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Abstract: We study the statistical mechanics of a finite-dimensional non-linear Hamil-
tonian system (a chain ofanharmonicoscillators) coupled to two heat baths (described
by wave equations). Assuming that the initial conditions of the heat baths are distributed
according to the Gibbs measures at twodifferenttemperatures we study the dynamics
of the oscillators. Under suitable assumptions on the potential and on the coupling be-
tween the chain and the heat baths, we prove the existence of an invariant measure for
any temperature difference,i.e., we prove the existence ofsteady states. Furthermore,
if the temperature difference is sufficiently small, we prove that the invariant measure is
uniqueandmixing. In particular, we develop new techniques for proving the existence
of invariant measures for random processes on a non-compact phase space. These tech-
niques are based on an extension of the commutator method of H¨ormander used in the
study of hypoelliptic differential operators.

1. Introduction

In this paper, we consider the non-equilibrium statistical mechanics of a finite-dimen-
sional non-linear Hamiltonian system coupled to two infinite heat baths which are at
different temperatures. We show that under certain conditions on the initial data the
system goes to a unique non-equilibriumsteady state. Several of the ideas of this paper
have been developed in the Ph.D. thesis of one of us [R-B1].

To put this new result into perspective, we situate it among other results in equilibrium
and non-equilibrium statistical mechanics. First of all, for the case of onlyoneheat bath
one expects of course “return to equilibrium.” This problem has a long history, and a
proof of return to equilibrium under quite general conditions on thenon-linearsmall
system and its coupling to the heat bath has been recently obtained in [JP1-4], see also
[GLR]. Viewed from the context of our present problem, the main simplifying feature
of the one-bath problem is that the final state can be guessed,a priori, to be the familiar
Boltzmann distribution.
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For the case of two heat baths, there are no results of such generality available,
among other things precisely because one cannot guess in general what the steady state
is going to be. Since we are dealing with systems on a non-compact phase space and
without energy conservation, there is nothing like an SRB Ansatz for our problem [GC].
Worse, even the existence of any stationary state is not obvious at all. The only notable
exceptions are problems where the small system and its coupling to the heat baths are
linear. Then the problem can be formulated in terms of Gaussian measures, and approach
to a steady state has been proved in this case in [RLL, CL, OL] for Markovian heat baths
and in [SL] for the general case. For other “boundary driven models” see [GLP, GKI,
FGS].

Our approach in the present paper will consist in using the spirit of [FKM] and [FK]
to give a microscopic derivation of the equations of motion: under suitable assumptions,
we will reduce the study of the dynamics of the coupled system (an infinite dimensional
Hamiltonian system) to the study of a random finite dimensional dynamical system.
However, we will not achieve the generality of [JP1-4]. Each heat bath is an infinite
dimensional linear Hamiltonian system, in our case it will be chosen as the classical field
theory associated with the wave equation. The small system is a non-linear Hamiltonian
system with an arbitrary (but finite) number of degrees of freedom, in our case it is chosen
as a chain of anharmonic oscillators with nearest neighbor couplings. The potential must
be of quadratic type near infinite energies. The two heat baths are coupled respectively to
the first and the last particle of the chain. The initial conditions of the heat baths will be
distributed according to thermal equilibrium at inverse temperaturesβL , βR. Integrating
the variables of the heat baths leads to a system of random integro-differential equations:
the generalized Langevin equations. They differ from the Newton equations of motion
by the addition of two kinds of force, on one hand there is a (random) force exerted by
the heat baths on the chain of oscillators and on the other hand there is a dissipative
force with memory which describes the genuine retro-action from the heat bath on the
small system. We will choose the couplings between the baths and the chain such that
the random forces exerted by the baths have an exponentially decaying covariance. With
this assumption (see [Tr]), the resulting equations are quasi-Markovian. By this, we
mean that one can introduce a finite number of auxiliary variables in such a way that
the evolution of the chain, together with these variables, is described by a system of
Markovian stochastic differential equations.

With this set-up, we are led to a classical problem in probability theory: the study
of invariant measures for diffusion processes. In our problem, the main difficulties stem
from the facts that the phase space is not compact and that the resulting diffusion process
is degenerate and not self-adjoint. The standard techniques used to prove the existence
of invariant measures do not seem to work in our case and, in this paper, we develop new
methods to solve this problem, which rely on methods of spectral analysis. Our proof
of existence is based on a compactness argument, as often in the proof of existence of
invariant measures. More precisely we will prove that the generator of the diffusion pro-
cess, a second order differential operator, given in our problem, has compact resolvent,
in a suitably chosen Hilbert space. This is done by generalizing the commutator method
of Hörmander, [H¨o], used in the study of hypoelliptic operators. Similar methods have
been used to study the spectrum of Schr¨odinger operators with magnetic fields, see [HM,
He, HN].

The restriction to a chain is mostly for convenience. Other geometries can be ac-
commodated with our methods, and the number of heat baths is not restricted to two.
Furthermore, the techniques developed in this paper can be applied to other interesting
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models of non-equilibrium statistical mechanics, for example, an electric field acting on
a system of particles [R-B2].

2. Description of the Model and Derivation of the Effective Equations

In this section we define a model of two heat baths coupled to a small system, and derive
the stochastic equations which describe the time evolution of the small system. The heat
baths are classical field theories associated with the wave equation, the small system is
a chain of oscillators and the coupling between them is linear in the field.

We begin the description of the model by defining the “small” system. It is a chain
of d-dimensional anharmonic oscillators. The phase space of the chain isR2dn with n
andd arbitrary and its dynamics is described by aC∞ Hamiltonian function of the form

HS(p, q) =
n∑

j=1

p2
j

2
+

n∑
j=1

Uj(qj) +
n−1∑
i=1

U (2)
i (qi, qi+1) ≡

n∑
j=1

p2
j

2
+ V (q), (2.1)

whereq = (q1, . . . , qn), p = (p1, . . . , pn), with pi, qi ∈ Rd.
The potential energy will be assumed “quadratic + bounded” in the following sense.

Let F be the space ofC∞ functionsF onRdn for which∂αF (q) is bounded uniformly
in q ∈ Rdn for all multi-indicesα. Then our hypotheses are

H1) Behavior at infinity: We assume thatV is of the form

V (q) = 1
2

(
q − a,Q(q − a)

)
+ F (q),

whereQ is a positive definite (dn× dn) matrix,a is a vector, and∂q(ν)
i
F ∈ F for

i = 1, . . . , n andν = 1, . . . , d.
H2) Coupling: Each of the (d× d) matrices

Mi,i+1(q) ≡ ∇qi
∇qi+1U

(2)
i (qi, qi+1), i = 1, . . . , n− 1,

is either uniformly positive or negative definite.

Remark.The first hypothesis makes sure the particles do not “fly away.” The second
hypothesis makes sure that the nearest neighbor interaction can transmit energy.As such,
this condition is of the hypoelliptic type.

Example.A typical case (in dimensiond) covered by these hypotheses is given by

Uj(q) = q2 + 5 sin
(√

1 + q2
)
, U (2)

i (q, q′) = (q − q′)2 + sin
(√

1 + (q − q′)2
)
/(2d).

As a model of a heat bath we consider the classical field theory associated with
thed-dimensional wave equation. The fieldϕ and its conjugate momentum fieldπ are
elements of the real Hilbert spaceH = H1

R(Rd) ⊕ L2
R(Rd) which is the completion of

C∞
0 (Rd) ⊕ C∞

0 (Rd) with respect to the norm defined by the scalar product:(
ϕ
π

)
,

(
ϕ
π

)
H

=
∫

dx
(|∇ϕ(x)|2 + |π(x)|2) . (2.2)
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The Hamilton function of the free heat bath is

HB(ϕ, π) =
1
2

∫
dx
(|∇ϕ(x)|2 + |π(x)|2) ,

and the corresponding equation of motion is the ordinary wave equation which we write
in the form (

ϕ̇(t)
π̇(t)

)
= L

(
ϕ
π

)
where

L ≡
(

0 1
1 0

)
.

Let us turn to the coupling between the chain and the heat baths. The baths will be
called “L” and “R”, the left bath couples to the coordinateq1 and the right bath couples to
the other end of the chain (qn). Since we consider two heat baths, the phase space of the
coupled system, for finite energy configurations, isR2dn × H × H and its Hamiltonian
will be chosen as

H(p, q, ϕL , πL , ϕR, πR) = HS(p, q) +HB(ϕL , πL) +HB(ϕR, πR)

+ q1 ·
∫

dxρL(x)∇ϕL(x) + qn ·
∫

dxρR(x)∇ϕR(x).(2.3)

Here, theρj(x) ∈ L1(Rd) are charge densities which we assume for simplicity to be
spherically symmetric functions.

The choice of the Hamiltonian Eq. (2.3) is motivated by the dipole approximation of
classical electrodynamics. For notational purposes we use in the sequel the shorthand

φi ≡
(
ϕi

πi

)
.

We setαi =
(
α(1)

i , . . . , α
(d)
i

)
, i ∈ {L,R}, with

α̂(ν)
i (k) ≡

(−ik(ν)ρ̂i(k)/k2

0

)
.

Here and in the sequel the “hat” means the Fourier transform

f̂ (k) ≡ 1
(2π)d/2

∫
dxf (x)e−ik·x.

With this notation the Hamiltonian becomes

H(p, q, φL , φR) = HS(p, q) +HB(φL) +HB(φR) + q1 · (φL , αL)H + qn · (φR, αR)H,

whereHB(φ) = 1
2‖φ‖2

H. We next study the equations of motions. They take the form

q̇j(t) = pj(t), j = 1, . . . , n,

ṗ1(t) = −∇q1V (q(t)) − (φL(t), αL)H,
ṗj(t) = −∇qj

V (q(t)), j = 2, . . . , n− 1,

ṗn(t) = −∇qn
V (q(t)) − (φR(t), αR)H,

φ̇L(t) = L (φL(t) + αL · q1(t)) ,

φ̇R(t) = L (φR(t) + αR · qn(t)) .

(2.4)
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The last two equations of (2.4) are easily integrated and lead to

φL(t) = eLtφL(0) +
∫ t

0
dsLeL(t−s)αL · q1(s),

φR(t) = eLtφR(0) +
∫ t

0
dsLeL(t−s)αR · qn(s),

where theφi(0), i ∈ {L,R}, are the initial conditions of the heat baths. Inserting into the
first 2n equations of (2.4) gives the following system of integro-differential equations:

q̇j(t) = pj(t), j = 1, . . . , n,

ṗ1(t) = −∇q1V (q(t)) − (φL(0), e−LtαL
)
H −

∫ t

0
dsDL(t− s)q1(s),

ṗj(t) = −∇qjV (q(t)), j = 2, . . . , n− 1,

ṗn(t) = −∇qn
V (q(t)) − (φR(0), e−LtαR

)
H −

∫ t

0
dsDR(t− s)qn(s),

(2.5)

where thed× d dissipation matricesD(µ,ν)
i (t− s), i ∈ {L,R}, are given by

D(µ,ν)
i (t− s) =

(
α(µ)

i , LeL(t−s)α(ν)
i

)
H

= −1
d
δµ,ν

∫
dk |ρ̂i(k)|2|k| sin(|k|(t− s)).

The last expression is obtained by observing that

eLt =

(
cos(|k|t) |k|−1 sin(|k|t)

−|k| sin(|k|t) cos(|k|t)
)
,

written in Fourier space.
So far we only discussed the finite energy configurations of the heat baths. From now

on, we will assume that the two reservoirs are in thermal equilibrium at inverse tem-
peraturesβL andβR. This means that the initial conditions8(0) ≡ {φL(0), φR(0)}
are distributed according to the Gaussian measure with mean zero and covariance
〈φi(f )φj(g)〉 = δij(1/βi)(f, g)H. (Recall that the Hamiltonian of the heat baths is
given by

∑
i∈{L,R}(φi, φi)H.) If we assume that the coupling functionsα(ν)

i are inH,

i ∈ {L,R}, andν ∈ {1, · · · , d} then theξi(t) ≡ φi(0)(e−Ltαi) becomed-dimensional
Gaussian random processes with mean zero and covariance

〈ξi(t)ξj(s)〉 = δi,j
1
βi
Ci(t− s), i, j ∈ {L,R}, (2.6)

and thed× d covariance matricesCi(t− s) are given by

C (µ,ν)
i (t− s) =

(
α(µ)

i , eL(t−s)α(ν)
i

)
H

=
1
d
δµ,ν

∫
dk |ρ̂i(k)|2 cos

(|k|(t− s)
)
.
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The relation

Ċi(t) = Di(t), (2.7)

which is checked easily by inspection, is known as the fluctuation dissipation theorem.
It is characteristic of the Hamiltonian nature of the system. After these assumptions
and transformations, the equations of motion (2.5) become a system of random integro-
differential equations onR2dn which we will analyze in the sequel.

Finally, we impose a condition on the random force exerted by the heat baths on the
chain. We assume that

H3) The covariances of the random processesξi(t) with i ∈ {L,R} satisfyC (µ,ν)
i (t−

s) = δµ,ν

∑M
m=1λ

2
i,me

−γi,m|t−s|, with γi,m > 0 andλi,m > 0.

This can be achieved by a suitable choice of the coupling functionsρi(x), for example

ρ̂i(k) = const.
M∏

m=1

1
(k2 + γ2

i,m)1/2
,

where all theγi,m are distinct. To keep the notation from still further accumulating, we
chooseM the same on the left and the right. We will call the random process given
by Eq. (2.5) quasi-Markovian if ConditionH3 is satisfied. Indeed, using ConditionH3
together with the fluctuation-dissipation relation (2.7) and enlarging the phase space one
may eliminate the memory terms (both deterministic and random) of the equations of
motion (2.5) and rewrite them as a system of Markovian stochastic differential equations.

By Condition H3 we can rewrite the stochastic processesξi(t) as Itô stochastic
integrals

ξi(t) =
M∑

m=1

λi,m

√
2γi,m

βi

∫ t

−∞
e−γi,m(t−s)dwi,m(s),

where thewi,m(s) ared-dimensional Wiener processes with covariance

E
[(
w(µ)

i,m(t) − w(µ)
i,m(s)

)(
w(ν)

j,m′ (t′) − w(ν)
j,m′ (s′)

)]
= δi,jδµ,νδm,m′ |[s, t] ∩ [s′, t′]|,

(2.8)

wheres < t ands′ < t′, E is the expectation on the probability space of the Wiener
process and| · | denotes the Lebesgue measure. We introduce new “effective” variables
rL,m, rR,m ∈ Rd, withm = 1, . . . ,M , which describe both the retro-action of the heat
bath onto the system and the random force exerted by the heat baths:

rL,m(t) = λ2
L,mγL,m

∫ t

0
ds e−γL,m(t−s)q1(s)

− λL,m

√
2γL,m

βL

∫ t

−∞
e−γL,m(t−s)dwL,m(s),

rR,m(t) = λ2
R,mγR,m

∫ t

0
ds e−γR,m(t−s)qn(s)

− λR,m

√
2γR,m

βR

∫ t

−∞
e−γR,m(t−s)dwR,m(s).
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We get the following system of Markovian stochastic differential equations:

dqj(t) = pj(t)dt, j = 1, . . . , n,

dp1(t) = −∇q1V (q(t))dt +
M∑

m=1

rL,m(t)dt,

dpj(t) = −∇qjV (q(t))dt, j = 2, . . . , n− 1,

dpn(t) = −∇qnV (q(t))dt +
M∑

m=1

rR,m(t)dt,

drL,m(t) = −γL,mrL,m(t)dt + λ2
L,mγL,mq1(t)dt− λL,m

√
2γL,m

βL
dwL,m(t),

drR,m(t) = −γR,mrR,m(t)dt + λ2
R,mγR,mqn(t)dt− λR,m

√
2γR,m

βR
dwR,m(t),

(2.9)

which defines a Markov diffusion process onR2d(n+M ). This system of equations is our
main object of study. Our main results are the following:

Theorem 2.1. If ConditionsH1-H2 hold, there is a constantλ∗ > 0, such that for
|λL,m|, |λR,m| ∈ (0, λ∗) with m = 1, . . . ,M , the solution ofEq. (2.9) is a Markov
process which has an absolutely continuous invariant measureµ with aC∞ density.

Remark.In Proposition 3.6 we will show even more. Leth0(β) be the Gibbs distribution
for our system when the heat baths are both at temperature 1/β. If h denotes the density
of the invariant measure found in Theorem 2.1, we find thath/h0(β) is in the Schwartz
spaceS for all β < min(βL , βR). This mathematical statement reflects the intuitively
obvious fact that the chain can not get hotter than either of the baths.

Concerning the uniqueness and the ergodic properties of the invariant measure, our
results are restricted to small temperature differences. We have the following result.

Theorem 2.2. If ConditionsH1-H2 hold, there are constantsλ∗ > 0 andε > 0 such
that for |λL,m|, |λR,m| ∈ (0, λ∗) withm = 1, . . . ,M , and|βL − βR|/(βL + βR) < ε, the
Markov process (2.9) has a unique invariant measure and this measure is mixing.

Remark.The restriction on the couplings between the small system and the bathsλL,m,
λR,m is non-perturbative: it is a condition of stability of the coupled small system plus
heat baths. Indeed, the baths have the effect of renormalizing the deterministic potential
seen by the small system. The constantλ∗ depends only on the potentialV (q): if the
coupling constantsλL,m, λR,m are too large, the effective potential ceases to be stable
and, at least at equilibrium (i.e., for βL = βR), there is no invariant probability measure
for the Markov process (2.9), but only aσ-finite invariant measure (see Eq. (3.7) and
Eq. (3.9)). This restriction is related to ConditionH1 on the potential: for potentials
which grow at infinity faster than quadratically, this restriction would not be present (see
[JP1]). On the other hand, the restriction on the temperature differenceis of perturbative
origin.
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Remark.Another, more physical interpretation of the problem addressed above has been
made by a referee. One starts from a translation invariant coupling between the chain
and either of the baths, which is of the form∫

dxϕ(x)ρ(x− q1).

The dipole expansion for this coupling leads to the terms of the form

q1 ·
∫

dxϕ(x)∇ρ(x) +
q2

1

2
1
d

∫
dx|ρ(x)|2.

We have only taken the first term in (2.3). If one takes both terms, one can takeλL,m

andλR,m arbitrarily large.

A more physical formulation of the results of Theorem 2.2 is obtained by going back
to Eq. (2.5), which expresses all the quantities in terms of the phase space of the small
system and the initial conditions8(0) of the heat baths. Let us introduce some notation:
For given initial conditions8(0), we let2t,8(0)(p, q) denote the solution of Eq. (2.5).
Finally, define

ν(dp,dq) =
∫

r∈R2dM

µ(dp,dq,dr),

whereµ is the invariant measure of Theorem 2.1.

Corollary 2.3. Under the hypotheses of Theorem 2.2, the system Eq. (2.5) reaches
a stationary state and is mixing in the following sense: For any observablesF ,
G ∈ L2(R2dn, ν(dp,dq)) and for any probability measureν0(dp,dq) which is abso-
lutely continuous with respect toν(dp,dq)we have

lim
t→∞

∫
ν0(dp,dq)〈(F ◦ 2t,80

)
(p, q)〉 =

∫
ν(dp,dq)F (p, q),

lim
t→∞

∫
ν(dp,dq)〈(F ◦ 2t,80

)
(p, q)G(p, q)〉

=
∫
ν(dp,dq)F (p, q)

∫
ν(dp,dq)G(p, q).

(2.10)

Here, 〈·〉 denotes the integration over the Gaussian measures of the two heat baths,
introduced earlier.

We explain next the strategy of our argument. Our proof is based on a detailed study
of Eq. (2.9). Letx = (p, q, r). For a Markov processx(t) with phase spaceX and an
invariant measureµ(dx), its ergodic properties may be deduced from the study of the
associated semi-groupT t on the Hilbert space L2(X,µ(dx)). To prove the existence
of the invariant measure in Theorem 2.1 we proceed as follows: We consider first the
semi-groupT t on the auxiliary Hilbert spaceH0 ≡ L2(X,µ0(dx)), where the reference
measureµ0(dx) is a generalized Gibbs state for a suitably chosen reference temperature.
Our main technical result consists in proving that the generatorL of the semi-group
T t onH0 and its adjointL∗ have compact resolvent. This is proved by generalizing the
commutator method developed by H¨ormander to study hypoelliptic operators. From this
follows the existence of a solution to the eigenvalue equation (T t)∗g = g in H0 and this
implies immediately the existence of an invariant measure. To prove Theorem 2.2 we use
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a perturbation argument, indeed at equilibrium (i.e., for βL = βR) the invariant measure
is unique and 0 is a simple eigenvalue of the generatorL in H0. Using the compactness
properties ofL, we show that 0 is a simple eigenvalue of the generatorL in H0 for
|βL − βR|/(βL + βR) small enough. And this can be used to prove the uniqueness claim
of Theorem 2.2, while the mixing properties will be shown by extending the method of
[Tr].

This paper is organized as follows: In Sect. 3 we prove Theorem 2.1 and Theorem 2.2
except for our main estimates Proposition 3.4 and Proposition 3.5 which are proven in
Sect. 4. In Appendices A, B, and C, we prove some auxiliary results.

3. Invariant Measure: Existence and Ergodic Properties

In this section, our main aim is to prove Theorem 2.1 and Theorem 2.2. We first prove
some basic consequences of our AssumptionsH1 andH2. In particular, we define the
semi-groupT t describing the solutions of Eq. (2.9) on the auxiliary Hilbert spaceH0
described in the introduction. Furthermore we recall some basic facts on hypoelliptic
differential operators. Once these preliminaries are in place, we can attack the proof of
Theorem 2.1 and Theorem 2.2 proper.

3.1. Existence and fundamental properties of the dynamics.Let X = R2d(n+M ) and
write the stochastic differential equation (2.9) in the abbreviated form

dx(t) = b(x(t))dt + σdw(t), (3.1)

where

(i) b is aC∞ vector field which satisfies, by ConditionH1,

sup
x∈X

|∂αb(x)| < ∞,

for any multi-indexα such that|α| ≥ 1. In particular

B ≡ ‖div b‖∞ < ∞. (3.2)

(ii) σ : R2dM → X is a linear map. We also define

D ≡ 1
2
σσT ≥ 0. (3.3)

(iii) w ∈ W ≡ C(R; R2dM ) is a standard 2dM -dimensional Wiener process.

Equation (3.1) is a customary abbreviated form of the integral equation

ξ(t, w;x) = x +
∫ t

0
ds b(ξ(s, w;x)) + σ(w(t) − w(0)). (3.4)

It follows from an elementary contraction argument (see e.g. [Ne], Theorem. 8.1) that
(3.4) has a unique solution

R 3 t 7→ x(t) = ξ(t, w;x) ∈ C(R;X),

for arbitrary initial conditionx ∈ X andw ∈ W.
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The differencew(t) − w(0) has the statistics of a standard Brownian motion and
we denote byE[·] the corresponding expectation. By well-known results on stochastic
differential equations, this induces onξ(t, w;x) the statistics of a Markovian diffusion
process with generator

∇ ·D∇ + b(x) · ∇. (3.5)

More precisely (see [Ne] Theorem 8.1): LetC∞(X) denote the continuous functions
which vanish at infinity with the sup-norm and letF t be theσ-field generated byx and
{w(s) − w(0) ; 0< s ≤ t}, then for 0≤ s ≤ t andf ∈ C∞(X) we have

E
[
f (x(t))|Fs

]
= T t−sf (x(s)) a.s., (3.6)

whereT t is a strongly continuous contraction semi-group of positivity preserving op-
erators onC∞(X) whose generator reduces to (3.5) onC∞

0 (X).
In the sequel we denote byL the differential operator (3.5) with domainD(L) =

C∞
0 (X).

To prove the existence of an invariant measure we will study the semi-groupT t or
rather an extension of it on the auxiliary weighted Hilbert spaceH0 described in the
introduction. To defineH0 precisely, we consider the “effective Hamiltonian”

G(p, q, r) = HS(p, q) +
M∑

m=1

(
1

λ2
L,m

r2
L,m

2
+

1
λ2

R,m

r2
R,m

2
− q1 · rL,m − qn · rR,m

)
.
(3.7)

We note that, due to ConditionH1, G(x) → +∞ as |x| → ∞ as long as|λL,m|,
|λR,m| < λ∗ for someλ∗ depending only on the potentialV (q).

We choose further a “reference temperature”β0, which is arbitrary subject to the
condition

β0 < 2 min(βL , βR). (3.8)

For example we could takeβ0 as the inverse of the mean temperature of the heat baths:
β−1

0 = (β−1
L + β−1

R )/2. For the time being, it will be convenient not to fixβ0. Then, we
let

H0 = L2(X,Z−1
0 e−β0G dx), (3.9)

and we denote (·, ·)H0 and‖ · ‖H0 the corresponding scalar product and norm.

Remark.With a proper choice ofZ0, it is easy to check that the quantity

Z−1
0 e−β0G(q,p,r) dx

is the invariant measure for the Markov process Eq. (2.9) whenβL = βR = β0 and
|λL,m|, |λR,m| < λ∗.

Lemma 3.1. If the potentialV satisfies ConditionH1 and ifβ0 < 2 min(βL , βR) there is
aλ∗ > 0 such that if the couplings satisfy|λL,m|, |λR,m| ∈ (0, λ∗), then the semi-group
T t given byEq. (3.6)extends to a strongly continuous quasi bounded semi-groupT t

H0

onH0:
‖T t

H0
‖H0 ≤ eαt,



Anharmonic Chains Coupled to Two Heat Baths 667

whereα is given by

α = d
M∑

m=1

(
γL,m

(
1
2

−
√

(βL − β0/2)β0/2
βL

)
+ γR,m

(
1
2

−
√

(βR − β0/2)β0/2
βR

))

≥ 0.
(3.10)

The generatorLH0 of T t
H0

is the closure of the differential operatorL with domainC∞
0

given by

L =
M∑

m=1

λ2
L,mγL,m

βL

(∇rL,m
− βLWL,m

) · ∇rL,m

+
M∑

m=1

λ2
R,mγR,m

βR

(∇rR,m
− βRWR,m

) · ∇rR,m

+
M∑

m=1

rL,m · ∇p1 +LS +
M∑

m=1

rR,m · ∇pn
,

(3.11)

with the abbreviations

WL,m = λ−2
L,mrL,m − q1, WR,m = λ−2

R,mrR,m − qn, (3.12)

and whereLS is the Liouville operator associated with the HamiltonianHS(q, p):

LS =
n∑

j=1

pj · ∇qj − (∇qjV ) · ∇pj . (3.13)

Moreover,T t
H0

is positivity preserving:

T t
H0
f ≥ 0 if f ≥ 0, (3.14)

and

T t
H0

1 = 1. (3.15)

Remark.We haveα = 0 if only if βL = βR = β0.

Proof. The proof uses standard tools of stochastic analysis and is given in Appendix A.
Having shown a priori bounds using ConditionH1, we will state one basic conse-

quence of ConditionH2. We recall that a differential operatorP is called hypoelliptic
if

sing suppu = sing suppPu for all u ∈ D′(X).

HereD′(X) is the usual space of distributions on the infinitely differentiable functions
with compact support and foru ∈ D′(X), sing suppu is the set of pointsx ∈ X such
that there is no open neighborhood ofx to which the restriction ofu is aC∞ function.

Let P be of the form

P =
J∑

j=1

Y 2
j + Y0, (3.16)
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whereYj , j ∈ {0, . . . , J} are realC∞ vector fields. Then by H¨ormander’s Theorem,
[Hö], Thm. 22.2.1, if the Lie algebra generated byYj , j ∈ {0, . . . , J} has rank dimX
at every point, thenP is hypoelliptic.

Differential operators arising from diffusion problems are of the form (3.16). LetL
be the differential operators given in Eq. (3.11), letLT denote its formal adjoint, then
one may easily check that ConditionH2 implies that any of the following operators:

L, LT, ∂t +L, ∂t +LT,

satisfies the condition of H¨ormander’sTheorem and thus is hypoelliptic.As an immediate
consequence we have:

Corollary 3.2. If ConditionH2 is satisfied then the eigenvectors ofL andLT are C∞
functions.

Next, letP (t, x, E), t ≥ 0, x ∈ X, E ∈ B denote the transition probabilities of the
Markov processξ(t, w;x) solving the stochastic differential equation (2.9) with initial
conditionx, i.e.,

P (t, x, E) = P (ξ(t, w : x) ∈ E) ,

wherePdenotes the probability associated with the Wiener process. Then by the forward
and backward Kolmogorov equations we obtain

Corollary 3.3. If ConditionsH1 andH2 are satisfied then the transition probabilities
of the Markov Processξ(t, w;x) have a smooth density

P (t, x, y) ∈ C∞((0,∞) ×X ×X).

3.2. Proof of Theorem 2.1 and Theorem 2.2.After these preliminaries we now turn to
the study of spectral properties of the generatorLH0 of the semi-groupT t

H0
.

The proof of the existence of the invariant measure will be a consequence of the
following key property which we prove in Sect. 4.

Proposition 3.4. If the potentialV satisfies ConditionsH1, H2 and ifβ0<2 min(βL ,βR)
there is aλ∗ > 0 such that if the couplings satisfy|λL,m|, |λR,m| ∈ (0, λ∗), then both
LH0 andL∗

H0
have compact resolvent.

A useful by-product of the proof of Proposition 3.4 are some additional smoothness and
decay properties of the eigenvalues ofLH0 andL∗

H0
onH0.

Proposition 3.5. Let g denote an eigenvector ofLH0 or L∗
H0

. If the assumptions of
Proposition 3.4 are satisfied then we have

ge−β0G/2 ∈ S(X),

whereS(X) denotes the Schwartz space.

Using these results, we come back to the Markov process defined by Eqs.(2.9), and
whose semi-groupT t was defined in Eq. (3.6). We prove the existence of an invariant
measure with a smooth density and give a bound which shows that, in some sense, the
chain does not get hotter than the hottest heat bath.

Proposition 3.6. Under the assumptionsH1–H2 there is aλ∗ > 0 such that if the
couplings satisfy|λL,m|, |λR,m| ∈ (0, λ∗) the Markov processT t has an invariant
measureµ which is absolutely continuous with respect to the Lebesgue measure. Its
densityh satisfies the following:hexp(βG) ∈ S(X) for all β < min(βL , βR).
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Proof. The function 1 is obviously a solution ofLf = 0 with L defined in Eq. (3.11).
Note next that the function 1 is inH0, as is seen from Eq. (3.9) (if|λL,m| and|λR,m| are
sufficiently small). Since, by Proposition 3.4, the operatorLH0 has compact resolvent
on H0, it follows that 0 is also an eigenvalue ofL∗

H0
. Let us denote the corresponding

eigenvector byg. We will choose the normalization (g,1)H0 = 1. We assume first that
g ≥ 0. Then the function

h(x) = Z−1
0 g(x)e−β0G(x), (3.17)

with β0 andG defined in Eqs.(3.8) and (3.7), is the density of an invariant measure for
the processT t: Indeed, we note first that‖h‖L1(X,dx) = (1, g)H0 is finite and thusµ(dx)
is a probability measure.

LetE be some Borel set. Then the characteristic functionχE of E belongs toH0.
We have ∫

µ(dx)T tχE = Z−1
0

∫
dxe−β0G(x)g(x)T tχE

= Z−1
0

∫
dxe−β0G(x)(T t

H0
)∗g(x)χE

= µ(E),

and thereforeµ(dx) is an invariant measure for the Markov process (2.9).
To complete the first part of the proof of Proposition 3.6 it remains to show that

g ≥ 0. We will do this by checking thath ≥ 0. We need some notation. LetLT denote
the formal adjoint ofL. Then one hasLTh = 0. This follows from the identities∫

dxfLTh = Z−1
0

∫
dxfLT

(
ge−β0G

)
= Z−1

0

∫
dx
(
Lf )ge−β0G

=
(
Lf, g)H0 = (f, L∗

H0
g)H0 = (f,0)H0 = 0,

which hold for allf ∈ C∞
0 (X). Consider now the semi-groupT t acting on the space

C∞(X) defined at the beginning of Sect. 3. The operatorT t induces an action (T t)∗ de-
fined on the dual spaceC∗

∞(X) which consists of finite measures. SinceT t is Markovian,
(T t)∗ maps probability measures to probability measures. Furthermore, if a measureν
has a densityf in L1(X,dx), then (T t)∗ν is a measure which has again a density in
L1(X,dx): Indeed, by Corollary 3.3 the transition probabilities of the Markov process
P (t, x, y) are inC∞ ((0,∞) ×X ×X). If we denote by (T t)T the induced action of
(T t)∗ on the densities, we have forg ≥ 0,

(T t)∗
(
g(x)dx

)
=
∫

dyg(y)P (t, y,dx)

= dx
∫

dyg(y)P (t, y, x) =
(
(T t)Tg

)
(x)dx,

and‖(T t)Tg‖L1 = ‖g‖L1.
Coming back to the invariant densityh, we know that

(T t)Th = h.
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We next show (T t)T|h| = |h|. Since|h| ± h ≥ 0, we have (T t)T(|h| ± h) ≥ 0. This can
be rewritten as

|(T t)Th| ≤ (T t)T|h|.
Therefore,

|h| = |(T t)Th| ≤ (T t)T|h|.

Since (T t)T preserves the L1-norm, we conclude that

|h| = (T t)T|h|. (3.18)

This shows the existence of an invariant measure.
Now, by Proposition 3.5, we havehexp(βG/2) ∈ S(X) for all β < 2 min(βL , βR)

and so forβ < min(βL , βR) it follows thathexp(βG) ∈ S(X). This concludes the proof
of Proposition 3.6. �

We next prove the uniqueness of the invariant measure and the ergodic properties
of the Markov process. We start by fixing an inverse temperatureβ0. If βL = βR = β0,
the two heat baths are at the same temperature, and the equilibrium state of the system
is known, since it is given by the generalized Gibbs distributionZ−1

0 e−β0G. For the
equilibrium case, this distribution is the unique invariant measure. The existence is ob-
vious from what we showed for the case of arbitrary temperatures. To show uniqueness,
assume that there is a second invariant measure. SinceLT is hypoelliptic, then by Corol-
lary 3.2 this measure has a smooth density. Since different smooth invariant measures
have mutually disjoint supports ande−β0G has support everywhere, uniqueness follows.
If the invariant measure is unique, it is ergodic and hence, (see [Yo] and [Ho]) 0 is a
simple eigenvalue ofLH0.

The case of different temperatures will be handled by a perturbation argument around
the equilibrium situation we just described. This perturbation argument will take place
in thefixedHilbert spaceH0 defined in Eq. (3.9). Thus, we will consider values ofβL
andβR such that

1
β0

=
1
2

( 1
βL

+
1
βR

)
,

|βL − βR|
βL + βR

< ε, (3.19)

for some smallε > 0 (which does not depend onβ0).
We first show that 0 remains a simple eigenvalue of the generatorLH0 when the

temperature difference satisfies (3.19) for a sufficiently smallε.

Lemma 3.7. Under the assumptionsH1–H2 there are constantsλ∗ > 0 and ε > 0
such that if the couplings satisfy|λL,m|, |λR,m| ∈ (0, λ∗) and moreoverβL , βR satisfy
(3.19), then0 is a simple eigenvalue of the generatorLH0.

Proof. It will be convenient to work in the flat Hilbert space L2(X,dx). Note thatK =
exp (−β0G/2)Lexp (+β0G/2) is a functionK ≡ K(βL , βR, β0). We write this as

K(βL , βR, β0) = K(β0, β0, β0) + δZ,
where

δ =
βR − βL

βR + βL
.
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One finds

K(β0, β0, β0) =
M∑

m=1

λ2
L,mγL,m

2

(
2
β0

∇2
rL,m

− β0

2
W 2

L,m +
d

λ2
L,m

)

+
M∑

m=1

λ2
R,mγR,m

2

(
2
β0

∇2
rR,m

− β0

2
W 2

R,m +
d

λ2
R,m

)

+
M∑

m=1

rL,m · ∇p1 +LS +
M∑

m=1

rR,m · ∇pn ,

and

Z =
M∑

m=1

λ2
L,mγL,m

2

(
2
β0

∇2
rL,m

+WL,m · ∇rL,m
+ ∇rL,m

·WL,m +
β0

2
W 2

L,m

)

−
M∑

m=1

λ2
R,mγR,m

2

(
2
β0

∇2
rR,m

+WR,m · ∇rR,m
+ ∇rR,m

·WR,m +
β0

2
W 2

R,m

)
.

Furthermore, by Proposition 3.4,R0 ≡ (1 − K(β0, β0, β0))−1 is a compact operator,
and therefore the simple eigenvalue 1 ofR0 is isolated. From now on we assume for
convenience thatα ≡ α(βL , βR) is strictly smaller than one. Note that this is no restriction
of generality: ifα ∈ [n− 1, n) with n > 1, we replace (1− K)−1 by (1− 1

nK)−1 in the
following discussion.

We show next that the resolventR(βL , βR, β0) ≡ (1 − K(βL , βR, β0))−1 depends
analytically on the parameterδ. It is convenient to write the perturbationZ as

Z =
N∑
j=1

EjFj ,

where theEj andFj are of the form const. ∂r(ν)
i,m

or const.W (ν)
i,m, i ∈ {L,R}, m =

1, . . . ,M , andN = 8dM . With the matrix notation

F =

F1
...
FN

 , ET = (E1, . . . , EN ) ,

we can writeZ asZ = ETF . We will use the following resolvent formula:

R(βL , βR, β0) = R0

(
1 + δR0E

T
(
1 − δFR0E

T
)−1

FR0

)
. (3.20)

To justify Eq. (3.20) we have to show that forδ small enough the operator-valued matrix(
1 − δFR0E

T
)

is invertible. It is enough to show thatFjR0Ek is a bounded operator,
for all j, k. For this we decompose 1−K(β0, β0, β0) into its symmetric and antisymmetric
parts:

1 − K(β0, β0, β0) = X + iY,
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where

X = 1 +
M∑

m=1

λ2
L,mγL,m

2

(
− 2
β0

∇2
rL,m

+
β0

2
W 2

L,m − d
1

λ2
L,m

)

+
M∑

m=1

λ2
R,mγR,m

2

(
− 2
β0

∇2
rR,m

+
β0

2
W 2

R,m − d
1

λ2
R,m

)
.

From the simple estimates

‖Ejf‖2 ≤ (f,Xf ),

‖Fjf‖2 ≤ (f,Xf ),

which hold forf ∈ C∞
0 (X), and sinceX is a strictly positive operator we see that

EjX
−1/2 andFjX

−1/2 are bounded operators. From the identity

EjR0Fk = Ej(X + iY )−1Fk

= EjX
−1/2(1 + iX−1/2Y X−1/2)−1X−1/2Fk,

we see thatEjR0Fk are bounded operators for allj, k. Therefore, the r.h.s. of Eq. (3.20)
is well defined for sufficiently smallδ. An immediate consequence of the resolvent
formula (3.20) is that for sufficiently smallδ the spectrum ofR(βL , βR, β0) has the same
form as the spectrumR0: 1 is an eigenvalue and there is a spectral gap and, in particular
1 is a simple eigenvalue. This concludes the proof of Lemma 3.7.�

Next we use this lemma to prove uniqueness of the invariant measure. We have the
following

Theorem 3.8. Under the assumptionsH1–H2 there are constantsλ∗ > 0 andε > 0
such that if the couplings satisfy|λL,m|, |λR,m| ∈ (0, λ∗) and the temperatures satisfy
|βR − βL |/(βL + βR) < ε, the Markov processT t has a unique (and hence ergodic)
invariant measure.

Proof. The proof uses a dynamical argument. By Proposition 3.4 we have in the Hilbert
spaceH0 (with β0 given as in (3.19)) the eigenvalue equationT t

H0
1 = 1 and (T t

H0
)∗g =

g. Let the eigenvectors be normalized such that (g,1)H0 = 1. By Lemma 3.7, 0 is a
simple eigenvalue of the generatorLH0 if (βR − βL)/(βL + βR) is small enough and by
Proposition 3.6, the measureµ(dx) =Z−1

0 g exp (−β0G) is an invariant measure for the
Markov process. It is absolutely continuous with respect to the Lebesgue measure which
we denote byλ.

Assume now thatν is another invariant probability measure. By the hypoellipticity
ofL it must have a smooth density. Therefore there is a Borel setA ⊂ X, which we may
assume bounded, with the following properties: we haveν(A) > 0 andλ(A) > 0 but
µ(A) = 0, because the measures have disjoint supports. LetχA denote the characteristic
function of the setA. By the pointwise ergodic theorem, see [Yo] and [Ho], we have,
denotingσs(x) the ergodic averageσs(x) = (1/s)

∫ s

0 dt T tχA(x),

lim
s→∞σs(x) = ν(A), ν–a.e.. (3.21)
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SinceT t is a contraction semi-group onB(X,B), andχA ≤ 1 we find‖σs‖∞ ≤ 1, for
all s > 0. From the easy bound

‖σs‖H0 ≤ ‖σs‖∞,

we see that the set{σs, s > 0} is a bounded subset ofH0 and hence weakly sequentially
precompact. Therefore, there is a sequencesn ↑ ∞ such that

w–lim
n→∞ σsn = σ∗,

where w–lim denotes the weak limit inH0. SinceTu is a bounded operator for allu > 0,
we have

w–lim
n→∞ Tuσsn

= Tuσ∗.

We next show

Tuσ∗ = σ∗. (3.22)

Indeed,

Tuσsn
(x) =

1
sn

∫ sn+u

u

dt T tχA(x)

= σsn
− 1
sn

∫ u

0
dt T tχA(x) +

1
sn

∫ sn+u

sn

dt T tχA(x).
(3.23)

The last two terms in (3.23) are bounded byu/sn and we obtainTuσ∗ = σ∗ for all
u > 0 by taking the limitn → ∞ in (3.23).

Therefore,σ∗ is in the eigenspace of the eigenvalue 1 ofT t
H0

, t > 0 and so, by
Lemma 3.7σ∗ = c1. To computec we note thatc = (g, σ∗)H0 and, using the invariance
of the measure, we get

c = lim
n→∞

(
g,

1
sn

∫ sn

0
dt T t

H0
χA

)
H0

= lim
n→∞

1
sn

∫ sn

0
dt
∫
µ(dx)T tχA = µ(A).

So we havec = µ(A) andµ(A) = 0 by hypothesis. Using this information, we consider
(χA, σsn

)H0. We have, on one hand,

lim
n→∞(χA, σsn)H0 = (χA, σ

∗)H0 = 0,

and on the other hand we have, by Eq. (3.21) and by the dominated convergence theorem,

lim
n→∞(χA, σsn )H0 =

∫
dxν(A)χAZ

−1
0 e−β0G > 0,

and this is a contradiction. This shows that there is a unique invariant measure for the
Markov processT t and as a consequence the measure is ergodic.�

We will now strengthen the last statement by showing that the invariant measure is
in fact mixing. This will be done by extending the proof of return to equilibrium given
in [Tr].
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Proposition 3.9. Assume that the conditions of Theorem 3.8 are satisfied. Then the
invariant measureµ(dx) for the Markov processT t is mixing, i.e.,

lim
t→∞

∫
µ(dx)f (x)T tg(x) =

∫
µ(dx)f (x)

∫
µ(dx)g(x),

for all f, g ∈ L2(X,µ(dx)).

Proof. We denoteH = L2(X,µ(dx)) and its scalar product by (·, ·)H and by‖ · ‖H its
norm. By [Yo], Chap. XIII.1, Thm. 1,T t defines a contraction semi-group onH. Since
T t is a strongly continuous semi-group onC∞(X) (see [Ne]) and sinceC∞(X) is dense
in H, we can extendT t to a strongly continuous semi-groupT t

H onH. The property of
mixing is equivalent to

w–lim
t→∞ T t

Hf = (1, f )H for all f ∈ H. (3.24)

By a simple density argument it is enough to show (3.24) for a dense subset ofH.
Let C2(X) denote the bounded continuous functions whose first and second partial
derivatives are bounded and continuous. Then – [GS], Part II,§9 – if f ∈ C2(X), then
T t

Hf ∈ C2(X) and for anyτ < ∞, T t
Hf is uniformly differentiable w.r.t.t ∈ [0, τ ] and

∂

∂t
T t

Hf = Lf,

whereL is the differential operator given in (3.11). Letf ∈ C2(X). Using the fact,
see Proposition 3.5 and Proposition 3.6, that the density of the invariant measure is of
the formh(x) = g̃e−β0G/2 with g ∈ S(X), we may differentiate under the integral and
integrate by parts and using the invariance of the measure we obtain

d
dt

‖T t
Hf‖2

H = (LT t
Hf, T

t
Hf )H + (T t

Hf, LT
t
Hf )H

= −
∑

i∈{L,R}
m∈{1,...,M}
ν∈{1,...,d}

2λ2
i,mγi,m

βi
‖∂r(ν)

i,m
T t

Hf‖2
H, (3.25)

where∂r(ν)
i,m

is the differential operator with domainC2(X). Thus‖T t
Hf‖2

H is decreasing,

bounded below and continuous and so limt→∞ ‖T t
Hf‖2

H exists. As a consequence we
find

‖∂r(ν)
i,m
T t

Hf‖2
H ∈ L1([0,∞), dt). (3.26)

Following [Tr] and [Br], we call a sequence{tn} a (∗)-sequence iftn ↑ ∞ and

lim
n→∞ ‖∂r(ν)

i,m
T tn

H f‖2
H = 0. (3.27)

The existence of (∗)-sequences for our problem follows easily from (3.26). Further we
define an almost (∗)-sequence as a sequencesn ↑ ∞ for which there exists a (∗)-sequence
{tn} with |sn − tn| → 0 asn → ∞. As in [Tr] we next show that w–limn→∞ T tn

H f =
w–limn→∞ T sn

H f . Indeed, let us chooseτ < min(t1, s1). From the inequality
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‖ d
dt
T t

Hf‖H = ‖T t−τ
H LT τ

Hf‖H ≤ ‖LT τ
Hf‖H,

which holds fort > τ , we have

‖(T sn

H − T tn

H )f‖H ≤ |sn − tn| ‖LT τ
Hf‖H → 0, n → ∞,

which shows thatT tn

H f andT sn

H f have the same weak limit.
The set{T t

Hf, t ≥ 0} is bounded and hence sequentially weakly precompact, so
that by passing to a subsequence, we may assume that

w–lim
n→∞ T tn

H f = γ, γ ∈ H.

Next we show that for all (∗)-sequences w–limn→∞ T tn

H is a locally constant function
µ− a.e.We begin by showing thatγ does not depend on the variablesr.

Let ∂∗
r(ν)

i,m

denote the adjoint of∂r(ν)
i,m

in H and letψ ∈ C∞
0 (X). By the smoothness

properties of the density of the invariant measure we see that the functionψ is in the
domain of∂∗

r(ν)
i,m

and we have, using (3.27)

(γ, ∂∗
r(ν)

i,m

ψ)H = lim
n→∞(T tn

H f, ∂∗
r(ν)

i,m

ψ)H = lim
n→∞(∂r(ν)

i,m
T tn

H f, ψ)H = 0.

Written explicitly,∫
dp dq drγ(p, q, r)∂r(ν)

i,m

(
ψ(p, q, r)h(p, q, r)

)
= 0, (3.28)

for anyψ ∈ C∞
0 (X). Sinceγ ∈ H, we may setγ = 0 on the setA ≡ {x ∈ X ; h(x) = 0}

andγ is locally integrable and thus defines a distribution inD′(X). By Eq. (3.28) the
support of the distribution∂r(ν)

i,m
γ(p, q, r) does not intersect the setA and thusγ(p, q, r)

is µ-a.e. independent ofr.
Let t > 0. Then w–limn→∞ T tn+t

H f = T t
Hγ. Sincet + tn ↑ ∞, it is easy to show,

see [Br], thattn + t has an almost (∗)-subsequencesn and from the above arguments we
conclude thatT t

Hγ is independent ofr.
Next we show inductively, using ConditionH2 thatγ does not depend on the variables

p, q. Let (T t
H)∗ denote the semi-group dual toT t

H onH and denoteZ its generator.
Note that forψ ∈ C∞

0 (X) we have, upon integrating by parts

d
dt

(ψ, T t
Hf )H = (ψ,LT t

Hf )H

=
∫

dp dq dr
∑

i∈{L,R}
m∈{1,...,M}

λ2
i,mγi,m

βi

[∇ri,m
· (∇ri,m

+ βiWi,m

)
ψh
]
T t

Hf

−
∫

dp dq dr
(
L0(ψh)

)
T t

Hf,

(3.29)

whereL0 is given by

L0 =
M∑

m=1

rL,m · ∇p1 +
M∑

m=1

rR,m · ∇pn
+

n∑
j=1

pj · ∇qj
− (∇qj

V ) · ∇pj
.
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SinceC∞
0 (X) is in the domain ofZ, we get

d
dt

(ψ, T t
Hγ)H = (Zψ, T t

Hγ)H = lim
n→∞(Zψ,LT tn+t

H f )H

= (Zψ, T t
Hγ)H = −

∫
dp dq dr

(
L0(ψh)

)
T t

Hγ.

The last equality follows from (3.29) sinceT t
Hγ is independent ofr. We next choose

ψ(p, q, r) ∈ C∞
0 (X) of the form ψ(r, p, q) = ϕ1(r)ϕ2(p, q)h−1(p, q, r) with

supp(ϕ1(r)ϕ2(p, q)) ∩A = ∅ and
∫

drϕ1(r) = 0. For this choice ofψ we have

(ψ, T t
Hγ)H =

∫
dp dq

(
T t

Hγ
)
(p, q)ϕ2(p, q) ·

∫
drϕ1(r) = 0,

and therefore

0 =
∫

dp dq drγ(p, q)L0(ϕ1(r)ϕ2(p, q))

=
∫

dp dqγ(p, q)∇p1ϕ2(p, q) ·
∫

dr
M∑

m=1

rL,mϕ1(r)

+
∫

dp dqγ(p, q)∇pn
ϕ2(p, q) ·

∫
dr

M∑
m=1

rR,mϕ1(r).

Sinceϕ1(r) is arbitrary, it follows that∫
dp dqγ(p, q)∇p1ϕ2(p, q) =

∫
dp dqγ(p, q)∇pnϕ2(p, q) = 0,

and thus, by a similar argument as above,γ(p, q) must beµ-a.e. independent ofp1 and
pn: Thusγ is a functionγ(p2, . . . , pn−1).

Using this information, we choose now

ψ(p, q, r) = ϕ1(p1, pn)ϕ2(p2, . . . , pn−1, q)ϕ3(r)h−1(p, q, r),

with supp(ϕ1ϕ2ϕ3) ∩ A = ∅ and
∫

dp1dpn ϕ1(p1, pn) = 0. For such a choice ofψ we
obtain

0 =
∫

dp dq drL0(ϕ1ϕ2ϕ3)γ

=
∫

dp2 · · · dpn−1dqγ(∇q1ϕ2) ·
∫

dp1 dpn p1ϕ1

∫
drϕ3

+
∫

dp2 · · · dpn−1 dqγ(∇qn
ϕ2) ·

∫
dp1dpn pnϕ1

∫
drϕ3,

and from the arbitrariness ofϕ1, ϕ2, ϕ3 we conclude thatγ is independent ofq1, qn (all
our statements holdµ-a.e.). Finally, choose

ψ(p, q, r) = ϕ1(q1, qn)ϕ2(p2, . . . , pn−1, q2, . . . , qn−1)ϕ3(p1, pn, r)h
−1(p, q, r),
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with supp(ϕ1ϕ2ϕ3) ∩A = ∅ and
∫

dq1dqn ϕ1(q1, qn) = 0. Then we obtain

0 =
∫

dp2 . . .dpn−1dq2 . . .dqn−1 γ(∇p2ϕ2) ·
∫

dq1dqn (∇q2V )ϕ1

∫
dp1dpndrϕ3

+
∫

dp2 . . .dpn−1dq2 . . .dqn−1 γ(∇pn−1ϕ2)

·
∫

dq1dqn (∇qn−1V )ϕ1

∫
dp1dpndrϕ3.

From the arbitrariness of theϕi we conclude in particular that

0 =
∫

dp2 . . .dpn−1dq2 . . .dqn−1 γ(∇p2ϕ2) ·
∫

dq1dqn (∇q2V )ϕ1. (3.30)

We may chooseϕ1(q1, qn) = ∂
q(ν′ )

1
ϕ̃(q1, qn) for someν′ ∈ {1, . . . , d} and a positive

ϕ̃(q1, qn). By ConditionH2 we see that

Xν,ν′
(q2) ≡

∫
dq1dqn (∂q(ν)

2
V )ϕ1(q1, qn) = −

∫
dq1dqn (∂

q(ν′ )
1
∂q(ν)

2
V )ϕ̃1(q1, qn)

is uniformly positive or negative. We can rewrite (3.30) as

0 =
∑

ν∈{1,... ,d}

∫
dp2 . . .dpn−1dq2 . . .dqn−1 γ∂p(ν)

2
Xν,ν′

(q2)ϕ2,

and we conclude thatγ is independent ofp2. A similar argument shows thatγ is inde-
pendent ofqn−1 and iterating the above procedure we conclude thatγ is locally constant
µ-a.e.

So far, we have shown that for all (∗)-sequences{tn} one has w–limn→∞ T tn

H f =
γ = const. From the invariance of the measureµ and its ergodicity we conclude that

γ = (1, f )H =
∫
µ(dx)f (x).

We conclude as in [Tr]: suppose that w–limt→∞ T t
Hf 6= (1, f )H. Then by the weak

sequential precompactness of{T t
Hf ; t ≥ 0}, there exists a sequenceun ↑ ∞ for

which w–limt→∞ T t
Hf = η 6= (1, f )H. But, referring again to [Br], the sequence

{un} has an almost (∗)-subsequence{sn}. This implies that there is a (∗)-sequence
{tn} such that w–limn→∞ T tn

H f = η. This is a contradiction, since we have seen that
w–limn→∞ T tn

H f = (1, f )H for all (∗)-sequences. By a simple density argument this
implies that

lim
t→∞

∫
µ(dx)f (x)T t

Hg(x) =
∫
µ(dx)f (x)

∫
µ(dx)g(x),

for all f, g ∈ H and the proof of Proposition 3.9 is complete.�

With Proposition 3.9 the proof of Theorem 2.2 is now complete.
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4. Commutator Estimates and Spectral Properties ofLH0

In this section, we prove Proposition 3.4 and Proposition 3.5. We generalize the commu-
tator method of H¨ormander to study the spectral properties of the operatorLH0 which
is, by Lemma 3.1, the closure of the differential operatorL with domainC∞

0 (X) which
we defined in Eq. (3.11). We recall the definition:

L =
M∑

m=1

λ2
L,mγL,m

βL

(∇rL,m
− βLWL,m

) · ∇rL,m

+
M∑

m=1

λ2
R,mγR,m

βR

(∇rR,m − βRWR,m

) · ∇rR,m

+
M∑

m=1

rL,m · ∇p1 +LS +
M∑

m=1

rR,m · ∇pn
,

(4.1)

with the abbreviations

WL,m = λ−2
L,mrL,m − q1, WR,m = λ−2

R,mrR,m − qn, (4.2)

and whereLS is the Liouville operator associated with the HamiltonianHS(q, p):

LS =
n∑

j=1

pj · ∇qj
− (∇qj

V ) · ∇pj
. (4.3)

For the following estimates it will be convenient to work in the flat Hilbert space
L2(X,dx). The differential operatorL is unitarily equivalent to the operatorK on
L2(X,dx) with domainC∞

0 (X) given by

K = e−β0G/2Leβ0G/2

= α−
M∑

m=1

λ2
L,mγL,m

βL
R∗

L,mRL,m −
M∑

m=1

λ2
R,mγR,m

βR
R∗

R,mRR,m + Kas,
(4.4)

whereα is given by (3.10) and

RL,m = ∇rL,m
+
√

(βL − β0/2)β0/2WL,m,

RR,m = ∇rR,m +
√

(βR − β0/2)β0/2WR,m,

Kas =
M∑

m=1

rL,m · ∇p1 +LS +
M∑

m=1

rR,m · ∇pn

− βL − βR

βL + βR

M∑
m=1

λ2
L,mγL,m

2

(∇rL,m ·WL,m +WL,m · ∇rL,m

)
+
βL − βR

βL + βR

M∑
m=1

λ2
R,mγR,m

2

(∇rR,m
·WR,m +WR,m · ∇rR,m

)
.

All subsequent estimates will be valid for anyf ∈ S(X) and thus for all functions in
the domain ofK.
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It is convenient to introduce the following notations: We introduce new variables,
and recall some earlier definitions: Letn′ = [n/2] denote the integer part ofn/2. We
define

Pj = ∇pj
+ aLpj , j = 1, . . . , n′,

Pj = ∇pj + aRpj , j = n′ + 1, . . . , n,

Qj = ∇qj
+ aLWj(q, r), j = 1, . . . , n′,

Qj = ∇qj
+ aRWj(q, r), j = n′ + 1, . . . , n,

RL,m = ∇rL,m + aLWL,m(q, r), m = 1, . . . ,M,

RR,m = ∇rR,m + aRWR,m(q, r), m = 1, . . . ,M,

where

aL =
(
(βL − β0/2)β0/2

)1/2
,

aR =
(
(βR − β0/2)β0/2

)1/2
,

W1(q, r) = ∇q1V (q) −
M∑

m=1

rL,m,

Wj(q, r) = ∇qjV (q), j = 2, . . . , n− 1,

Wn(q, r) = ∇qn
V (q) −

M∑
m=1

rR,m,

WL,m(q, r) = λ−2
L,mrL,m − q1, m = 1, . . . ,M,

WR,m(q, r) = λ−2
R,mrR,m − qn, m = 1, . . . ,M.

We next define the operatorsK0, K, and3 which will be used in the statement of our
main bound:

3 =

(
1 +

n∑
j=1

P ∗
j Pj +

n∑
j=1

Q∗
jQj +

M∑
m=1

(
R∗

L,mRL,m +R∗
R,mRR,m

))1/2

,

K0 = Kas,

K = α− K = −K0 +
M∑

m=1

(bL,mR
∗
L,mRL,m + bR,mR

∗
R,mRR,m).

(4.5)

Here, we use
bL,m = λ2

L,mγL,m/βL , bR,m = λ2
R,mγR,m/βR.

Our main estimate is

Theorem 4.1. Under the AssumptionsH1, H2 onV , there are anε > 0 and aC < ∞
such that for allf ∈ S(X) one has

‖3εf‖ ≤ C
(‖Kf‖ + ‖f‖). (4.6)

Proof. The proof will be an easy consequence of the following
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Proposition 4.2. There are finite constantsCj , C ′
j , andC such that for allf ∈ S(X)

one has withn′ = [n/2],

‖3εj−1Pjf‖ ≤ Cj

(‖Kf‖ + ‖f‖), j = 1, . . . , n′, (4.7)

‖3εj−1Pn+1−jf‖ ≤ Cj

(‖Kf‖ + ‖f‖), j = 1, . . . , n− n′, (4.8)

‖3ε′
j−1Qjf‖ ≤ C ′

j

(‖Kf‖ + ‖f‖), j = 1, . . . , n′, (4.9)

‖3ε′
j−1Qn+j−1f‖ ≤ C ′

j

(‖Kf‖ + ‖f‖), j = 1, . . . , n− n′, (4.10)

‖RL,mf‖ + ‖RR,mf‖ ≤ C
(‖Kf‖ + ‖f‖), m = 1, . . . ,M, (4.11)

whereεj = 41−2j andε′
j = 4−2j .

Proof of Proposition 4.2.For theRi,m, we have the easy estimate

‖Ri,mf‖2 = (f,R∗
i,mRi,mf ) ≤ b−1

i,m Re(f,Kf )

≤ b−1
i,m‖Kf‖ ‖f‖ ≤ b−1

i,m

(‖Kf‖ + ‖f‖)2
.

(4.12)

This proves Eq. (4.11) for these cases.
For the other cases, the proof will proceed by induction: It will proceed by bounds

onP1, Q1, P2, . . . , Qn′ , and a totally symmetric argument, which is left to the reader,
can be used from the other end of the chain, proceeding overPn, Qn, Pn−1, until the
bounds reach the “center” of the chain. We next prepare the inductive proof. To make
the result of this calculation clearer, we define the matrices

Mj,k = ∇qj ∇qk
V, j, k = 1, . . . , n.

In components, this means, forµ, ν ∈ {1, . . . , d},

M(µ,ν)
j,k = ∇q(µ)

j
∇q(ν)

k
V, j, k = 1, . . . , n.

By our choice of potentialV all theMj,k vanish, exceptMj,j , with j = 1, . . . , n and
Mj+1,j = Mj,j+1, with j = 1, . . . , n−1. Furthermore, by ConditionH1, all theM(µ,ν)

j,k
are uniformly bounded functions ofq. Finally, by AssumptionH2, the matricesMj,j+1
are definite, with uniformly bounded inverse.

One verifies easily the relations:

[RL,m,K0] = P1 + cmRL,m,

[P1,K0] = Q1,

[Q1,K0] = −M1,1P1 − M2,1P2 +
M∑

m=1

c′m(RL,m +R∗
L,m),

[Pj ,K0] = Qj , j = 2, . . . , n− 1,

[Qj ,K0] = −Mj−1,jPj−1 − Mj,jPj − Mj+1,jPj+1, j = 2, . . . , n− 1,

(4.13)

where

cm = γL,m(βL − β0)/βL ,

c′m = bL,maL(βL − β0).
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Symmetrical relations hold at the other end of the chain. With these notations, we can
rewrite (among several possibilities):

P1 = [RL,1,K0] − c1RL,1,

Q1 = [P1,K0],

P2 = −M−1
2,1

(
[Q1,K0] + M1,1P1 −

M∑
m=1

c′m(RL,m +R∗
L,m)

)
,

Qj = [Pj ,K0], j = 2, . . . , n,

Pj+1 = −M−1
j+1,j

(
[Qj ,K0] + Mj−1,jPj−1 + Mj,jPj

)
, j = 2, . . . , n′,

(4.14)

with symmetrical relations at the other end of the chain. We can streamline this repre-
sentation by definingQ0 = RL,1, andM1,0 = −1. Then we can write, forj = 1, . . . , n′:

Pj = −M−1
j,j−1

(
[Qj−1,K0] + Sj

)
, (4.15)

Qj = [Pj ,K0], (4.16)

where the operatorsSj depend linearly on{P1, . . . , Pj−1}, {Q1, . . . , Qj−1}, and the
RL,m. The relations Eqs.(4.15) and (4.16) will be used in the inductive proof.

Such relations are of course reminiscent of those appearing in the study of hypoel-
liptic operators. The novelty here will be that we obtain bounds which are valid not only
in a compact domain, but in the unbounded domain of thep’s andq’s.

The following bounds will be used repeatedly:

Proposition 4.3. LetZ denote one of the operatorsQj , Q∗
j , Pj , or P ∗

j . LetM denote
one of theMj,k. Assume thatα ∈ (0,2). Then the following operators are bounded in
L2(X,dx):

1) 3β [M,3−α]3γ , if β + γ ≤ α + 1,
2) 3βZ3γ , if β + γ ≤ −1,
3) 3β [K0, Z]3γ , if β + γ ≤ −1,
4) 3β [Z,3−α]3γ , if β + γ ≤ α + 1,
5) 3β [3−α,K0]3γ , if β + γ ≤ α.

Proof. The proof will be given in Appendix B.

Because we are working in an infinite domain, and work with non-linear couplings, we
will not bound the l.h.s. of Eq. (4.7) directly, but instead the more convenient quantity1:

Rj(f ) = (3εj−1Mj,j−1Pjf, 3εj−1Pjf ).

We have the

Lemma 4.4. There is a constantC such that for allj ∈ {1, . . . , n} and all f ∈ S(X)
one has the inequality

‖3εj−1Pjf‖2 ≤ C
(|Rj(f )| + ‖f‖2

)
.

1 For readers familiar with the method of H¨ormander, we wish to point out that this device seemed necessary
because we do not have good bounds on [K0, [Q1, K0]].
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Therefore, to prove Eq. (4.7), it suffices to prove the corresponding inequality for theRj .

Proof of Lemma 4.4.Let M = Mj,j−1, ε = εj , andP = Pj . Then, by our Assumption
H2, there is a constantm > 0 for whichM > m. Therefore,

‖3ε−1Pf‖2 = (3ε−1Pf, 3ε−1Pf )

≤ m−1|(M3ε−1Pf, 3ε−1Pf )|
≤ m−1|(3ε−1MPf, 3ε−1Pf )| +m−1|([3ε−1,M]Pf, 3ε−1Pf )|
≤ m−1|Rj(f )| +m−1|((3ε[3ε−1,M]3)(3−1P )f, (3−1P )f

)|.
The proof of Lemma 4.4 is completed by using the bounds 1) and 2) of Proposition 4.3.
�

The inductive step.We begin by the induction step for thePj . We assume now that
the bounds (4.7) and (4.9) have been shown for allj ≤ k. We want to show (4.7) for
j = k + 1. Using Eq. (4.15) and Lemma 4.4, we start by writing

Rk+1(f ) ≡
(

3εk+1−1Mk+1,kPk+1f, 3εk+1−1Pk+1f

)
=

(
32εk+1−1[K0, Qk]f, 3−1Pk+1f

)
−
(

32εk+1−1Sk+1f, 3−1Pk+1f

)
≡ X1 −X2.

We first boundX2. Note thatSk+1 is a sum of terms of the formMT whereT is equal
to Pj or Qj with j ≤ k, andM is either a constant or equal to one of theMk,`.
Therefore, we obtain, using Proposition 4.3, the inductive hypothesis, and the choice
2εk+1 ≤ minj≤k(εj , ε

′
j) = ε′

k:

|(32εk+1−1MTf, 3−1Pk+1f )|
≤ |(M32εk+1−1Tf, 3−1Pk+1f

)| + |(([32εk+1−1,M]3) (3−1T )f, 3−1Pk+1f
)|

≤ O(1)
(‖Kf‖ + ‖f‖)‖f‖ + O(1)‖f‖2 ≤ O(1)

(‖Kf‖ + ‖f‖)2
.

This proves the desired bound.
We now come to the “interesting” termX1. The commutator is rewritten as

[K0, Qk] = −QkK −K∗Qk + 1
2

(
Qk(K +K∗) + (K +K∗)Qk

)
≡ X3 +X4 +X5.

We discuss the 3 corresponding bounds:

TermX3. In this case, we are led to bound, withε = εk+1,

T3 ≡ |(QkKf, 32ε−2Pk+1f )| = |(Kf, Q∗
k32ε−2Pk+1f )|

= |(Kf, (Q∗
k32ε−1)(3−1Pk+1)f )|

≤ |(Kf, (3−1Pk+1)(Q
∗
k32ε−1)f )| + |(Kf, [Q∗

k32ε−1,3−1Pk+1]f )|
≡ X3,1 +X3,2.

(4.17)
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We start by boundingX3,1. Since3−1Pk+1 is bounded by Proposition 4.3, it suffices to
show that

‖Q∗
k32ε−1f‖ ≤ C

(‖Kf‖ + ‖f‖). (4.18)

To see this we first write, usingQ = Qk,

‖Q∗32ε−1f‖2 = (f, 32ε−1QQ∗32ε−1f )

= ‖32ε−1Qf‖2 + (f, [32ε−1Q,Q∗32ε−1]f ).

The first term is bounded by the inductive hypothesis byO(1)
(‖Kf‖ + ‖f‖)2

and
the choice ofεk+1, while the second can be bounded byO(1)‖f‖2 by expanding the
commutator (and using Proposition 4.3):

[32ε−1Q,Q∗32ε−1] = (32ε−1Q∗3−2ε)32ε[Q,32ε−1]

+32ε−1[Q,Q∗]32ε−1 +
(
[32ε−1, Q∗]32ε

)
3−1Q.

This proves Eq. (4.18).
To boundX3,2, we use [P ∗

k+1, Qk] = 0 and we write

[Q∗
k32ε−1,3−1Pk+1]

=
(
Q∗

k3−1
)
[32ε−1, Pk+1] +

(
[Q∗

k,3
−1]32ε

)(
3−2εPk+13

2ε−1
)
.

Since each factor above is bounded by Proposition 4.3, the desired bound follows:

T3 ≤ O(1)
(‖Kf‖ + ‖f‖)2

.

TermX4. Here, we want to boundT4 ≡ |(K∗Qkf, 32ε−2Pk+1f )|. We get

T4 = |(K∗Qkf, 32ε−2Pk+1f )| = |(Qkf, K32ε−2Pk+1f )|
≤ |(32ε−1Qkf, 3−1Pk+1Kf )| + |(Qkf, [K,32ε−2Pk+1]f )|

≡ X4,1 +X4,2.

(4.19)

Using the inductive hypothesis, and the bound‖3−1Pk+1‖ ≤ O(1), the termX4,1 is
bounded by

‖32ε−1Qkf‖ ‖3−1Pk+1Kf‖ ≤ O(1)
(‖Kf‖ + ‖f‖)2

.

We write the commutator ofX4,2 as

[K,32ε−2Pk+1] = 32ε−1
(
3−1[K,Pk+1] + 3−1[K0,3

2−2ε]32ε−1(3−1Pk+1)
)
,

sinceK − K0 commutes with3. Using Proposition 4.3 and the inductive hypothesis
this leads to the following bound forX4,2:

X4,2 ≤ |(32ε−1Qkf, 3−1[K,Pk+1]f )|
+ |(32ε−1Qkf, (3−1[K0,3

2−2ε]32ε−1)(3−1Pk+1)f
)|

≤ O(1)(‖Kf‖ + ‖f‖)(‖f‖).

This completes the bounds involvingX4.
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TermX5. Here, we bound

T5 ≡ 1
2

((
Qk(K +K∗) + (K +K∗)Qk

)
f, 32ε−2Pk+1f

)
.

Assume firstk > 1 (and in any case we havek < n). Looking at the definition ofK, we
see that in this caseQk commutes with1

2(K +K∗) = ReK, and we can rewriteT5 as

T ′
5 = 2

(
(ReK)f, Q∗

k32ε−2Pk+1f

)
.

Using the Schwarz inequality and the positivity of ReK, we get a bound

|T ′
5| ≤ ((ReK)f, f

)1/2(
(ReK)Q∗

k32ε−2Pk+1f, Q
∗
k32ε−2Pk+1f

)1/2

=
(
Re(Kf, f )

)1/2(
Re(KQ∗

k32ε−2Pk+1f, Q
∗
k32ε−2Pk+1f )

)1/2

=
(
Re(Kf, f )

)1/2(
Re(3−2εKQ∗

k32ε−2Pk+1f, 32εQ∗
k32ε−2Pk+1f )

)1/2

≡ (Re(Kf, f )
)1/2

(Re(f1, f2))1/2.

The first factor is clearly bounded by
(‖Kf‖ + ‖f‖)1/2

. To boundf1, we expand again:

f1 = 3−2εKQ∗32ε−2Pf = (3−2εQ∗32ε−1)(3−1P )Kf

+ 3−2ε[K,Q∗]32ε−2Pf + 3−2εQ∗[K,32ε−2]Pf

+ 3−2εQ∗32ε−2[K,P ]f.

The norm of the first term is bounded byO(1)
(‖Kf‖ + ‖f‖). Using Proposition 4.3,

the other terms are bounded byO(1)‖f‖. To boundf2 we write

f2 = 32εQ∗32ε−2Pf = 3−1PQ∗34ε−1f

+ 32εQ∗3−2ε−1[34ε−1, P ]f

+ 32ε[Q∗,3−2ε−1]P34ε−1f.

We control the first term using the inductive hypothesis (it is here that we use the factor
4εk+1 ≤ ε′

k) and the two others by Proposition 4.3. Combining these bounds, we finally

get the boundT5 ≤ O(1)
(‖Kf‖ + ‖f‖)2

, and hence the inequality (4.7) is shown for
all j.

It remains to discuss the casesk = 0,1 for the termX5. The commutators of ReK
with Q0 ≡ RL,1 or with Q1 do not vanish and hence there are additional terms inT ′

5.
They are of the form

M∑
m=1

bL,m([R∗
L,mRL,m, RL,1]f, 32ε−2Pk+1f ),

M∑
m=1

bL,m([R∗
L,mRL,m, Q1]f, 32ε−2Pk+1f ).

Since [R∗
L,mRL,m, RL,1] = const. RL,1δm,1 and [R∗

L,mRL,m, Q1] = const. RL,m, this is
obviously bounded byO(1)

(‖Kf‖ + ‖f‖) ‖f‖.
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We have discussed now all the cases for the inductive bound on thePj . The discussion
of this step for theQj is the same, except that some simplifications appear because of
the simpler relationsQj = [Pj ,K0]. The proof of Proposition 4.2 is complete. �

Proof of Theorem 4.1.Let ε ≤ ε′
n+1. We rewrite

32ε = 32ε−2
(
1 +

n+1∑
j=0

Q∗
jQj +

n∑
j=1

P ∗
j Pj

)
. (4.20)

Note now that forQ = Qj ,

32ε−2Q∗Q = Q∗32ε−2Q + [32ε−1, Q∗]Q.

Using Proposition 4.2 and Proposition 4.3, we get a bound

(f, 32ε−2Q∗Qf ) ≤ O(1)
(‖Kf‖ + ‖f‖)2

+ O(1)‖f‖2.

Of course, theP satisfy analogous relations. Since‖32ε−2f‖ ≤ O(1)‖f‖, the assertion
(4.6) follows by summing the terms in Eq. (4.20) . The proof of Theorem 4.1 is complete.
�

Using Theorem 4.1 we can now prove Proposition 3.4. We have

Proposition 4.5. If the potentialV satisfies ConditionsH1, H2 and ifβ0<2 min(βL ,βR)
there is aλ∗ > 0 such that if the couplings satisfy|λL,m|, |λR,m| ∈ (0, λ∗) then both
LH0 andL∗

H0
have compact resolvent.

Proof. We show that the operatorK on L2(X,dx) has compact resolvent. From Theo-
rem 4.1 we get the bound

‖3εf‖ ≤ C
(‖(K − α− 1)f‖ + ‖f‖), (4.21)

for all f ∈ S(X). Since, by Lemma 3.1,C∞
0 (X) is a core ofK, we see, by taking limits,

that the estimate (4.21) holds for allf in D(K).
We note that32 has compact resolvent. Indeed, recall the definition Eq. (3.7) of

the effective HamiltonianG. It is easily checked that, first of all,G grows quadratically
in every direction ofR2d(n+M ), for sufficiently small|λi,m|. Second, it is also easily
verified that

32 = 1−
n∑

j=1

(1pj + 1qj ) +
M∑

m=1

(1rL,m + 1rR,m ) + W(p, q, r),

and, by construction

W(p, q, r) ≈
n′∑
j=1

a2
L

(
(∇pj

G)2 + (∇qj
G)2
)

+
n∑

j=n′+1

a2
R

(
(∇pj

G)2 + (∇qj
G)2
)

+
M∑

m=1

(
a2

L(∇rL,m
G)2 + a2

R(∇rR,m
G)2
)
,
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up to bounded terms. ThusW(p, q, r) diverges in all directions ofR2d(n+M ). Using the
Rellich criterion (see [RS], Thm. XII.67) we conclude that3ε has compact resolvent
for everyε > 0.

Therefore, Eq. (4.21) implies, using again the Rellich criterion, that (K−α−1)∗(K−
α−1) has compact resolvent. We claim this implies thatK itself has compact resolvent.
Indeed, sinceK − α − 1 is strictlym-accretive, its inverse exists, and therefore the
operator

(
(K −α− 1)∗(K −α− 1)

)−1
= ((K −α− 1)∗)−1(K −α− 1)−1 exists and is

compact. This implies that (K−α−1)−1 is compact and henceK has compact resolvent
as asserted. �

Finally, we prove Proposition 3.5. We have the following

Proposition 4.6. Let g denote an eigenvector ofLH0 or L∗
H0

. If the assumptions of
Proposition 3.4 are satisfied theng exp(β0G/2) is in the Schwartz spaceS(X).

Proof. We prove the corresponding statement for the operatorK on L2(X,dx). We
consider the set ofC∞ vectors ofeKt, i.e., the set

C∞(K) ≡ {f ∈ L2(X,dx) ; eKtf ∈ C∞(R+,L2(X,dx))}.
The setC∞(K) obviously contains all eigenvectors ofK. Therefore Proposition 4.6 is a
direct consequence of the following proposition.

Proposition 4.7. C∞(K) = S(X).

Proof. By Theorem 1.43 in [Da] we have the following characterization ofC∞(K):

C∞(K) = ∩n≥0D(Kn),

whereD(Kn) = {f ∈ D(Kn−1),Kn−1f ∈ D(K)}.
SinceS(X) ⊂ D(K) andKS(X) ⊂ S(X), we have the easy inclusion

S(X) ⊂ ∩nD(Kn) = C∞(K).

To show the inclusion in the other direction we will need the following theorem
which we will prove in Appendix C. This is a (slight) generalization of the core theorem,
[Da], Thm. 1.9.

Theorem 4.8. Let B be a Banach space. LetA : D(A) → B be m-accretive. For all
n = 1,2, . . . , if D is a subset ofD(An) and is dense inB and furthermoreD is invariant
under the semi-groupeAt, thenD is a core forAn.

Given this result we first show thatS(X) is invariant undereKt. Fors ≥ 0 we consider
the scale of spacesNs given byNs = D(3s), with the norm‖f‖(s) = ‖3sf‖. For
s ≤ 0 we letNs be the dual ofN−s. From the definition of32, it is easy to see that
{‖ · ‖(s) ; s = 0,1, · · · } is a system of semi-norms for the topology ofS(X) and hence
S(X) = ∩sNs.

To show thatS(X) is left invariant by the semi-groupeKt generated byK, it is
enough to show that

eKtNs ⊂ Ns for all s ≥ 0.
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Forf , g in S(X) we have the identity(
3−seK∗t3sf, g

)
=
(
f, 3seKt3−sg

)
=
(
f, g

)
+
∫ t

0
dτ
(
f, 3sKeKτ3−sg

)
=
(
f, g

)
+
∫ t

0
dτ
(
f, (K +B)3seKτ3−sg

)
=
(
f, g

)
+
∫ t

0
dτ
(
3−seK∗τ3s(K∗ +B∗)f, g

)
,

(4.22)

where
B = [3s, K]3−s,

is a bounded operator by Proposition 4.3. From (4.22) we see that

d
dt

3−seK∗t3sf = 3−seK∗t3s(K∗ +B∗)f. (4.23)

Now K∗ is the generator of a strongly continuous quasi-bounded semi-group,B∗ is
bounded and so, [Ka], Chap. 9, Thm. 2.7,K∗ + B∗ with domainD(K∗) is the gen-
erator of a strongly continuous quasi-bounded semi-groupe(K∗+B∗)t with ‖e(K∗+B∗)t‖
≤ e(α+‖B∗‖)t. From (4.23) we see that

e(K∗+B∗)t = 3−seK∗t3s.

Thus we obtain
‖3−seK∗t3s‖ ≤ e(α+‖B∗‖)t,

and soeK∗t : N−s → N−s, s > 0, is bounded. By dualityeKt : Ns → Ns, s > 0, is
also bounded. This implies that

eKtNs ⊂ Ns, s > 0,

and thereforeS(X) is invariant undereKt.
We now use Theorem 4.1. Letf ∈ S(X), then replacingf by 3mf in Eq. (4.6), we

obtain

‖f‖(m+ε) ≤ O(1)
(‖K3mf‖ + ‖f‖(m)

)
≤ O(1)

(‖Kf‖(m) + ‖[K,3m]f‖ + ‖f‖(m)
)
.

Since
‖[K,3m]f‖ = ‖3m[K,3−m]3mf‖,

and since3m[K,3−m] is bounded by Proposition 4.3 we obtain the bound

‖f‖(m+ε) ≤ O(1)
(‖Kf‖(m) + ‖f‖(m)

)
. (4.24)

Using (4.24) it is easy to see, by induction, that, forn = 1,2, · · · we have

‖f‖(nε) ≤ O(1)
n∑

j=0

(
n

j

)
‖Kjf‖. (4.25)
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SinceS(X) is a core forKn by Theorem 4.8, we see, by taking limits, that

D(Kn) ⊂ Nnε.

Therefore
C∞(K) = ∩nD(Kn) ⊂ ∩nNnε = S(X).

And this concludes the proof of Proposition 4.7.�

Appendix A: Proof of Lemma 3.1

If x(t) = ξ(t, w;x) denotes the solution of (3.1), it has the cocycle property

ξ(t, τ sw; ξ(s, w;x)) = ξ(t + s, w;x),

which holds for allt, s ∈ R, x ∈ X andw ∈ W. Here we have introduced the shift
(τ tw)(s) = w(t + s) on W. In particular the mapx 7→ ξ(t, w;x) is a bijection with
inversex 7→ ξ(−t, τ tw;x). A standard argument shows that these maps are actually
diffeomorphisms (see e.g. [IW], Ch. V.2). The Jacobian ofξ(t, w; ·) is given by

J(t, w; ·) = |detDxξ(t, w; ·)| = e
∫ t

0
ds div b◦ξ(s,w;·)

,

and according to (3.2) the Jacobian satisfies

e−B|t| ≤ J(t, w;x) ≤ eB|t|.

Remark.In our case we have in fact

div b = −d
∑
i,m

γi,m ≡ −0 < 0,

so that
J(t, w; ·) = e−0t.

Lemma 3.1 is an immediate consequence of the following lemmata.

Lemma A.1. T t extends to a strongly continuous, quasi-bounded semi-group of posi-
tivity preserving operators onL2(X,dx). Its generator is the closure ofL.

Proof. Let f ∈ C∞
0 , then we have

‖T tf‖2 = lim
R→∞

∫
|x|<R

dx |T tf (x)|2 = lim
R→∞

∫
dxχ{|x|<R}|E

[
f ◦ ξ(t, w;x)

]|2
≤ lim

R→∞

∫
dxχ{|x|<R}E

[|f |2 ◦ ξ(t, w;x)
]

≤ lim
R→∞

E
[∫

dxχ{|x|<R}|f |2 ◦ ξ(t, w;x)
]

≤ lim
R→∞

E
[∫

dyχ{|x|<R} ◦ ξ(−t, τ tw; y)|f |2(y)J(−t, τ tw; y)
]

≤ lim
R→∞

E
[∫

dy 1|f |2(y)eBt
]

= eBt‖f‖2.
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ThusT t extends to a bounded operator on L2(X,dx) by continuity. A simple approx-
imation argument shows thatT t is weakly continuous att = 0, and hence, since it is
obviously a semi-group, strongly continuous. Positivity is evident. Now letf ∈ C∞

0 (X),
then

[(1/t)(T t − 1)f − Lf ](x) =
∫ t

0
ds(1/t)(T s − 1)Lf (x),

from which we conclude that the generatorL̃ of T t on L2(X,dx) satisfiesL ⊂ L̃.
From the inequality Re(f, Lf ) = − 1

2‖σT ∇f‖2 − (f, div bf ) ≤ B‖f‖2, and the
fact thatC∞

0 ⊂ D(L∗) and Re(f, L∗f ) = − 1
2‖σT ∇f‖2 + (f, div bf ) ≤ B‖f‖2, one

concludes that:

(i) L is accretive.
(ii) The range of (λ− L) is dense for Re(λ) > B.

Hence, by the Lumer–Phillips Theorem (see for example [Da], Theorem 2.25), the
closureL generates a quasi-bounded semi-group on L2(X,dx). Since such generators
are maximal accretive, we conclude thatL̃ = L.

We shall now consider the Markov semi-group on weighted L2-spaces (such asH0)
of the form

HS = L2(X, e−Sdx),

whereS ∈ C∞(X), ande−S ∈ L1(X,dx) is normalized (‖e−S‖1 = 1). We also assume
that

bS ≡ D∇S
with D as in Eq. (3.3) satisfies the condition

‖div bS‖∞ < ∞. (A.1)

The action ofT t onHS is obviously equivalent to that ofe−S/2T teS/2 onL2(X,dx).
Forf ∈ C∞

0 (X), Ito’s formula gives

(e−S/2T teS/2)f (x) = E
[
e(S(x(t))−S(x(0)))/2f (x(t))|x(0) = x

]
= E
[
e

1
2

∫ t

0
ds (LS)(x(s))+ 1

2

∫ t

0
dw(s)(σT ∇S)(x(s))

f (x(t))|x(0) = x
]

= E
[
D(t)e

1
2

∫ t

0
ds RS (x(s))

f (x(t))|x(0) = x
]
,

where

D(t) = e
∫ t

0
dw(s) 1

2 (σT ∇S)(x(s))− 1
2

∫ t

0
ds | 1

2 σT ∇S|2(x(s))
,

RS(x) = (LS)(x) +
1
2

(∇S ·D∇S)(x) = div (bS) + (b +
1
2
bS) · ∇S.

By the Girsanov formula we obtain

(e−S/2T teS/2f )(x) = E
[
e

1
2

∫ t

0
ds RS (y(s))

f (y(t))|y(0) = x
]
,

wherey(t) is the Markovian diffusion process defined by the equation

y(t) = y(0) +
∫ t

0
ds (b + bS)(y(s)) + σ(w(t) − w(0)).
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Assuming thatRS is bounded above:

6S = sup
x∈X

RS(x) < ∞,

and denoting byT t
S the semi-group on L2(X,dx) associated with the processy(t), by

Lemma A.1 we get

|(e−S/2T teS/2f )(x)| ≤ e
1
2 6St(T t

S |f |)(x),

from which one concludes thate−S/2T teS/2 extends to a strongly continuous, quasi-
bounded semi-group of positivity preserving operators onL2(X,dx).

By the Feynman–Kac formula (or Cameron–Martin) we can conclude that the gen-
erator of this semi-group is given, onC∞

0 (X), by

LS = ∇ ·D∇ + (b + bS) · ∇ +
1
2
RS = e−S/2LeS/2.

Repeating the argument of Lemma A.1 we conclude thatLS is the generator. Since
C∞

0 (X) is invariant bye±S/2 we get

Lemma A.2. LetS ∈ C∞(X) be such that

(i) bS = D∇S satisfies Condition (A.1),
(ii) supx∈X (b + 1

2bS) · ∇S(x) < ∞.

Then the semi-groupT t extends to a strongly continuous quasi-bounded semi-group on
HS . MoreoverC∞

0 (X) is a core for its generator.

Now Lemma 3.1 is a direct consequence of LemmaA.2. Indeed we apply LemmaA.2
to

S(x) = β0G(p, q, r),

whereG is given by (3.7). We see that Condition (i) of Lemma A.2 is satisfied, since
G(p, q, r) is of the form quadratic + bounded. An explicit computation shows that the
assumption

β0 < 2 min(βL , βR),

implies that Condition (ii) of Lemma A.2 is satisfied and that the semi-group satisfies
the bound‖T t‖ ≤ eαt whereα is given by Eq. (3.10). �

Appendix B: Proof of Proposition 4.3

To prove the claims it is useful to introduce some machinery which replaces the pseudo-
differential calculus, which seems unavailable for the class of operators we want to
consider. This may be useful in its own right.

Let F , as in the HypothesesH1, H2 denote the class of functions ofq ∈ Rdn which
are bounded together with all their derivatives. LetY denote the linear space of operators
spanned by

f (q)qm∂m′
q pn∂n′

p r
`∂`′

r , (B.1)

wheref ∈ F . (The notation is sloppy, we really mean componentsν = 1, . . . , d of
each of these quantities.) We shall say that the quantities in Eq. (B.1) are of degree
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m+m′ +n+n′ + `+ `′. We letYs denote the subspace ofY spanned by the expressions
of degree less than or equal tos. Clearly, the operatorsZ andM of Proposition 4.3 are
in Y1 andY0, respectively, whileK0 and32 are inY2. Below, we shall use this, but
also an additional property of the potentialV . We have

Lemma B.1. One has the inclusion

[32,Ys] ⊆ Ys+1. (B.2)

Furthermore,Y ∈ Y0 defines a bounded operator.

Proof. By inspection. �
Proposition B.2. Assume thatY ∈ Yj , for somej ∈ {0,1, . . . }. Then

3βY3γ (B.3)

defines a bounded operator onL2(X,dx), when

β + γ ≤ −j.
LetZ be an operator inY. Assume that[32, Z] ∈ Yj , for somej ∈ {0,1, . . . }. Then

3β [3−α, Z]3γ (B.4)

defines a bounded operator onL2(X,dx) for all α, β andγ satisfying

β + γ ≤ α− j + 2.

We will give bounds on various quantities involvingYs. For this, we will use throughout
the following device:

Lemma B.3. LetAz be a bounded continuous operator-valued function ofz and let
F (λ, z) be a real, positive continuous bounded function. Then

‖
∫ ∞

0
dz AzF (3, z)u‖ ≤ sup

y≥0
‖Ay‖ ‖u‖

∫ ∞

0
dz sup

λ≥1
F (λ, z). (B.5)

If furthermoreA = Az is independent ofz, one has the bound

‖
∫ ∞

0
dz AF (3, z)u‖ ≤ ‖A‖ ‖u‖ sup

λ≥1

∫ ∞

0
dz F (λ, z). (B.6)

Proof. Note first that

‖
∫ ∞

0
dz AzF (3, z)u‖ ≤

∫ ∞

0
dz ‖Az‖ ‖F (3, z)u‖.

Since3, as an operator, satisfies3 ≥ 1 we also have from the spectral theorem:

‖F (3, z)‖ ≤ sup
λ≥1

F (λ, z).

Thus, Eq. (B.5) follows. In a similar way:

‖
∫ ∞

0
dz AF (3, z)u‖ ≤ ‖A‖ ‖

∫ ∞

0
dz F (3, z)‖ ‖u‖

≤ ‖A‖ ‖u‖ sup
λ≥1

∫ ∞

0
dz F (λ, z),

which is (B.6). The proof of Lemma B.3 is complete. �
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We shall also make use of the following identity, valid forα ∈ (0,2), [Ka] Thm. V.3:

3−α =
sin(πα/2)

π

∫ ∞

0
dz z−α/2(z + 32)−1. (B.7)

We also letC−α = sin(πα/2)/π.

Proof of Proposition B.2.It is obvious that if we show the claim forβ + γ = −j, then it
also follows forβ+γ < −j. By the definition ofYj , and observing thatf (q) is bounded,
and by the explicit form of32, we see that the claim holds whenγ = 0. We next consider
the caseβ + γ ≤ 0, −1 ≤ γ < 0. In this case we write

3βY3γ = Y3β+γ + 3β [Y,3γ ].

The first term is clearly bounded as in the caseγ = 0, by considering adjoints. The
second term can be written as

3β [Y,3γ ] = Cγ

∫ ∞

0
dz zγ/23β

[
Y,

1

z + 32

]
= Cγ

∫ ∞

0
dz zγ/2 3β

z + 32 [Y,32]
1

z + 32 .

(B.8)

By Lemma B.1, we see that [Y,32] ∈ Yj+1 and thus, we get, using Eq. (B.5),

‖3β [Y,3γ ]‖ ≤ Cγ sup
y≥0

‖ 3β

y + 32 [Y,32]‖
∫ ∞

0
dz zγ/2 sup

λ≥1

1
z + λ2

.

The norm is bounded becauseγ ∈ [−1,0) and thusβ − 2 + j + 1 ≤ β + γ + j = 0. The
sup overλ is (1 +z)−1 and the integral converges becauseγ ∈ [−1,0).

We now proceed to the other choices ofγ by induction. We first deal with negative
γ. Assume we have shown that3βY3γ′

is bounded for allγ′ ∈ [−τ,0], and assume
thatγ ∈ [−τ − 1,−τ ), andY ∈ Yj . We write

3βY3γ = 3β−1Y3γ+1 + 3β [Y,3−1]3γ+1.

The first term is bounded by the inductive hypothesis. To bound the second, we apply
again the method used in Eq. (B.8). Then we get

3β [Y,3−1]3γ+1 = C−1

∫ ∞

0
dz z−1/2 3β

z + 32 [Y,32]
3γ+1

z + 32 .

Since [Y,32] ∈ Yj+1, we see from the inductive hypothesis that

sup
y≥0

∥∥∥∥3β 1

y + 32 [Y,32]3γ+1

∥∥∥∥ ≤ ∥∥3β−2[Y,32]3γ+1
∥∥

is bounded and hence, using (B.5), we can complete the inductive step.
The caseγ > 0 is handled by observing thatY ∈ Yj implies Y ∗ ∈ Yj , and

bounding3βY3γ by bounding3γY ∗3β . This completes the proof of the first part of
Proposition B.2.
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To prove the second part, we first consider the caseα ∈ (0,2). In this case, using
Eq. (B.7), we write3β [3−α, Z]3γ as

C−α

∫ ∞

0
dz z−α/23β

[
1

z + 32 , Z

]
3γ

= C−α

∫ ∞

0
dz z−α/2 3β

z + 32

[
32, Z

] 3γ

z + 32 .

(B.9)

We letB = [32, Z], use another commutator and rewrite (B.9) as

C−α

∫ ∞

0
dz z−α/23βB

3γ

(z + 32)2
+C−α

∫ ∞

0
dz z−α/2 3β

z + 32

[
32, B

] 3γ

(z + 32)2

≡ C−α(X1 +X2).

We first boundX1. We get, using Eq. (B.6),

‖X1u‖ =

∥∥∥∥3βB3−j−β

∫ ∞

0
dz z−α/2 3j+β+γ

(z + 32)2
u

∥∥∥∥
≤ ‖u‖ ∥∥3βB3−j−β

∥∥ sup
λ≥1

∫ ∞

0
dz z−α/2 λj+β+γ

(z + λ2)2

≤ ‖u‖ ∥∥3βB3−j−β
∥∥ sup

λ≥1

∫ ∞

0
ds s−α/2λ2−α λj+β+γ

(s + 1)2λ4
.

Since, by assumption,B ∈ Yj , the norm is bounded, and the integral is bounded because
β + γ ≤ α− j + 2, by assumption.

To boundX2 we first observe that by assumption, and by Lemma B.1,C = [32, B]
is in Yj+1. Therefore, using Eq. (B.5) we find the following bound forX2:

‖X2u‖ =

∥∥∥∥∫ ∞

0
dz z−α/2 3β

z + 32C31−j−β · 3j−1+β+γ

(z + 32)2
u

∥∥∥∥
≤ ‖u‖ sup

y≥0

∥∥∥∥ 3β

y + 32C31−j−β

∥∥∥∥ ∫ ∞

0
dz z−α/2 sup

λ≥1

λj−1+β+γ

(z + λ2)2
.

This is clearly bounded whenβ + γ ≤ α − j + 2 andα ∈ (0,2). This completes the
second part of Proposition B.2 whenα ∈ (0,2). If α = 0 the assertion is trivial. The
caseα = 2 is handled by considering the identity:

[3−2, Z] = 3−2[32, Z]3−2.

The cases whenα > 2 follow inductively by using the identity:

3β [3−α−2, Z]3γ = 3β−2[3−α, Z]3γ + 3β [3−2, Z]3γ−α.

The cases whenα < 0 follow by similar identities. The proof of Proposition B.2 is
complete. �

Proof of Proposition 4.3.Proposition 4.3 is a simple consequence of Proposition B.2.
SinceZ is in Y1, the claim 2) is covered by the bound on (B.3). We next prove 3). The
operatorK0 is in Y2 andZ is in Y1. Power counting would suggest that [K0, Z] ∈ Y2.
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However, by ConditionH1, we know that∇qj
V equals a linear term plus a term inY0,

and hence explicit computation shows that [K0, Z] ∈ Y1. Hence the assertion is covered
by the bound on (B.3). SinceM ∈ Y0 we see from Lemma B.1 that [M,32] ∈ Y1, and
therefore the claim 1) follows from the bound on (B.4). Using again explicit calculation
and ConditionH1 we see that [Z,32] is in Y1 (and not only inY2) and [K0,3

2] is in
Y2 (and not only inY3), and hence the cases 4) and 5) follow by applying again the
bound on (B.4). The proof of Proposition 4.3 is complete.�

Appendix C: A Generalized Core Theorem

We prove here the following result from Sect. 4:

Theorem 4.8. Let B be a Banach space. LetA : D(A) → B be m-accretive. For all
n = 1,2, . . . , if D is a subset ofD(An) and is dense inB and furthermoreD is invariant
under the semi-groupeAt, thenD is a core forAn.

Proof. Let |||f |||n =
∑n

j=0 ‖Ajf‖. Then one has

(i) (D(An), ||| · |||n) is complete.
(ii) eAt is a strongly continuous semi-group on (D(An), ||| · |||n).

The statement of the theorem is equivalent to the following: IfDn
denotes the closure

of D in the norm||| · |||n, then we have

Dn
= D(An). (C.1)

We show this by induction. Forn = 1, this is the core theorem, [Da], Thm. 1.9. Let us
assume that (C.1) holds forn − 1. Let f ∈ D(An), so there is a sequence{fm} ∈ D
such that

lim
m→∞ |||fm − f |||n−1 = 0.

With thefm we construct a sequence which converges tof in the||| · |||n norm. We set

f (n,t)
m =

∫ t

0
ds

(t− s)n−1

(n− 1)!
eAsfm.

By the above property (ii),eAs is strongly continuous ins in D(An) and hencef (n,t)
m ∈

Dn
. We set

f (n,t) =
∫ t

0
ds

(t− s)n−1

(n− 1)!
eAsf.

SinceeAsg is n-times differentiable ins wheng ∈ D(An), we obtain, upon integrating
by parts:
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|||f (n,t)
m − f (n,t)|||n =

n−1∑
j=0

∥∥∥∥∫ t

0
ds

(t− s)n−1

(n− 1)!
eAsAj(fm − f )

∥∥∥∥
+

∥∥∥∥∫ t

0
ds

(t− s)n−1

(n− 1)!
eAsAn(fm − f )

∥∥∥∥
=

n−1∑
j=0

∥∥∥∥∫ t

0
ds

(t− s)n−1

(n− 1)!
eAsAj(fm − f )

∥∥∥∥
+

∥∥∥∥− tn−1

(n− 1)!
An−1(fm − f ) +

∫ t

0
ds

(t− s)n−2

(n− 2)!
eAsAn−1(fm − f )

∥∥∥∥
≤Ceγt t

n

n!
|||fm − f |||n−1 + (Ceγt + 1)

t(n−1)

(n− 1)!
‖An−1(fm − f )‖

=o(1) asm → ∞,

by the inductive hypothesis. This shows thatf (n,t) ∈ Dn
.

To conclude we show that||| n!
tn f

(n,t) − f |||n → 0 ast → 0. We have

|||n!
tn
f (n,t) − f |||n =

n−1∑
j=0

∥∥∥∥n!
tn

∫ t

0
ds

(t− s)n−1

(n− 1)!
(eAs − 1)Ajf

∥∥∥∥
+

∥∥∥∥n!
tn
(∫ t

0
ds

(t− s)n−1

(n− 1)!
eAsAnf − tn

n!
Anf

)∥∥∥∥.
Using thateAtf is n-times differentiable int, that∫ t

0
ds

(t− s)n−1

(n− 1)!
eAsAnf,

is the remainder term in the Taylor expansion ofeAtf , and that forg ∈ D(A)

(eAs − 1)g =
∫ s

0
du eAuAg,

if g ∈ D(A) we obtain the bound

|||n!
tn
f (n,t) − f |||n

n−1∑
j=0

∥∥∥∥n!
tn

∫ t

0
ds

(t− s)n−1

(n− 1)!

∫ s

0
du eAuAj+1f

∥∥∥∥
+

∥∥∥∥n!
tn
(
eAtf − f −Af − · · · − tn

n!
Anf

)∥∥∥∥
≤ O(t) + o(1).

This shows thatf ∈ Dn
. This proves thatDn

= D(An) as required. �
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Note added in proof
In a second paper, [EPR], we answer some questions which remained open in this
paper. In particular, we are able to extend the uniqueness result Theorem 2.2 to arbitrary
temperature differences. Furthermore, we study the heat flux, the entropy production,
and the effect of time reversal.
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