ). We write

APY AT = APy A+ APTY, AT AL

The first term is bounded by the inductive hypothesis. To bound the second, we apply
again the method used in Eq. (B.8). Then we get

AT

2+ A%

APy, A" A =0, / dz z71/2 S[Y, A?]
0 z+ A

Since |V, A?] € Y7*1, we see from the inductive hypothesis that

1

" A2 [}/’ AZ]A'y+l

sup
y>0

AP
Y

< [[a771y, AfAT|

is bounded and hence, using (B.5), we can complete the inductive step.

The casey > 0 is handled by observing that ¢ )7 impliesY* < )7, and
boundingA”Y A” by boundingA"Y * A®. This completes the proof of the first part of
Proposition B.2.
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To prove the second part, we first consider the ease (0, 2). In this case, using
Eq. (B.7), we writeA®’[A™%, Z]A" as

Cfa/ dzz_o‘/zAB{ 1 Z] AY
0

+ A
N (8.9)
—a/2 A 2 A
=C_, dz z 5 [ —.
0 z+ A z+ A
We let B = [A?, Z], use another commutator and rewrite (B.9) as
> AY o AP AY
C'_a/ dz z_o‘/zAﬂBiz + C_a/ dz z_o‘/ziz [AZ, B] —
0 (z + A9)? 0 z+ A (z + A9)?

= Cfa(Xl + X2)
We first boundX;. We get, using Eq. (B.6),

) AJBHY
| Xqul| = ||[APBA™I78 | dzz72/2 5
0 (z + A%)?
) [e'e) )\j+ﬁ+»y
< |lul| HAﬁBA_J_ﬁH Sup/ d,zz_“/zi22
x>1Jo (z+A°)
) 0 pVattan
< APBA=IP|| su / ds s\
< lul| H || AZ? o S8 (s +1)2\4

Since, by assumptiol} € )/, the normis bounded, and the integral is bounded because
B+~ < a-—j+2,byassumption.

To boundX; we first observe that by assumption, and by Lemma 8.%,[A?, B]
is in Y7*1, Therefore, using Eg. (B.5) we find the following bound #o:

AP A 1By
| Xoul = / dzz*a/Z ——CATTP Ly
+A (z + A9)?

) N —1+B+y
2C‘Al‘J‘ﬁH / dz 2= */2supT——.
0 a1 (2 +A9)

< lul| su
< ||y2€’y+1\

This is clearly bounded whefi + v < a — j + 2 anda € (0, 2). This completes the
second part of Proposition B.2 whene (0, 2). If a = 0 the assertion is trivial. The
casex = 2 is handled by considering the identity:

[A72,Z] = A" [A%, Z]A 2.
The cases when > 2 follow inductively by using the identity:
AP[A™O72 ZIAY = AP2[A=%, Z]A"Y + AP[A 2, Z] A7

The cases when < 0 follow by similar identities. The proof of Proposition B.2 is
complete. O

Proof of Proposition 4.3Proposition 4.3 is a simple consequence of Proposition B.2.
SinceZ is in Y1, the claim 2) is covered by the bound on (B.3). We next prove 3). The
operatorKy is in ? andZ is in ). Power counting would suggest thaf{, Z] € )?.
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However, by ConditiotH1, we know thatv,. V' equals a linear term plus a termJi?,

and hence explicit computation shows thap[ Z] € )*. Hence the assertion is covered
by the bound on (B.3). Sincé! € )° we see from Lemma B.1 thaMi, A?] € V!, and
therefore the claim 1) follows from the bound on (B.4). Using again explicit calculation
and ConditiorH1 we see thatZ, A?] is in V! (and not only in)?) and [Ko, A?] is in

)? (and not only in)’3), and hence the cases 4) and 5) follow by applying again the
bound on (B.4). The proof of Proposition 4.3 is completed

Appendix C: A Generalized Core Theorem

We prove here the following result from Sect. 4:
Theorem 4.8. Let B be a Banach space. Let : D(A) — B be m-accretive. For all

n=12,...,if DisasubsetoD(A™)and is dense i8 and furthermoreD is invariant
under the semi-group™?, thenD is a core forA™.

Proof. Let ||| f[ll. = >_}~ |47 f||. Then one has

(i) (DA™, ||| lIln) is complete.
(ii) et is a strongly continuous semi-group aR(A"), ||| - ||/»)-

The statement of the theorem is equivalent to the followin@? Ifdenotes the closure
of D in the norm||| - ||| ,, then we have

D" = D(A™). (C.1)

We show this by induction. Fot = 1, this is the core theorem, [Da], Thm. 1.9. Let us
assume that (C.1) holds far— 1. Let f € D(A™), so there is a sequeng¢,,} € D
such that

i fin— fllacr =0

With the f,,, we construct a sequence which convergeg tothe ||| - |||, norm. We set

n,t) — (t_s)n ' s
s o G

By the above property (iig“* is strongly continuous ia in D(A™) and hencegf("? ¢
D". We set
n—1
(n,t) — (t — S) As
o0z [ 00 v

Sincee”* g is n-times differentiable ins wheng € D(A™), we obtain, upon integrating
by parts:
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n—1 t n—1
() _ 0y = Gl Y H
10 — gl Z;[;S(n—) (o — )
S)n ! As n
— A(m—ﬁH

=ZI/d Sn_ A5 NI ﬁH
=0

-
=
<O D1~ M+ € 4 1)

n—2

n 1 )
(o — ﬁ+/d————7

1A (o = D

A AT, — fﬂ

n—l

(n—1)!

=o(1) asm — oo,

by the inductive hypothesis. This shows thi&t? e D",
To conclude we show thatz (™ — f||,, — 0 ast — 0. We have

t _ -1 )
o e -]
nt =) o
ﬁ(/o dsi(n_l)! e A f-A f)H.

Using thate“? f is n-times differentiable irt, that

(t_S)nl s An
/d e A,

n—1

n! ...
5 0 = £l = >

J=0

is the remainder term in the Taylor expansioredf f, and that fory € D(A)

(e —1)g = / du e Ag,
0

if g € D(A) we obtain the bound

n—1

n! .
128 700 £, 3

717! ! )n ! Au Aj+1 ‘
=0 tn/od (n-1 /du A
n! ' .
W@Af—f—Af—~~wﬂAfw
< O(t) +o(1).

This shows thaf € D". This proves thaD" = D(A™) as required. [
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Note added in proof

In a second paper, [EPR], we answer some questions which remained open in this
paper. In particular, we are able to extend the uniqueness result Theorem 2.2 to arbitrary
temperature differences. Furthermore, we study the heat flux, the entropy production,
and the effect of time reversal.

References

[Br]
[CL]

[Da]
[EPR]

[FGS]

[FK]
[FKM]

[GC]
[GKI]

[GLP]

[GLR]

[GS]
[He]

[HM]
[HN]
[HO]
[Ho]
[Iw]
[IP1]
[IP2]
[IP3]
[IP4]
[Ka]
[Ne]
[OL]
[R-B1]
[R-B2]

[RLL]

Bruck, R.E.: Asymptotic Convergence of Nonlinear Contraction Semigroups on Hilbert Space. J.
Funct. Anal.18, 15 (1975)

Casher, A. and Lebowitz, J.L.: Heat Flow in Regular and Disordered Harmonic Chains. J. Math. Phys.
12,1701 (1971)

Davies, E.B.One-Parameter Semigrougsondon: Academic Press, 1980

Eckmann, J.-P., Pillet, C.-A., and Rey-Bellet, L.: Entropy Production of an Anharmonic Chain out of
Equilibrium. J. Stat. Phys, to appear

Farmer, J., Goldstein, S., and Speer, E.R.: Invariant states of a thermally conducting barrier. J. Stat.
Phys.34, 263-277 (1984)

Ford, G.W. and Kac, M.: On the Quantum Langevin Equation. J. Stat. BBy803 (1987)

Ford, G.W., Kac, M., and Mazur, P.: Statistical Mechanics of Assemblies of Coupled Oscillators. J.
Math. Phys6, 504 (1965)

Gallavotti, G. and Cohen, E.G.D.: Dynamical Ensembles in Stationary States. J. StaB® 9L
(1995)

Goldstein, S., Kipnis, C., and laniro, N.: Stationary states for a mechanical system with stochastic
boundary conditions. J. Stat. Phyd, 915-939 (1985)

Goldstein, S., Lebowitz, J.L., and Presultti, E.: Stationary states for amechanical system with stochastic
boundaries. InRandom Fields(Colloquia Mathematicae Societatanbs Bolyai27). Amsterdam:
North-Holland, 1981

Goldstein, S., Lebowitz, J.L., and Ravishankar, K.: Approach to Equilibrium in Models of a System
in Contact with a Heat Bath. J. Stat. Ph¢8, 303-315 (1986)

Gihman, I.I. and Skorohod, A.\Stochastic Differential Equation8erlin: Springer, 1972

Helffer, B.: Semi-Classical Analysis for the Soklifiger Operator and Applicationgecture Notes

in Mathematicsl336 Berlin: Springer, 1988

Helffer, B. and Mohammed, A.: Caragtisation du Spectre Essentiel de I'€@pfeur de Sclodinger

avec un Champ Maggtique. Ann. Inst. Fourie38, 95 (1988)

Helffer, B. and Nourrigat, J.Hypoellipticitt Maximale pour des Gpéateur Polymimes de Champs

de VecteursBoston: Birktauser, 1985

Hormander, L.The Analysis of Linear Partial Differential OperatoBerlin: Springer, 1983-1985

Hopf, E.: ErgodentheorieBerlin: Springer, reprint 1970

Ikeda, N. and Watanabe, SStochastic Differential Equations and Diffusion Processessterdam:
North-Holland, 1981

Jakic, V. and Pillet, C.-A.: Ergodic Properties of the non-Markovian Langevin Equation. Lett. Math.
Phys.41, 49 (1997)

Jakic, V. and Pillet, C.-A.: Ergodic Properties of Classical Dissipative Systems |. Acta Mathematica.
In print

Jakic, V. and Pillet, C.-A.: Ergodic Properties of Classical Dissipative Systems Il. In preparation
Jakic, V. and Pillet, C.-A.: Spectral Theory of Thermal Relaxation. J. Math. P3g<l757 (1997)

Kato, T.: Perturbation Theory for Linear Operatar8erlin: Springer, 1980

Nelson, E.Dynamical theories of Brownian MotioRrinceton, NJ.: Princeton University Press, 1980
O’Connor, A.J. and Lebowitz, J.L.: Heat Conduction and Sound Transmission in Isotopically Disor-
dered Harmonic Crystals. J. Math. Ph¢5, 692 (1974)

Rey-Bellet, L.: Markov Processes and Non-Equilibrium Statistical Mechanics. Ph.D Thesis, Univer-
sity of Geneva (1998)

Rey-Bellet, L.: Steady States and Transport Properties for Mechanical Systems Coupled to Stochastic
Heat Baths. In preparation

Rieder, Z., Lebowitz, J.L., and Lieb, E.: Properties of a Harmonic Crystal in a Stationary Nonequi-
librium State. J. Math. Phy$, 1073 (1967)



Anharmonic Chains Coupled to Two Heat Baths 697

[RS] Reed M. and Simon, BMethods of Modern Mathematical Physi@oston: Academic Press, 1974—

1978
[SL]  Spohn, H. and Lebowitz, J.L.: Stationary Non-Equilibrium States of Infinite Harmonic Systems.

Commun. Math. Phy$4, 97 (1977)
[Tr] Tropper, M.M.: Ergodic and Quasi-deterministic Properties of Finite Dimensional Stochastic Systems.

J. Stat. Physl7, 491 (1977)
[Yo] Yosida, K.: Functional AnalysisBerlin: Springer, 1980

Communicated by J. L. Lebowitz



