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In this paper we demonstrate the only available scalable information bounds for quantities 
of interest of high dimensional probabilistic models. Scalability of inequalities allows us 
to (a) obtain uncertainty quantification bounds for quantities of interest in the large 
degree of freedom limit and/or at long time regimes; (b) assess the impact of large model 
perturbations as in nonlinear response regimes in statistical mechanics; (c) address model-
form uncertainty, i.e. compare different extended models and corresponding quantities 
of interest. We demonstrate some of these properties by deriving robust uncertainty 
quantification bounds for phase diagrams in statistical mechanics models.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Information Theory provides both mathematical methods and practical computational tools to construct probabilistic 
models in a principled manner, as well as the means to assess their validity, [1]. One of the key mathematical objects of 
information theory is the concept of information metrics between probabilistic models. Such concepts of distance between 
models are not always metrics in the strict mathematical sense, in which case they are called divergences, and include 
the relative entropy, also known as the Kullback–Leibler (KL) divergence, the total variation and the Hellinger metrics, the 
χ2 divergence, the F-divergence, and the Rényi divergence, [2]. For example, the relative entropy between two probability 
distributions P = P (σ ) and Q = Q (σ ) on RN is defined as

R(Q ‖ P ) =
∫
RN

log

(
Q (σ )

P (σ )

)
Q (σ )dσ , (1)

when the integral exists. The relative entropy is not a metric but it is a divergence, that is it satisfies the properties: 
(i) R(Q ‖ P ) ≥ 0, (ii) R(Q ‖ P ) = 0 if and only if P = Q a.e.

We may for example think of the model Q as an approximation, or a surrogate model for another complicated and 
possibly inaccessible model P ; alternatively we may consider the model Q as a misspecification of the true model P . When 
measuring model discrepancy between the two models P and Q , tractability depends critically on the type of distance 
used between models. In that respect, the relative entropy has very convenient analytic and computational properties, in 
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particular regarding the scaling properties of the system size N which could represent space and/or time. Obtaining bounds 
which are valid for high dimensional (N � 1) or spatially extended systems and/or long time regimes is the main topic of 
the paper and we will discuss these properties in depth in the upcoming sections.

Information metrics provide systematic and practical tools for building approximate statistical models of reduced com-
plexity through variational inference methods [3–5] for machine learning [6,7,4] and coarse-graining of complex systems 
[8–16]. Variational inference relies on optimization problems such as

min
Q ∈Q R(P ‖ Q ) or min

Q ∈Q R(Q ‖ P ) , (2)

where Q is a class of simpler, computationally more tractable probability models than P . Subsequently, the optimal solution 
Q ∗ of (2) replaces P for estimation, simulation and prediction purposes. The choice of order in P and Q in (2) can be 
significant and depends on implementation methods, availability of data and the specifics of each application, e.g. [3,4,
14,5]. In the case of coarse-graining the class of coarse-grained models Q will also have fewer degrees of freedom than 
the model P , and an additional projection operator is needed in the variational principle (2), see for instance [8,16]. In 
addition, information metrics provide fidelity measures in model reduction, [17–23], sensitivity metrics for uncertainty 
quantification, [24–29] and discrimination criteria in model selection [30,31]. For instance, for the sensitivity analysis of 
parametrized probabilistic models P θ = P θ (σ ), θ ∈ � the relative entropy R(P θ ‖ P θ+ε) measures the loss of information 
due to an error in parameters in the direction of the vector ε ∈ �. Different directions in parameter space provide a 
ranking of the sensitivities. Furthermore, when |ε| � 1 we can also consider the quadratic approximation R(P θ ‖ P θ+ε) =
εF(P θ )ε� + O (|ε|3) where F(P θ ) is the Fisher Information matrix, [27,26,28].

Based on this earlier discussion it is natural and useful to approximate, perform model selection and/or sensitivity 
analysis in terms of information theoretical metrics between probability distributions. However, one is often interested 
in assessing model approximation, fidelity or sensitivity on concrete quantities of interest and/or statistical estimators. More 
specifically, if P and Q are two probability measures and f = f (σ ) is some quantity of interest or statistical estimator, then 
we measure the discrepancy between models P and Q with respect to the Quantity of Interest (QoI) f by considering the 
model bias,

E Q ( f ) − E P ( f ) . (3)

Indeed, in a statistics context, f could be an unbiased statistical estimator for model P which is either complicated to 
compute or possibly inaccessible and Q is a computationally tractable nominal or reference model, e.g., a surrogate model. 
Thus, (3) is the estimator bias when using model Q instead of P . Alternatively, P could be the nominal model, for instance 
a model obtained through a careful statistical inference method, e.g. some type of best-fit approach such as maximum 
likelihood or variational inference, or just simply our best guess. However, due to the uncertainty whether this is a suitable 
model for the QoI f , we would like to measure the performance on f over a family of alternative models, for example 
all models within a KL tolerance η, Q = {Q : R(Q ‖P ) ≤ η}. In this case, a bound on max

Q ∈Q
|E Q ( f ) − E P ( f )| will provide a 

performance guarantee for the model P . Our main mathematical goal is to understand how to transfer quantitative results 
on information metrics into bounds for quantities of interest in (3). In this direction, information inequalities can provide a 
method to relate quantities of interest (3) and information metrics (1), a classic example being the Csiszar–Kullback–Pinsker 
(CKP) inequality, [2]:

|E Q ( f ) − E P ( f )| ≤ ‖ f ‖∞
√

2R(Q ‖ P ) , (4)

where ‖ f ‖∞ = sup
σ∈RN

| f (σ )|. In other words relative entropy controls how large the model discrepancy (3) can become for 

the quantity of interest f . More such inequalities involving other probability metrics such as Hellinger distance, χ2 and 
Rényi divergences are discussed in the subsequent sections.

In view of (4) and other such inequalities, a natural question is whether these are sufficient to assess the fidelity of com-
plex systems models. In particular complex systems such as molecular or multi-scale models are typically high dimensional 
in the degrees of freedom and/or often require controlled fidelity (in approximation, uncertainty quantification, etc.) at long 
time regimes; for instance, in building coarse-grained models for efficient and reliable molecular simulation. Such an exam-
ple arises when we are comparing two statistical mechanics systems determined by Hamiltonians H N and H̄ N describing 
say N particles with positions X = (x1, ..., xN ). The associated canonical Gibbs measures are given by

P N(X)dX = Z−1
N e−H N (X)dX and Q N(X)dX = Z̄−1

N e−H̄ N (X)dX , (5)

where Z N and Z̄ N are normalizations (known as partition functions) that ensure the measures (5) are probabilities. Example 
(5) is a ubiquitous one, given the importance of Gibbs measures in disparate fields ranging from statistical mechanics and 
molecular simulation, pattern recognition and image analysis, to machine and statistical learning, [32,3,4]. In the case of (5), 
the relative entropy (1) readily yields,

R(Q N ‖ P N) = E Q N (H N − H̄ N) + log Z N − log Z̄ N . (6)
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It is a well known result in classic statistical mechanics [32], that under very general assumptions on H N , both terms in the 
right hand side of (6) scale like O (N) for N � 1, therefore we have that

R(Q N ‖ P N) = O (N) . (7)

Comparing to (4), we immediately realize that the upper bound grows with the system size N , at least for nontrivial 
quantities of interest f and therefore the CKP inequality (4) yields no information on model discrepancy for quantities 
of interest in (3). In Section 2 we show that other known information inequalities involving other divergences are also 
inappropriate for large systems in the sense that they do not provide useful information for quantities of interest: they 
either blow up like (4) or lose their selectivity, in the N � 1 limit. Furthermore, in Section 2 we also show that similar 
issues arise for time dependent stochastic Markovian models at long time regimes, T � 1.

In our main result we address these issues by using the recent information inequalities of [33] which in turn relied on 
earlier upper bounds in [34]. In these inequalities, the discrepancy in quantities of interest (3) is bounded as follows:

�−(Q ‖ P ; f ) ≤ E Q ( f ) − E P ( f ) ≤ �+(Q ‖ P ; f ) , (8)

where

�+(Q ‖ P ; f ) = inf
c>0

{
1

c
log E P

(
ec( f −E P ( f ))

)
+ 1

c
R(Q ‖ P )

}
, (9)

with a similar formula for �−(Q ‖ P ; f ). The roles of P and Q in (8) can be reversed as in (2), depending on the context 
and the challenges of the specific problem, as well as on how easy it is to compute or bound the terms involved in (9); 
we discuss specific examples in Section 6. The quantities �±(Q ‖ P ; f ) are referred to as a “goal-oriented divergence”, 
[33], because they have the properties of a divergence both in probabilities P and Q and the quantity of interest f . More 
precisely, �+(Q ‖ P ; f ) ≥ 0, (resp. �−(Q ‖ P ; f ) ≤ 0) and �±(Q ‖ P ; f ) = 0 if and only if P = Q a.s. or f is constant P -a.s.

The bounds (8) turn out to be robust, i.e. the bounds are attained when considering the set of all models Q with a 
specified uncertainty threshold η within the model P given by the distance R(Q ‖ P ) ≤ η; we refer to [34], while related 
robustness results can be also found in [35]. The parameter c in the variational representation (9) controls the degree of 
robustness with respect to the model uncertainty captured by R(Q ‖ P ). In a control or optimization context these bounds 
are also related to H∞ control, [36]. Finally, �±(Q ‖P ; f ) admits an asymptotic expansion in relative entropy, [33]:

�±(Q ‖ P ; f ) = ±√V ar P [ f ]√2R(Q ‖ P ) + O (R(Q ‖ P )) , (10)

which captures the aforementioned divergence properties, at least to leading order.
In this paper we demonstrate that the bounds (8) scale correctly with the system size N and provide “scalable” uncer-

tainty quantification bounds for large classes of QoIs. We can get a first indication that this is the case by considering the 
leading term in the expansion (10). On one hand, typically for high dimensional systems we have R(Q ‖ P ) = O (N), see for 
instance (6); but on the other hand for common quantities of interest, e.g. in molecular systems non-extensive QoIs such as 
density, average velocity, magnetization or specific energy, we expect to have

V arP ( f ) = O (1/N) . (11)

Such QoIs also include many statistical estimators e.g. sample means or maximum likelihood estimators, [31]. Combining 
estimates (7) and (11), we see that, at least to leading order, the bounds in (8) scale as

�±(Q ‖ P ; f ) ≈ O (1) ,

in sharp contrast to the CKP inequality (4). Using tools from statistical mechanics we show that this scaling holds not only 
for the leading-order term but for the goal oriented divergences �±(Q ‖ P ; f ) themselves, for extended systems such as 
Ising-type model in the thermodynamic limit. These results are presented in Sections 3 and 4. Furthermore, in [33] it is also 
shown that such information inequalities can be used to address model error for time dependent problems at long time 
regimes. In particular our results extend to path-space observables, e.g., ergodic averages, correlations, etc., where the role 
of relative entropy is played by the relative entropy rate (RER) defined as the relative entropy per unit time. We revisit the 
latter point here and connect it to nonlinear response calculations for stochastic dynamics in statistical mechanics. Finally, 
in Section 7 we also show that the bounds (8) are also appropriate for a general class of observables and not just for 
spatio-temporally averaged quantities that need to satisfy (11).

Overall, the scalability of (8) allows us to address three challenges which are not readily covered by standard numerical 
(error) analysis, statistics or statistical mechanics calculations: (a) obtain uncertainty quantification (UQ) bounds for quanti-
ties of interest in the large degree of freedom limit N � 1 and/or at long time regimes T � 1, (b) estimate the impact of 
large model perturbations, going beyond error expansion methods and providing nonlinear response bounds in the statisti-
cal mechanics sense, and (c) address model-form uncertainty, i.e. comparing different extended models and corresponding 
QoIs.

We demonstrate all three capabilities in deriving robust uncertainty quantification bounds for phase diagrams in sta-
tistical mechanics models. Phase diagrams are calculations of QoIs as functions of continuously varying model parameters, 
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Fig. 1. (a) The red solid line is the magnetization of 1-d mean field Ising model with β = 1, which is the baseline model P ; the black dashed/dash–dot line
is the goal-oriented divergence upper/lower bound of magnetization of the perturbed mean field model Q with β = 1.6. The gray areas depict the size 
of the uncertainty region corresponding to the goal-oriented bounds (8). (b) The black dashed/dash–dot line is the goal-oriented divergence upper/lower 
bound of the magnetization of the nearest neighbor Ising model P with h = 0 (P model not shown). The red solid line is the spontaneous magnetization 
of 2-d mean field Ising model for h = 0, which here plays the role of the surrogate, simpler, approximate model Q . The gray areas depict the size of the 
uncertainty region corresponding to the goal-oriented bounds (8). For more details see Fig. 4. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

e.g. temperature, external forcing, etc. Here we consider a given model P and desire to calculate uncertainty bounds for its 
phase diagram, when the model P is replaced by a different model Q . We note that phase diagrams are typically computed 
in the thermodynamic limit N → ∞ and in the case of steady states in the long time regime T → ∞; thus, in order to 
obtain uncertainty bounds for the phase diagram of the model P , we necessarily will require scalable bounds such as (8). 
Similarly, we need such scalable bounds to address any related UQ or sensitivity analysis question for molecular or any other 
high-dimensional probabilistic model, where N → ∞ and/or T → ∞ regimes are commonplace. To illustrate the potential 
of our methods, we consider fairly large parameter discrepancies between models P and Q of the order of 50% or more, 
see for instance Fig. 1(a). We also compare phase diagrams corresponding not just to different parameter choices but to 
entirely different Gibbs models (5), where Q is a true microscopic model and P is for instance some type of mean field 
approximation, see Fig. 1(b). These and several other test-bed examples are discussed in detail in Section 5.

This paper is organized as follows. In Section 2 we discuss classic information inequalities for QoIs and demonstrate 
how they scale with system size or with long time dynamics. We show these results by considering counterexamples 
such as sequences of independent identically distributed random variables and Markov chains. In Section 3 we revisit 
the concept of goal oriented divergence introduced earlier in [33] and show that it provides scalable and discriminating 
information bounds for QoIs. In Section 4 we discuss how these results extend to path-space observables, e.g., ergodic 
averages, autocorrelations, etc., where the role of relative entropy is now played by the relative entropy rate (RER) and 
connect to nonlinear response calculations for stochastic dynamics in statistical mechanics. In Section 5 we show how these 
new information inequalities transfer to Gibbs measures, implying nonlinear response UQ bounds, and how they relate to 
classic results for thermodynamic limits in statistical mechanics. In Section 6 we apply our methods and the scalability of 
the UQ bounds to assess model and parametric uncertainty of phase diagrams in molecular systems. We demonstrate the 
methods for Ising models, although the perspective is generally applicable. Finally, in Section 7 we demonstrate how the 
bounds (8) can work for a general class of observables and not just for averaged QoIs.

2. Poor scaling properties of the classic inequalities for probability metrics

In this section we discuss several classic information inequalities and demonstrate they scale poorly with the size of the 
system especially when applying the inequalities to ergodic averages. We make these points by considering simple examples 
such as independent, identically distributed (IID) random variables, as well as Markov sequences and the corresponding 
statistical estimators.

Suppose P and Q be two probability measures on some measure space (X , A) and let f : X → R be some QoI. Our 
goal is to consider the discrepancy between models P and Q with respect to the quantity of interest f ,

E Q ( f ) − E P ( f ) . (12)
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Our primary mathematical challenge here is to understand what results on information metrics between probability mea-
sures P and Q imply for quantities of interest in (12). We first discuss several concepts of information metrics, including 
divergences and probability distances.

2.1. Information distances and divergences

To keep the notation as simple as possible we will assume henceforth that P and Q are mutually absolutely continuous 
and this will cover all the examples considered here. (Much of what we discuss would extend to general measures by 
considering a measure dominating P and Q , e.g. 1

2 (P + Q ).) For the same reasons of simplicity in presentation, we assume 
that all integrals below exist and are finite.

Total Variation [2]: The total variation distance between P and Q is defined by

T V (Q , P ) = sup
A∈A

|Q (A) − P (A)| = 1

2

∫ ∣∣∣∣1 − dP

dQ

∣∣∣∣dQ . (13)

Relative entropy [2]: The Kullback–Leibler divergence, or relative entropy, of P with respect to Q is defined by

R(Q ‖ P ) =
∫

log

(
dQ

dP

)
dQ . (14)

Relative Rényi entropy [37]: For α > 0, α 
= 1, the relative Rényi entropy (or divergence) of order α of P with respect to Q
is defined by

Dα(Q ‖ P ) = 1

α − 1

∫ (
dP

dQ

)1−α

dQ = 1

α − 1

∫ (
dQ

dP

)α

dP . (15)

χ2 divergence [2]: The χ2 divergence between P and Q is defined by:

χ2(Q ‖ P ) =
∫ (

dQ

dP
− 1

)2

dP . (16)

Hellinger distance [2]: The Hellinger distance between P and Q is defined by:

H(Q , P ) =
⎛⎜⎝∫

⎛⎝1 −
√

dP

dQ

⎞⎠2

dQ

⎞⎟⎠
1/2

. (17)

The total variation and Hellinger distances define proper distances while all the other quantities are merely divergences 
(i.e., they are non-negative and vanish if and only if P = Q ). The Rényi divergence of order 1/2 is symmetric in P and Q
and is related to the Hellinger distance by

D1/2(Q ‖ P ) = −2 log

(
1 − 1

2
H2(Q , P )

)
.

Similarly the Rényi divergence of order 2 is related to the χ2 divergence by

D2(Q ‖ P ) = log
(

1 + χ2(Q ‖ P )
)

.

In addition the Rényi divergence of order α is an nondecreasing function of α [38] and we have

lim
α→1

Dα(Q ‖ P ) = R(Q ‖ P ) ,

and thus it thus natural to set D1(Q ‖ P ) = R(Q ‖ P ). Using the inequality log(t) ≤ t − 1 we then obtain the chain of 
inequalities, [2]

H2(Q , P ) ≤ D1/2(Q ‖ P ) ≤ R(Q ‖ P ) ≤ D2(Q ‖ P ) ≤ χ2(Q ‖ P ) . (18)
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2.2. Some classic information inequalities for QoIs

We recall a number of classic information-theoretic bounds which use probability distances of divergences to control 
expected values of QoIs (also referred to as observables). Since∣∣E Q ( f ) − E P ( f )

∣∣= ∣∣∣∣∫ f (1 − dP

dQ
)dQ

∣∣∣∣≤ ∫ ‖ f ‖∞|1 − dP

dQ
|dQ = 2‖ f ‖∞T V (Q , P ) ,

we can readily obtain bounds on QoIs from relationships between T V (Q , P ) and other divergences. It is well-known and 
easy to prove that T V (Q , P ) ≤ H(Q , P ) but we will use here the slightly sharper bound (Le Cam’s inequality) [2] given by

T V (Q , P ) ≤ H(Q , P )

√
1 − 1

4
H2(Q , P ) ,

which implies

Le Cam [2]:

∣∣E Q ( f ) − E P ( f )
∣∣≤ 2‖ f ‖∞H(Q , P )

√
1 − 1

4
H2(Q , P ) . (19)

From inequality (18) and T V (Q , P ) ≤ H(Q , P ) we obtain immediately bounds on T V (Q , P ) by 
√

Dα(Q ‖ P ) but the 
constants are not optimal. The following generalized Pinsker inequality (with optimal constants) was proved in [39] and 
holds for 0 < α ≤ 1

T V (Q , P ) ≤
√

1

2α
Dα(Q ‖ P ) ,

and leads to

Csiszar–Kullback–Pinsker (CKP) [2]:∣∣E Q ( f ) − E P ( f )
∣∣≤ ‖ f ‖∞

√
2R(Q ‖ P ) . (20)

Generalized Pinsker [38]: For 0 < α ≤ 1

∣∣E Q ( f ) − E P ( f )
∣∣≤ ‖ f ‖∞

√
2

α
Dα(Q ‖ P ) . (21)

It is known that the CKP inequality is sharp only if P and Q are close. In particular the total variation norm is always 
less than 1 while the relative entropy can be very large. There is a complementary bound to the CKP inequality which is 
based on a result by Scheffé [2]

Scheffé:

|E Q ( f ) − E P ( f )| ≤ ‖ f ‖∞
(

2 − e−R(Q ‖ P )
)

. (22)

By (18) we have R(P ‖ Q ) ≤ χ2(Q ‖ P ) and thus we can also obtain a bound in terms of the χ2 divergence and ‖ f ‖∞ . 
However, an improved bound involving the variance of f and thus not requiring f to be bounded can be readily obtained 
via the Cauchy–Schwartz inequality:

Chapman–Robbins [40]:∣∣E Q ( f ) − E P ( f )
∣∣≤√V arP ( f )

√
χ2(Q ‖ P ) . (23)

Hellinger-based inequalities:

Recently a bound using the Hellinger distance and the L2 norm was derived in [41]:∣∣E Q ( f ) − E P ( f )
∣∣≤ √

2H(Q , P )

√
(E P ( f 2) + E Q ( f 2)) .

As we show in Appendix A this bound can be further optimized by using a control variates argument. Note that the left 
hand side is unchanged by replacing f by f − 1

2 (E P ( f ) + E Q ( f )) and this yields the improved bound

∣∣E Q ( f ) − E P ( f )
∣∣≤ √

2H(Q , P )

√
V arQ ( f ) + V arP ( f ) + 1

(E Q ( f ) − E P ( f ))2 . (24)

2
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Furthermore, by (24), we can obtain∣∣E Q ( f ) − E P ( f )
∣∣≤ H(Q , P )√

1 − H2(Q , P )

√
V arQ ( f ) + V arP ( f ) , (25)

for all P , Q such that 0 ≤ H(Q , P ) < 1.

2.3. Scaling properties for IID sequences

We make here some simple, yet useful observations, on how the inequalities discussed in the previous section scale 
with system size for IID sequences. We consider the product measure space XN = X × · · · ×X equipped with the product 
σ -algebra AN and we denote by P N = P × · · · × P the product measures on (XN , AN ) whose all marginals are equal to 
P and we define Q N similarly. From a statistics perspective, this is also the setting where sequences of N independent 
samples are generated by the models P and Q respectively.

We will concentrate on QoIs which are observables which have the form of ergodic averages or of statistical estimators. 
The challenge would be to assess based on information inequalities the impact on the QoIs. Next, we consider the simplest 
such case of the sample mean. For any measurable g :X → R we consider the observable f N :XN → R given by

f N(σ1, · · · ,σN) = 1

N

N∑
j=1

g(σ j) . (26)

This quantity is also the sample average of the data set D = {σ1, · · ·σN }. We also note that

‖ f N‖∞ = ‖g‖∞ , E P N ( f N) = E P (g) , V arP N ( f N) = 1

N
V arP (g)

To understand how the various inequalities scale with the system size N we need to understand how the information 
distances and divergences themselves scale with N . For IID random variables the results are collected in the following 
Lemma.

Lemma 2.1. For two product measures P N and Q N with marginals P and Q we have

Kullback–Leibler: R(Q N ‖ P N) = N R(Q ‖ P ),

Rényi: Dα(Q N ‖ P N) = N Dα(Q ‖ P ),

Chi-squared: χ2(Q N ‖ P N) =
(

1 + χ2(Q ‖ P )
)N − 1,

Hellinger: H(Q N ‖ P N) =
√

2 − 2

(
1 − H2(Q , P )

2

)N

. (27)

Proof. See Appendix B.

Combining the result in Lemma 2.1 with the information bounds in the previous section we obtain a series of bounds 
for ergodic averages which all suffer from serious defects. Some grow to infinity for N � 1 while others converge to a trivial 
bound that is not discriminating, namely provide no new information on the difference of the QoIs E Q N ( f N) − E P N ( f N). 
More precisely we obtain the following bounds:

Csiszar–Kullback–Pinsker for IID:∣∣E Q N ( f N) − E P N ( f N)
∣∣≤ ‖g‖∞

√
2N R(Q ‖ P ) = O (

√
N). (28)

Generalized Pinsker for IID: For 0 < α < 1 we have

∣∣E Q N ( f N) − E P N ( f N)
∣∣≤ ‖g‖∞

√
2N

α
Dα(Q ‖ P ) = O (

√
N). (29)

Scheffé for IID:∣∣E Q N ( f N) − E P N ( f N)
∣∣≤ ‖g‖∞

(
2 − e−N R(Q ‖ P )

)
= O (1). (30)

Chapman–Robbins for IID: We have

∣∣E Q N ( f N) − E P N ( f N)
∣∣≤√ 1

N
V arP (g)

√(
1 + χ2(Q ‖ P )

)N − 1 = O

(√
eN

√
N

)
. (31)
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Le Cam for IID:

∣∣E Q N ( f N) − E P N ( f N)
∣∣≤ 2‖g‖∞

√
2 − 2

(
1 − H2(Q , P )

2

)N
√

1

2
+ 1

2

(
1 − H2(Q , P )

2

)N

= O (1). (32)

Hellinger for IID:

∣∣E Q N ( f N) − E P N ( f N)
∣∣≤ √

2

√
2 − 2

(
1 − H2(Q , P )

2

)N√ V arP (g)

N
+ V arQ (g)

N
+ 1

2
(E P (g) − E Q (g))2. (33)

Every single bound fails to capture the behavior of ergodic averages. Note that the left-hand sides are all of order 1 and 
indeed should be small if P and Q are sufficiently close to each other. The CKP, generalized Pinsker and Chapman–Robbins 
bounds all diverge as N → ∞ and thus completely fail. The Le Cam bound is of order 1, but as N → ∞ the bound con-
verges to 2‖ f ‖∞ which is a trivial bound independent of P and Q . The Scheffé likewise converges to constant. Finally the 
Hellinger-based bound converges, as N → ∞, to the trivial statement that 1 ≤ √

2.

2.4. Scaling properties for Markov sequences

Next, we consider the same questions as in the previous section, however this time for correlated distributions. Let two 
Markov chains in a finite state space S with transitions matrix p(σ , σ ′) and q(σ , σ ′) respectively. We will assume that both 
Markov chains are irreducible with stationary distributions μp and μq respectively. In addition we assume that for any 
σ ∈ S , the probability measure p(σ , ·) and q(σ , ·) are mutually absolutely continuous. We denote by νp(σ ) and νq(σ ) the 
initial distributions of the two Markov chains and then the probability distributions of the path (σ1, · · ·σN ) evolving under 
p is given by

P N(σ1, · · · ,σN) = νp(σ0)p(σ0,σ1) · · · p(σN−1,σN) ,

and similarly for the distribution Q N under q.
If we are interested in the long-time behavior of the system, for example we may be interested in computing or esti-

mating expectations of the steady state or in our case model discrepancies such as∣∣Eμq (g) − Eμp (g)
∣∣

for some QoI (observable) g : S → R. In general the steady state of a Markov chain is not known explicitly or it is difficult 
to compute for large systems. However, if we consider ergodic observables such as

f N(σ1, · · · ,σN) = 1

N

N∑
i=1

g(σi) , (34)

then, by the ergodic theorem, we have, for any initial distribution νp(σ ) that

lim
N→∞ E P N ( f N) = Eμp (g) ,

and thus can estimate |Eμq (g) − Eμp (g)| if we can control |E Q N ( f ) − E P N ( f )| for large N . After our computations with 
IID sequences in the previous section, it is not surprising that none of the standard information inequalities allow such 
control. Indeed the following lemma, along with the fact that the variance of ergodic observables such as (34) scales like 
V arP N ( f N) = O (1/N) [33], readily imply that the bounds for Markov measures scale exactly as (poorly as) the IID case, 
derived at the end of Section 2.3.

Lemma 2.2. Consider two irreducible Markov chains with transitions matrix p and q. Assume that the initial conditions νp(σ ) and 
νq(σ ) are mutually absolutely continuous and that p(σ , ·) and q(σ , ·) are mutually absolutely continuous for each σ .

Kullback–Leibler: We have

lim
N→∞

1

N
R(Q N ‖ P N) = r(q ‖ p) :=

∑
σ ,σ ′

μq(σ )q(σ ,σ ′) log

(
q(σ ,σ ′)
p(σ ,σ ′)

)
,

and the limit is positive if and only if p 
= q.

Rényi: We have

lim
1

Dα(Q N ‖ P N) = 1
logρ(α) ,
N→∞ N α − 1
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where ρ(α) is the maximal eigenvalue of the non-negative matrix with entries qα(σ , σ ′)p1−α(σ , σ ′) and we have 1
α−1 logρ(α) ≥ 0

with equality if and only if p 
= q.

Chi-squared: We have

lim
N→∞

1

N
log(1 + χ2(Q N ‖ P N)) = logρ(2) ,

where ρ(2) is the maximal eigenvalue of the matrix with entries q2(x, y)p−1(x, y) and we have logρ(2) ≥ 0 with equality if and only 
if p = q.

Hellinger: We have

lim
N→∞ H(Q N ‖ P N) = √

2.

if p 
= q and 0 if p = q.

Proof. See Appendix B.

3. A divergence with good scaling properties

3.1. Goal oriented divergence

In this section we will first discuss the goal-oriented divergence which was introduced by [33], following the work in 
[34]. Subsequently in Sections 3.3 and 4 and Section 5 we will demonstrate that this new divergence provides bounds on 
the model discrepancy E Q ( f ) − E P ( f ) between models P and Q which scale correctly with their system size, provided the 
QoI f has the form of an ergodic average or a statistical estimator.

Given an observable f :X →R we introduce the cumulant generating function of f


P , f (c) = log E P (ecf ). (35)

We will assume f is such that 
P , f (c) is finite in a neighborhood (−c0, c0) of the origin. For example if f is bounded 
then we can take c0 = ∞. Under this assumption f has finite moments of any order and we will often use the cumulant 
generating function of a mean 0 observable


̃P , f (c) = log E P (ec( f −E P ( f ))) = 
P , f (c) − cE P ( f ). (36)

The following bound is proved in [33] and will play a fundamental role in the rest of the paper.

Goal-oriented divergence UQ bound [33]: If Q is absolutely continuous with respect to P and 
P , f (c) is finite in a neigh-
borhood of the origin, then

�−(Q ‖ P ; f ) ≤ E Q ( f ) − E P ( f ) ≤ �+(Q ‖ P ; f ) , (37)

where

�+(Q ‖ P ; f ) = inf
c>0

{
1

c

̃P , f (c) + 1

c
R(Q ‖ P )

}
, (38)

�−(Q ‖ P ; f ) = sup
c>0

{
−1

c

̃P , f (−c) − 1

c
R(Q ‖ P )

}
. (39)

We refer to [33] and [34] for details of the proof but the main idea behind the proof is the variational principle for the 
relative entropy: for bounded f we have, [42],

log E P (e f ) = sup
Q

{
E Q ( f ) − R(Q ‖ P )

}
and thus for any Q

E Q ( f ) ≤ log E P (e f ) + R(Q ‖ P ) .

Replacing f by c( f − E P ( f )) with c > 0 and optimizing over c yields the upper bound. The lower bound is derived in a 
similar manner.

As the following result from [33] shows, the quantities �+ and �− are divergences similar to the relative (Rényi) 
entropy, the χ2 divergence and the Hellinger distance. Yet they depend on the observable f and thus will be referred to as 
goal-oriented divergences.
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Properties of the goal-oriented divergence [33]:

1. �+(Q ‖ P ; f ) ≥ 0 and �−(Q ‖ P ; f ) ≤ 0.
2. �±(Q ‖ P ; f ) = 0 if and only if Q = P or f is constant P-a.s.

It is instructive to understand the bound when P and Q are close to each other. Again we refer to [33] for a proof 
and provide here just an heuristic argument. First note that if P = Q then it is easy to see that the infimum in the 
upper bound is attained at c = 0 since R(Q ‖ P ) = 0 and 
̃P , f (c) > 0 for c > 0 (the function is convex in c) and we have 

̃P , f (0) = 
̃′

P , f (0) = 0 and 
̃′′
P , f (0) = 1

2 V arP ( f ). So if R(Q ‖ P ) is small, we can expand the right-hand side in c and we 
need to find

inf
c>0

{
c

V arP ( f )

2
+ O (c2) + 1

c
R(Q ‖ P )

}
.

Indeed, it has been demonstrated that the minimum has the form 
√

V arP ( f )
√

2R(Q ‖ P ) + O (R(Q ‖ P )), [33]. The lower 
bound is similar and we obtain:

Linearized UQ bound [33]: If R(P ‖ Q ) is small we have

|E Q ( f ) − E P ( f )| ≤√V arP ( f )
√

2R(Q ‖ P ) + O (R(Q ‖ P )) . (40)

Robustness: These new information bounds were shown in [34] to be robust in the sense that the upper bound is attained 
when considering all models Q with a specified uncertainty threshold given by R(Q ‖ P ) ≤ η. Furthermore, the parameter 
c in the variational representations (38) and (39) controls the degree of robustness with respect to the model uncertainty 
captured by R(Q ‖ P ).

3.2. Example: exponential family of distributions

Next we compute the goal-oriented divergences for an exponential family which covers many cases of interest including 
Markov and Gibbs measures (see Sections 4 and 5), as well as numerous probabilistic models in machine learning [4,3].

Given a reference measure P 0 (which does not need to be a finite measure) we say that P θ is an exponential family if 
P θ is absolutely continuous with respect to P 0 with

dP θ

dP 0
(σ ) = exp (t(σ ) · θ − F (θ)) ,

where θ = [θ1, · · · , θK ]T ∈ � ⊂ R
K is the parameter vector, t(σ ) = [t1(σ ), ..., tK (σ )]T is the sufficient statistics vector and 

F (θ) is the log-normalizer

F (θ) = log
∫

et(σ )·θdP 0(σ ) .

Note that F (θ) is a cumulant generating function for the sufficient statistics, for example we have ∇θ F (θ) = E P θ (t). The 
relative entropy between two members of the exponential family is then computed as

R(P θ ′ ‖ P θ ) =
∫

log
dP θ ′

dP θ
(σ )dP θ ′

(σ ) = E P θ ′
(
(θ ′ − θ) · t(σ )

)+ F (θ) − F (θ ′)

= (θ ′ − θ) · ∇ F (θ ′) + F (θ) − F (θ ′) . (41)

If we consider an observable which is a linear function of the sufficient statistics, that is

f (σ ) = t(σ ) · v (42)

for some vector v ∈R
K then the cumulant generating function of f − E P θ ( f ) is


̃P θ , f (c) = log E P θ [ecf ] − cE P θ ( f ) = F (θ + cv) − F (θ) − cv · ∇ F (θ) , (43)

and thus combining (41) and (43), we obtain the divergence

�±(P θ ′ ‖P θ ; f ) = ± inf
c>0

1

c
{(θ ′ − θ) ·�F (θ ′) − F (θ ′) + F (θ ± cv) ∓ cv ·�F (θ)} . (44)
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3.3. Example: IID sequences

To illustrate the scaling properties of the goal-oriented divergence consider first two product measures P N and Q N as in 
Section 2.3 and the same sample mean observable (26). We now apply the bounds (38) and (39) to N f N =∑N

k=1 g(σk) to 
obtain

1

N
�−(Q N ‖ P N ; N f N) ≤ E Q N ( f N) − E P N ( f N) ≤ 1

N
�+(Q N ‖ P N ; N f N) .

The following lemma shows that the bounds scale correctly with N .

Lemma 3.1. We have

�±(Q N ‖ P N ; N f N) = N�±(Q ‖ P ; g) .

Proof. We have already noted that R(Q N ‖ P N) = N R(Q ‖ P ). Furthermore


̃P N ,N f N (c) = log E P N (ecN f N ) − cE P N (N f N)

= log
∫
XN

ec
∑N

i=1 g(σi)

N∏
i=1

dP (σi) − cE P N

(
N∑

i=1

g(σi)

)

= N log E P (ecg) − cN E P (g) = N
̃P ,g(c) . (45)

This result shows that the goal oriented divergence bounds capture perfectly the behavior of ergodic average as N goes to 
infinity. In particular when P and Q are close in the sense of KL divergence, i.e. R(Q ‖P ) is close to 0, by Theorem 2.12 
in [33], we can obtain that �±(Q ‖ P ; g) is also close to 0, which contrasts sharply with all the bounds discussed in 
Section 2.3.

4. UQ and nonlinear response bounds for Markov sequences

In the context of Markov chains, there are a number of UQ challenges which are usually not addressed by standard 
numerical analysis or UQ techniques: (a) Understand the effects of a model uncertainty on the long-time behavior (e.g. 
steady state) of the model. (b) Go beyond linear response and be able to understand how large perturbations affect the 
model, both in finite and long time regimes. (c) Have a flexible framework allowing to compare different models as, for 
example for Ising model versus mean-field model approximations considered in Section 6.

The inequalities of Section 3.1 can provide new insights to all three questions, at least when the bounds can be estimated 
or computed numerically or analytically. As a first example in this direction we consider Markov dynamics with the same 
set-up as in Section 2.4. We have the following bounds which exemplify how the goal-oriented divergences provide UQ 
bounds for the long-time behavior of Markov chains.

Theorem 4.1. Consider two irreducible Markov chains with transition matrices p(σ , σ ′) and q(σ , σ ′) and stationary distributions μp

and μq respectively. If p(σ , ·) and q(σ , ·) are mutually absolutely continuous we have for any observable g the bounds

ξ−(q ‖ p; g) ≤ Eμq (g) − Eμp (g) ≤ ξ+(q ‖ p; g) ,

where

ξ+(q ‖ p; g) = inf
c>0

{
1

c
λp,g(c) + 1

c
r(q ‖ p)

}
,

ξ−(q ‖ p; g) = sup
c>0

{
−1

c
λp,g(−c) − 1

c
r(q ‖ p)

}
. (46)

Here

r(q ‖ p) = lim
N→∞

1

N
R(Q N ‖ P N)

is the relative entropy rate and λp,g(c) is the logarithm of the maximal eigenvalue of the non-negative matrix with entries 
p(σ , σ ′) exp(c(g(σ ′) − Eμp (g))).

Moreover, we have the asymptotic expansion in relative entropy rate r(q ‖ p),∣∣Eμq (g) − Eμp (g)
∣∣≤√vμp (g)

√
2r(q ‖ p) + O (r(q ‖ p)) (47)
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where

vμp(g) =
∞∑

k=−∞
Eμp (g(σk)g(σ0))

is the integrated auto-correlation function for the observable g.

Proof. We apply the goal-oriented divergence bound to the observable N f N =∑N
k=1 g(σi) and have

1

N
�−(Q N ‖ P N ; N f N) ≤ E Q N ( f N) − E P N ( f N) ≤ 1

N
�+(Q N ‖ P N ; N f N).

We then take the limit N → ∞. By the ergodicity of P N we have limN→∞ E P N ( f N) = Eμp (g) and similarly for Q N . We have 
already established in Lemma 2.2 the existence of the limit r(q ‖ p) = limN→∞ 1

N R(Q N ‖ P N). For the cumulant generating 
function in �± we have

1

N

̃P N ,N f N (c) = 1

N
log E P N (ecN f N ) − c

1

N
E P N (N f N)

= 1

N
log

∑
σ0,··· ,σN

νp(σ0)

N∏
k=1

p(σk−1,σk)ecg(σk) − cE P N ( f N)

= 1

N
logνp P N

cg − cE P N ( f N)

where Pcg is the non-negative matrix with entries p(σ , σ ′)ecg(σ ′) . The Perron–Frobenius theorem gives the existence of the 
limit [43].

The asymptotic expansion is proved exactly as for the linearized UQ bound (40). It is not difficult to compute the second 
derivative of λp,g(c) with respect to c by noting all function are analytic function of c and thus we can freely exchange the 
N → ∞ limit with the derivative with respect to c. Therefore we obtain that

d2

dc2
λP ,g(0) = lim

N→∞
1

N
V arP N (N f N)

and a standard computation shows that the limit is the integrated autocorrelation function vμp (g), we also refer to the 
derivations in [33]. For details on the numerical computation of the autocorrelation function vμp we refer to [44].

Remark. A well studied case of UQ for stochastic models and in particular stochastic dynamics is linear response, also 
referred to as local sensitivity analysis, which addresses the role of infinitesimal perturbations to model parameters of 
probabilistic models, e.g. [45,46]. Here (47) provides computable bounds in the linear response regime, as demonstrated 
earlier in [33] and which can be used for fast screening of uninfluential parameters in reaction networks with a very large 
number of parameters, [47]. A related linear response bound using relative entropy was carried out earlier in [48] and 
subsequently in [49].

Nonlinear response bounds: Beyond linear response considerations, nonlinear response methods attempt to address the role 
of larger parameter perturbations. Some of the relevant methods involve asymptotic series expansions in terms of the small 
parameter perturbation [50,51], which quickly become computationally intractable as more terms need to be computed. 
However, the inequalities (38) and (39) provide robust and computable nonlinear response bounds.

The main result in Theorem 4.1 was first obtained in [33]. Here we revisit it in the context of scalability in both space 
and time and connect it to nonlinear response calculations for stochastic dynamics in statistical mechanics. This connection 
is made more precise in the following Corollaries which follow directly from Theorem 4.1 and provide layers of progressively 
simpler to compute-and accordingly less sharp-bounds:

Corollary 4.2. Based on the assumptions and definitions in Theorem 4.1, we have the following two bounds that involve two upper 
bounds of r(q ‖ p). Bound (i) is sharper than bound (ii), while the latter is straightforward to calculate analytically.

(i) Let R(q(σ , ·)‖p(σ , ·)) =∑σ q(σ , σ ′) log q(σ ,σ ′)
p(σ ,σ ′) ; then,

ξ+(q ‖ p; g) ≤ inf
c>0

{
1

c
λp,g(c) + 1

c
sup
σ

R(q(σ , ·)‖p(σ , ·))
}

ξ−(q ‖ p; g) ≥ sup

{
−1

c
λp,g(−c) − 1

c
sup R(q(σ , ·)‖p(σ , ·))

}
. (48)
c>0 σ
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(ii) Next, we have the upper bound in terms of the quantity sup
σ ,σ ′

| log q(σ ,σ ′)
p(σ ,σ ′) |,

ξ+(q ‖ p; g) ≤ inf
c>0

{
1

c
λp,g(c) + 1

c
sup
σ ,σ ′

| log
q(σ ,σ ′)
p(σ ,σ ′)

|
}

ξ−(q ‖ p; g) ≥ sup
c>0

{
−1

c
λp,g(−c) − 1

c
sup
σ ,σ ′

| log
q(σ ,σ ′)
p(σ ,σ ′)

|
}

. (49)

Proof. We consider the relative entropy rate r(q ‖ p); then,

r(q ‖ p) =
∑
σ ,σ ′

μq(σ )q(σ ,σ ′) log
q(σ ,σ ′)
p(σ ,σ ′)

= Eμq

(∑
σ ′

q(σ ,σ ′) log
q(σ ,σ ′)
p(σ ,σ ′)

)
= Eμq (R(q(σ , ·)‖p(σ , ·)))
≤ sup

σ
R(q(σ , ·)‖p(σ , ·)), (50)

where R(q(σ , ·)‖p(σ , ·)) =∑σ ′ q(σ , σ ′) log q(σ ,σ ′)
p(σ ,σ ′) . Moreover, we have

R(q(σ , ·)‖p(σ , ·)) =
∑
σ ′

q(σ ,σ ′) log
q(σ ,σ ′)
p(σ ,σ ′)

≤ sup
σ ′

| log
q(σ ,σ ′)
p(σ ,σ ′)

|.

Therefore we can obtain another bound for r(q ‖ p), that is,

r(q ‖ p) ≤ sup
σ ,σ ′

| log
q(σ ,σ ′)
p(σ ,σ ′)

|. (51)

This bound may be not as sharp as the one in (50), but it is more easily computable. Thus, by (46), (50) and (51), it is easy 
to obtain (i) and (ii). �

If we consider the linearized bound in (47), then combining the bounds (50) and (51) of r(q‖p), we can obtain the 
following bound, which is a further simplification of Corollary 4.2, again at the expense of the tightness of the bounds.

Corollary 4.3. Under the assumptions and definitions in Theorem 4.1, we have

ξ±(q ‖ p; g) ≤ ±
√

vμp (g)
√

2 sup
σ

R(q(σ , ·)‖p(σ , ·)) + O (sup
σ

R(q(σ , ·)‖p(σ , ·))) (52)

≤ ±
√

vμp (g)

√
2 sup

σ ,σ ′
| log

q(σ ,σ ′)
p(σ ,σ ′)

| + O (sup
σ ,σ ′

| log
q(σ ,σ ′)
p(σ ,σ ′)

|). (53)

Remark. By the previous two Corollaries, we get some simplified ways to replace the calculation of ξ±(q ‖ p; g) since it is 
much easier to calculate sup

σ
R(q(σ , ·)‖p(σ , ·)) or sup

σ ,σ ′
| log q(σ ,σ ′)

p(σ ,σ ′) | than r(q‖p) itself, especially the latter one. In practice, 

we can first attempt to estimate ξ±(q ‖ p; g) by calculating the leading term in (52) or (53). If the linearization assumptions 
in the last Corollary fail, then we can try to use Corollary 4.2 or Theorem 4.1 which can also give computable bounds or 
estimates of ξ±(q ‖ p; g).

Finally, the bound in (51) is the Markov chain analogue of the triple norm ‖ | · ‖ | used in the estimation of UQ bounds for 
QoIs of Gibbs measures, which we discuss in depth in Section 5.

5. UQ and nonlinear response bounds for Gibbs measures

The Gibbs measure is one of the central objects in statistical mechanics and molecular dynamics simulation, [32,52]. 
On the other hand Gibbs measures in the form of Boltzmann Machines or Markov Random Fields provide one of the key 
classes of models in machine learning and pattern recognition, [3,4]. Gibbs measures are probabilistic models which are 
inherently high dimensional, describing spatially distributed systems or a large number of interacting molecules. In this 
Section we derive scalable UQ bounds for Gibbs measures based on the goal oriented inequalities discussed in Section 3.1. 
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Gibbs measures can be set on a lattice or in continuum space, here for simplicity in the presentation we focus on lattice 
systems.

Lattice spins systems. We consider Gibbs measures for lattice systems on Zd . If we let S be the configuration space of 
a single particle at a single site x ∈ Z

d , then S X is the configuration space for the particles in X ⊂ Z
d; we denote by 

σX = {σx}x∈X an element of S X . We will be interested in large systems so we let 
N = {x ∈ Z
d, |xi | ≤ n} denote the square 

lattice with N = (2n + 1)d lattice sites. We shall use the shorthand notation lim
N

to denote taking limit along the increasing 

sequence of lattices 
N which eventually cover Zd .

Hamiltonians, interactions, and Gibbs measures. To specify a Gibbs measure we specify the energy H N (σ
N ) of a set of 
particles in the region 
N . It is convenient to introduce the concept of an interaction � = {�X : X ⊂ Z

d, Xfinite} which 
associates to any finite subset X a function �X (σX ) which depends only on the configuration in X . We shall always assume 
that interactions are translation-invariant, that is for any X ⊂ Z

d and any a ∈ Z
d , �X+a is obtained by translating �X . For 

translation-invariant interactions we have the norm [32]

‖|�‖| =
∑
X�0

|X|−1‖�X‖∞ (54)

and denote by B the corresponding Banach space of interactions. Given an interaction � we then define the Hamiltonian 
H�

N (with free boundary conditions) by

H�
N (σ
N ) =

∑
X⊂
N

�X (σX ), (55)

and Gibbs measure μ�
N by

dμ�
N (σ
N ) = 1

Z�
N

e−H N (σ
N )dP N(σ
N ), (56)

where P N is the counting measure on S
N and Z�
N =∑σ
N

e−HN (σ
N ) is the normalization constant. The norm ‖ |�‖ | pro-

vides a bound on the energy per lattice site since we have ‖ |H�
N ‖ | ≤ N‖ |�‖ |, see Proposition II.1.1C in [32]. In a similar way 

one can consider periodic boundary conditions or more general boundary conditions, see [32] for details.

Example: Ising model. For the d-dimensional nearest neighbor Ising model at inverse temperature β we have

H N(σ
N ) = −β J
∑

〈x,y〉⊂
N

σ(x)σ (y) − βh
∑

x∈
N

σ(x)

where 〈σ , σ ′〉 denotes a pair of neighbors with sup
i

|xi − yi | = 1. So we have

�X =
⎧⎨⎩−β Jσ(x)σ (y) , X = {x, y},

−βhσ(x) , X = {x},
0 otherwise,

and it is easy to see that (54) becomes

‖|�‖| = β(d| J | + |h|).

Observables. We will consider observables of the form

f N(σ
N ) = 1

N

∑
x∈
N

g(σx) (57)

for some observable g . It will be useful to note that N f N is nothing but Hamiltonian H�g

N for the interaction �g with

�
g
{x} = g , and �

g
X = 0 if X 
= {x} . (58)

UQ bounds for Gibbs measures in finite volume. Given two Gibbs measures μ�
N and μ�

N straightforward computations show 
that for the relative entropy we have

R(μ�
N ‖μ�

N ) = log Z�
N − log Z�

N + E � (H�
N − H�

N ) , (59)
μN
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while for the cumulant generating function we have


̃μ�
N ,N f N

(c) = log Z�−c�g

N − log Z�
N − cEμ�

N
(N f N) (60)

and thus we obtain immediately from the results in Section 3.1

Proposition 5.1. (Finite volume UQ bounds for Gibbs measures) For two Gibbs measures μ�
N and μ�

N we have the bound

1

N
�−(μ�

N ‖μ�
N ; N f N) ≤ Eμ�

N
( f N) − Eμ�

N
( f N) ≤ 1

N
�+(μ�

N ‖μ�
N ; N f N) (61)

where

�+(μ�
N ‖μ�

N ; N f N) = inf
c>0

1

c

{
log Z�−c�g

N − log Z�
N + Eμ�

N
(H�

N − H�
N ) − cEμ�

N
(N f N)

}
(62)

�−(μ�
N ‖μ�

N ; N f N) = sup
c>0

(−1

c
)
{

log Z�+c�g

N − log Z�
N + Eμ�

N
(H�

N − H�
N ) + cEμ�

N
(N f N)

}
. (63)

UQ bounds for Gibbs measures in infinite volume. In order to understand how the bounds scale with N we note first (see 
Theorem II.2.1 ∈ [32]) that the following limit exists

p(�) = lim
N

1

N
log Z�

N , (64)

and p(�) is called the pressure for the interaction � (and is independent of the choice of boundary conditions). The scaling 
of the other terms in the goal-oriented divergence �± is slightly more delicate. In the absence of first order transition for 
the Gibbs measure for the interaction � the finite volume Gibbs measures μ�

N have a well-defined unique limit μ� on SZ
d

which is translation invariant and ergodic with respect to Zd translations. In addition we have (see Section III.3 in [32])

lim
N

1

N
Eμ�

N
(H�

N ) = Eμ� (A�) with A� =
∑
X�0

1

|X |�X

and moreover, by [32], Eμ� (A�) can also be interpreted in terms of the derivative of the pressure functional

Eμ� (A�) = − d

dα
p(� + α�)|α=0.

We obtain therefore the following theorem which is valid in the absence of first order phase transitions.

Theorem 5.2 (Infinite-volume UQ bounds for Gibbs measures). Assume that both � and � have corresponding unique, transition 
invariant and ergodic infinite-volume Gibbs measures μ� and μ� . Then we have the bound

ξ−(μ� ‖μ�; g) ≤ Eμ� (g) − Eμ�(g) ≤ ξ+(μ� ‖μ�; g)

where �g is given by (58) and,

ξ+(μ� ‖μ�; g) = inf
c>0

1

c

{
p(� − c�g) − p(�) − d

dα
p(� + α(� − �))|α=0 + c

d

dα
p(� + α�g)|α=0

}
ξ−(μ� ‖μ�; g) = sup

c>0
(−1

c
)

{
p(� + c�g) − p(�) − d

dα
p(� + α(� − �))|α=0 − c

d

dα
p(� + α�g)|α=0

}
Remark. We now readily obtain that the UQ bounds in Theorem 5.2 are applicable for any observables g = g(σx), and not 
just for averaged quantities of the type (57). This is the case under the conditions of Theorem 5.2, i.e. that μ� and μ� are 
transition invariant and ergodic and that the corresponding pressure terms p(� ± c�g) are finite for some c > 0; of course 
the bounds hold trivially true when they are infinite.

Phase transitions. The bound in Theorem 5.2 is useful even in the presence of first order phase transition which manifests 
itself by the existence of several infinite volume Gibbs measure consistent with the finite volume Gibbs measure (via the 
DLR condition [53]) or equivalently by the lack of differentiability of the pressure functional p(� + αϒ) for some inter-
action ϒ . For example in the 2-d Ising model discussed in Section 6, below the critical temperature the pressure p(�) is 
not differentiable in h at h = 0: there are two ergodic infinite volume Gibbs measures which correspond to the two values 
of left and right derivatives of the pressure (aka the magnetization). If necessary, in practice one will select a particular 
value of the magnetization, see the examples in Section 6. Finally, we also note that in the phase transition regime the 
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linearized bounds (10) and (67) fail since the variance blows up in the N → ∞ limit, [53]; in contrast, the full UQ bounds 
of Theorem 5.2 remain finite.

UQ bounds and the use of the triple norm ‖ |�‖ |. It is not difficult to show (see Proposition II.1.1C and Lemma II.2.2C in [32]
and the definition of the triple norm in (54)), that

| log Z�
N − log Z�

N | ≤ ‖H�
N − H�

N ‖∞ ≤ N‖|� − �‖| , (65)

and thus by (59) we have

1

N
R(μ�

N ‖μ�
N ) ≤ 2‖|� − �‖| . (66)

Therefore, we obtain the bounds

�+ ≤ inf
c>0

{
1

c

̃μ�

N ,N f N
(c) + 2

c
‖|� − �‖|

}
,

�− ≥ sup
c>0

{
−1

c

̃μ�

N ,N f N
(−c) − 2

c
‖|� − �‖|

}
.

These new upper and lower bounds, although they are less sharp, they still scale correctly in system size, while they are 
intuitive in capturing the dependence of the model discrepancy on the fundamental level of the interaction discrepancy 
‖ |� − �‖ |; finally the bounds do not require the computation of the relative entropy, due to upper bound (66).

Remark. On the other hand, it is tempting but nevertheless misguided to try to bound 
̃μ�
N ,N f N

(c) in terms of interaction 
norms. Indeed we have the bound 1

c 
̃μ�
N ,N f N

(c) ≤ ‖N f N − Eμ�
N
(N f N )‖∞ . But this bound becomes trivial: since the infimum 

over c is then attained at c = ∞ with the trivial result that �+(μ�
N ‖ μ�

N ; N f N ) ≤ ‖N f N − Eμ�
N
(N f N )‖∞ which is independent 

of � and thus useless.

Linearized bounds. Applying the linearized bound (40) to the Gibbs case gives the bound

1

N
�±(μ�

N ‖μ�
N ; N f N) = ±

√√√√ 1

N
V arμ�

N

( ∑
x∈
N

g(σx)
)√ 2

N
R(μ�

N ‖μ�
N ) + O (

1

N
R(μ�

N ‖μ�
N )). (67)

In the large N limit, in the absence of first order transition, and if the spatial correlations in the infinite volume Gibbs state 
decays sufficiently fast then the variance term converges to the integrated auto-correlation function [32]

lim
N

1

N
V arμ�

N

( ∑
x∈
N

g(σx)

)
=
∑
x∈Zd

Eμ�

(
(g(σx) − Eμ�(g))(g(σ0) − Eμ�(g))

)
= d2

dc2
P (� − c�g)|c=0 (68)

which is also known as susceptibility in the statistical mechanics literature.
Finally, we get a simple and easy to implement linearized UQ bound when we replace (66) in (67), namely

1

N
�±(μ�

N ‖μ�
N ; N f N) = ±2

√√√√ 1

N
V arμ�

N

( ∑
x∈
N

g(σx)
)√‖|� − �‖| + O (‖|� − �‖|). (69)

Each one of terms on the right hand side of (69) can be either computed using Monte Carlo simulation or can be easily 
estimated, see for instance the calculation of ‖ |� − �‖ | in the Ising case earlier.

6. UQ for phase diagrams of molecular systems

In this section, we will consider the Gibbs measures for one and two-dimensional Ising and mean field models, which 
are exactly solvable models, see e.g. [54]. We also note that mean field models can be obtained as a minimizer of relative 
entropy in the sense of (2), where P is an Ising model and Q is a parametrized family of product distributions, [3].

Here we will demonstrate the use of the goal-oriented divergence, discussed earlier in Section 3.1 and Section 5, to 
analyze uncertainty quantification for sample mean observables such as the mean magnetization

f N = 1

N

∑
σ(x), (70)
x∈
N



M.A. Katsoulakis et al. / Journal of Computational Physics 336 (2017) 513–545 529
in different phase diagrams based on these models. We use exactly solvable models as a test bed for the accuracy of our 
bounds, and demonstrate their tightness even in phase transition regimes. In Appendix C.1, we give some background about 
one/two-dimensional Ising models and mean field models and recall some well-known formulas.

Towards the evaluation of the UQ bounds. The results in Sections 3.3 and 5 demonstrate mathematically that the bounds 
relying on the goal oriented divergences �± are the only available ones that scale properly for long times and high dimen-
sional systems. Therefore we turn our attention to the evaluation of these bounds. First we note that the bounds depending 
of the triple norms ‖ | · ‖ |, as well as the linearized bounds of Section 5 provide implementable upper bounds, see also the 
strategies in [47] for the linearized regime, which are related to sensitivity screening.

By contrast, here we focus primarily on exact calculations of the goal oriented divergences �± , at least for cases where 
either the Ising models are exactly solvable or in the case where the known (surrogate) model is a mean field approximation. 
We denote by μN the Gibbs measures of the model we assume to be known and μ′

N the Gibbs measure of the model we 
try to estimate. Then from (61)–(63), recalling that 
μN ,N f N (c) = 
̃μN ,N f N (c) + cEμN (N f N ), we can rewrite the bounds as

Eμ′
N
( f N) ≥ sup

c>0

{
− 1

cN

μN ,N f N (−c) − 1

cN
R(μ′

N ‖μN)

}
,

Eμ′
N
( f N) ≤ inf

c>0

{
1

cN

μN ,N f (c) + 1

cN
R(μ′

N ‖μN)

}
,

and obtain an explicit formula for each term in the large N limit in terms of the pressure, mean energy and magnetization 
for the models. In the figures below we will display the upper and lower bounds using simple optimization algorithm in 
Matlab to find the optimal c in the bounds. Note that in the absence of exact formulas we would need to rely on numerical 
sampling of those quantities, an issue we will discuss elsewhere.

For completeness and for comparison with the exact bounds we will also use and display the approximate linearized 
bounds

Eμ′
N
( f N) ≥ EμN ( f N) −

√
1

N
V arμN (N f N)

√
2

N
R(μ′

N ‖μN) + O (
1

N
R(μ′

N ‖μN)) ,

Eμ′
N
( f N) ≤ EμN ( f N) +

√
1

N
V arμN (N f N)

√
2

N
R(μ′

N ‖μN) + O (
1

N
R(μ′

N ‖μN)) ,

where each term is computable in the large N limit in terms of the pressure, susceptibility, magnetization, and so on.

6.1. Three examples of UQ bounds for phase diagrams

Next we consider three cases where our methods provide exact UQ bounds for phase diagrams between two high di-
mensional probabilistic models. Here we compare three classes of Gibbs measures for Ising models. (1) Mean field models 
with different parameters well beyond the linear response regime, (2) Ising models compared to their mean field approx-
imations, and (3) Ising models with vastly different parameters. All these examples cannot be handled with conventional 
arguments such as linear response theory because they fall into two categories: either, (a) the models have parameters 
differing significantly, for instance by at least 50%, or (b) the comparison is between different models, e.g. a complex model 
and a simplified surrogate model which is a potentially inaccurate approximation such as the mean field of the original 
Ising model.

(1) Mean field versus mean field models. Firstly, we consider two mean field models, assume μN;mf and μ′
N;mf are their 

Gibbs measures (probabilities) defined in Appendix C.1 with hmf = h + d Jm and h′
mf = h′ + d J ′m′ , respectively. By some 

straightforward calculation in Appendix C.2, we obtain the ingredients of the UQ bounds discussed earlier in the Section:

1

N
R(μ′

N;mf ‖μN;mf ) = log
eβhmf + e−βhmf

e−β ′h′
mf + eβ ′h′

mf
+ (β ′h′

mf − βhmf )m
′, (71)

1

N

μN;mf ,N f N (c) = log

e(c+βhmf ) + e−(c+βhmf )

e−βhmf + eβhmf
, (72)

and

1

N
V arμN;mf (

∑
x∈
N

σ(x)) = 1 − m2, (73)

where m and m′ are the magnetizations (70) of these two mean field models and can be obtained by solving the implicit 
equation (C.21). Here we note that the solution of the equation (C.21) when h = 0 has a super-critical pitchfork bifurcation. 
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Fig. 2. (a): The red solid line is the magnetization for h = 0; the magenta solid line is the magnetization for h = 0.6. The black dashed/dash–dot line is 
the upper/lower UQ bound given by the goal-oriented divergences of the magnetization (70) for h = 0.6. The blue dashed/dash–dot line is the linearized 
upper/lower bound. All gray areas (both light and darker gray) depict the size of the uncertainty region corresponding to linearized bounds. The narrower 
lighter gray area corresponds to the goal-oriented bounds. (b): The red solid line is the magnetization for β = 1; the magenta solid line is the magnetization 
for β = 1.6. The black dashed/dash–dot line is the upper/lower goal-oriented divergence bound of the magnetization for β = 1.6. The blue dashed/dash–dot 
line is the linearized upper/lower bound. All gray areas (both light and darker gray) depict the size of the uncertainty region corresponding to linearized 
bounds. The narrower lighter gray area corresponds to the goal-oriented bounds. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

In our discussion regarding mean field vs mean field and 1-d Ising vs mean field models we only consider the upper branch 
of the stable solution. But, in our discussion about 2d Ising vs mean field, we consider both upper and lower branches.

In Appendix C.1, we can calculate the magnetizations, the goal-oriented divergence bounds and their corresponding 
linearized bounds which we use in deriving exact formulas for the UQ bounds. Indeed, for Fig. 2(a), we set J = 2 and 
consider the Gibbs measure of the 1-d mean field model with h = 0 as the benchmark and plot the magnetization based on 
this distribution as a function of inverse temperature β . Then, we perturb the external magnetic field to h = 0.6 and consider 
the Gibbs measure with this external magnetic field. We plot the goal-oriented divergence bounds of the magnetization of 
the Gibbs measure with h = 0.6 as a function of β as well as their corresponding linearized approximation in this figure. 
To test the sharpness of these bounds, we also give the magnetization with h = 0.6 in the figure. We can see that the 
upper bound almost coincides with the magnetization. The linearized approximation works well at low temperature, but, 
it does not work as well as the goal-oriented bound around the critical point. The reason for this is that relative entropy 
between those two measures is bigger here due to the bigger perturbation of h and linearization is a poor approximation 
of the bounds. Also, we can see that the magnetization vanishes at high temperatures for h = 0. At low temperatures it 
approaches its maximum value m = 1. For non-zero h, we see that there is no phase transition and the magnetization 
increases gradually from close to m = 0 at high temperatures (β � 1) to m = 1 at low temperatures (β � 1).

In Fig. 2(b), we set J = 1 and consider the Gibbs measure of the 1-d mean field model with β = 1 as the benchmark 
and plot the magnetization based on this measure as a function of h. Then we perturb β by 60% and obtain another Gibbs 
measure with β = 1.6 that has a phase transition at h = 0. In the figure, we give the upper/lower goal-oriented divergence 
bounds of the magnetization based on the Gibbs measure with β = 1.6 as well as their corresponding linearized bounds. 
To test the sharpness of the bounds, we also plot the magnetization with β = 1.6 as a function of h. We can see the 
upper bound almost coincide with the magnetization when h is positive and the lower bound almost coincide with the 
magnetization when h is negative. Similarly with Fig. 2(a), the linearized bounds make a relatively poor estimation around 
the critical point h = 0 because of the bigger relative entropy between these two measures.

(2a) One-dimensional Ising model versus mean field. Consider the 1-d Ising model and mean field model and assume μN
and μN;mf are respectively their Gibbs distributions, which are defined in Appendix C.1. Then, by straightforward calcula-
tions, we obtain

lim
N

1

N
R(μN‖μN;mf ) = log

eβ[h+ Jm] + e−β[h+ Jm]

eβ J cosh(βh) + k1
+ β J

k1
(k1 − 2e−2β J

eβ J cosh(βh) + k1
− me Jβ sinh(hβ)) (74)

where k1 =
√

e2 Jβ sinh2(hβ) + e−2 Jβ ; detailed calculations can be found in Appendix C.2. By (72) and (73), we have

1

N;mf ,N f N (c) = log

e[c+β(h+ Jm)] + e−[c+β(h+ Jm)]
−β[h+ Jm] β[h+ Jm] , (75)
N e + e
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Fig. 3. (a): The red solid line is the magnetization of 1-d mean field model for h = 0; the magenta solid line is the magnetization of 1-d Ising model for 
h = 0. The black dashed/dash–dot line is the upper/lower goal-oriented divergence bound of the magnetization of the Ising model. The blue dashed/dash–dot 
line is the linearized upper/lower bound. The sum of the light gray and medium gray areas depict the size of the uncertainty region corresponding to 
linearized bounds. The sum areas of medium gray and dark dray corresponds to the goal-oriented bounds. (b): The red solid line is the magnetization 
of 1-d mean field model for β = 1.0; the magenta solid line is the magnetization of 1-d Ising model β = 1.0. The black dashed/dash–dot line is the 
upper/lower goal-oriented divergence bound of the magnetization of the Ising model. The blue dashed/dash–dot line is the linearized upper/lower bound. 
All gray areas (both light and darker gray) depict the size of the uncertainty region corresponding to linearized bounds. The narrower lighter gray area 
corresponds to the goal-oriented bounds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

and
1

N
V arμN;mf (

∑
x∈
N

σ(x)) = 1 − m2. (76)

Combining with Appendix C.1, for given parameters, we can calculate the magnetizations, the goal-oriented divergence 
bounds and their corresponding linearized approximation.

In Fig. 3(a), we set h = 0 and J = 1 and consider the Gibbs measure of the mean field model as the benchmark, 
that is we use it as a surrogate model for the Ising model. In the figure, we see that its magnetization vanishes at high 
temperatures. At low temperatures it goes to its maximum value m = 1, exhibiting spontaneous magnetization and a phase 
transition at the inverse temperature β = 1. We plot the upper/lower goal-oriented divergence bound as well as their 
corresponding linearized bounds of the magnetization as a function of β . To test the sharpness of these bounds, we also 
plot the magnetization of the Ising model in the figure. The magnetization of the Ising model vanishes for all temperatures, 
exhibiting no phase transitions. In this sense the mean field approximation of the Ising model is a very poor one and the 
UQ bounds depicted in Fig. 3(a) capture and quantify the nature of this approximation. Furthermore, the linearized lower 
bound fails in the sense that is not informative for low temperatures because of the considerable difference between the 
models μN and μN;mf . In Fig. 3(b), we set β = 1 and J = 1 and consider the bounds and the magnetizations as a function 
of the external field h. Similarly with Fig. 3(a), we take the Gibbs measure of the mean field model as the benchmark. 
To test the sharpness of the bounds, we also plot the magnetization of the Ising model in the figure. The goal-oriented 
divergence bounds work well since the uncertainty region given by them is in this case small. And the upper bound almost 
coincides with it for positive h and the lower bound almost coincide with it for negative h. The uncertainty region given by 
the linearized bounds is wider around h = 0, which shows the linearized bounds do not give as good an approximation to 
the UQ region around h = 0.

(2b) Two-dimensional Ising model versus mean field. We revisit the example in (2a) above but this time in two dimensions 
where the Ising model exhibits phase transitions at a finite temperature. WE denote by μN and μN;mf the Gibbs distribu-
tions for the two-dimensional zero-field Ising model and two-dimensional mean field model with hmf = 2 Jm, respectively. 
Then, by straightforward calculations, we obtain

lim
N

1

N
R(μN‖μN;mf ) = log[e−2β Jm + e2β Jm] − log 2

2
− 1

2π

π∫
0

log[cosh2(2β J ) + k(θ)]dθ

+ β J
sinh(4β J )

π

π∫
1

k(θ)
[1 − 1 + cos(2θ)

cosh2(2β J ) + k(θ)
]dθ − 2β JmM0, (77)
0
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Fig. 4. (a) The red solid line is the spontaneous magnetization of the 2-d mean field model with h = 0+; the magenta solid line is the spontaneous 
magnetization of 2-d Ising model with h = 0+; the black dashed/dash–dot line is the upper/lower goal-oriented divergence bound of the magnetization 
for Ising model; the blue dashed/dash–dot line is the linearized upper/lower bound. All gray areas (both light and darker gray) depict the size of the 
uncertainty region corresponding to linearized bounds. The narrower lighter gray area corresponds to the goal-oriented bounds. (b) The red solid line is 
the spontaneous magnetization of 2-d mean field model with h = 0−; the magenta solid line is the spontaneous magnetization of 2-d Ising model with 
h = 0−; the black dashed/dash–dot line is the upper/lower goal-oriented divergence bound of the magnetization for Ising model; the blue dashed/dash–dot 
line is the linearized upper/lower bound. All gray areas (both light and darker gray) depict the size of the uncertainty region corresponding to linearized 
bounds. The narrower lighter gray area corresponds to the goal-oriented bounds. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

1

N

μN;mf ,N f N (c) = log

e(c+2β Jm) + e−(c+2β Jm)

e−2β Jm + e2β Jm
(78)

and

1

N
V arμN;mf (

∑
x∈
N

σ(x)) = 1 − m2, (79)

where m and M0 are the spontaneous magnetizations of the two-dimensional mean field model and Ising models, respec-
tively and can be obtain by solving (C.21) and (C.13). Detailed calculations can be found in Appendix C.2. Combining with 
Appendix C.1, for given parameters, we can calculate the magnetizations, the goal-oriented divergence bounds and their 
corresponding linearized approximation.

In Fig. 4(a), we set h = 0 and J = 1 and plot the bounds and the magnetizations as a function of inverse temperature β . 
Similarly with Fig. 3, we take the Gibbs measure of the mean field as the benchmark and consider the bounds for the mag-
netization of the Ising model. We can readily see that the goal-oriented bounds work well in low temperatures. Notice the 
large uncertainty prior to the onset of the spontaneous magnetization (phase transition) which is due to a pitchfork bifur-
cation and the two branches (upper and lower) reported in Fig. 1b, as well as in the panels in Fig. 4. The linearized bounds 
also work well, but they are not as sharp as the goal-oriented divergence bounds around the critical points because of the 
larger value of the relative entropy R(μN‖μN;mf ). There are phase transitions for both mean field model and Ising model. 
The critical points are 1/2 and log(1 + √

2)/2 for mean field model and Ising model, respectively. Both their magnetizations 
vanish at high temperatures and go to their maximum values 1 at low temperature.

Actually, the spontaneous magnetizations we consider in Fig. 4(a) are both based on the definition M = lim
h→0+〈σ(x)〉. If 

we consider the definition M = lim
h→0−〈σ(x)〉, we can obtain another figure which is Fig. 4(b). We can see the quantities in 

Fig. 4(b) are just the opposite of the corresponding quantities in Fig. 4(a). Combining both figures gives us the uncertainty 
region reported in the Introduction.

(3) 1-d Ising model versus 1-d Ising model. Consider two one-dimensional Ising models and μN and μ′
N are their Gibbs 

distributions defined in Appendix C.1. By straightforward calculation, we have

lim
N

1

N
R(μ′

N‖μN) = log
eβ J cosh(βh) +

√
e2 Jβ sinh2(hβ) + e−2 Jβ

eβ ′ J ′ cosh(β ′h′) +
√

e2 J ′β ′ sinh2(h′β ′) + e−2 J ′β ′
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Fig. 5. (a) The red solid line is the magnetization of 1-d Ising model for h = 0; the magenta solid line is the magnetization of 1-d Ising model for 
h = 0.6; the black dashed/dash–dot line is the upper/lower bound by goal-oriented divergence; the blue dashed/dash–dot line is the linearized upper/lower 
bound. All gray areas (both light and darker gray) depict the size of the uncertainty region corresponding to linearized bounds. The narrower lighter 
gray area corresponds to the goal-oriented bounds. (b) The red solid line is the magnetization of 1-d Ising model for β = 1; the magenta solid line 
is the magnetization of 1-d Ising model for β = 1.6; the black dashed/dash–dot line is the upper/lower bound by goal-oriented divergence; the blue 
dashed/dash–dot line is the linearized upper/lower bound. All gray areas (both light and darker gray) depict the size of the uncertainty region corresponding 
to linearized bounds. The narrower lighter gray area corresponds to the goal-oriented bounds. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

+ (β ′ J ′ − β J )(1 − 1

k′
1

2e−2β ′ J ′

eβ ′ J ′ cosh(β ′h′) + k′
1

) + (β ′h′ − βh)
1

k′
1

e J ′β ′
sinh(h′β ′) (80)

and

lim
N

1

N
V arμN (

∑
x∈
N

σ(x)) = 1

k3
1

e− Jβ cosh(hβ), (81)

where k′
1 =

√
e2 J ′β ′ sinh2(h′β ′) + e−2 J ′β ′ . The cumulant generating function is

lim
N

1

N

μN (c) = log

eβ J cosh(βh + c) +
√

e2 Jβ sinh2(hβ + c) + e−2 Jβ

eβ J cosh(βh) +
√

e2 Jβ sinh2(hβ) + e−2 Jβ
, (82)

detailed calculations can be found in Appendix C.2. Combining with Appendix C.1, for given parameters, we can calculate 
the magnetizations, the bounds given by goal-oriented divergence and their corresponding linearized approximation.

In Fig. 5(a), we set J = 1 and plot the magnetizations of 1-d Ising model as a function of inverse temperature β for h = 0
and h = 0.6, respectively. For the zero-field Ising model, used here as our benchmark, the magnetization vanishes for all 
temperatures. For h = 0.6, the magnetization increases gradually to its maximum 1. Clearly the models are far apart but the 
UQ bounds work remarkably well. Indeed, we plot the upper/lower goal-oriented divergence bound of the magnetization 
for the nonzero-field Ising model. The upper bound almost coincides with the magnetization itself. The lower bound is 
poor due to the symmetry of the bounds in h. If we break the symmetry by comparing models for different positive 
external fields both bounds become much sharper (not shown). The linearized bounds give a good approximation at high 
temperatures. However, at low temperatures, they are not as sharp as the goal-oriented divergence bounds. This is due to 
the larger relative entropy R(μ‖μ′) between μ and μ′ . In Fig. 5(b), we plot the magnetization of the one-dimensional Ising 
model as a function of h for two different inverse temperatures β = 1 and β = 1.6. The parameter J was set to 1. We 
also plot the upper/lower goal-oriented divergence bounds for β = 1.6. Similarly with Fig. 5(a), we also plot the linearized 
upper/lower bound in the figure. The goal-oriented divergence bounds work well here. We can see the upper bound almost 
coincides with the magnetization when h is positive and the lower bound almost coincides with the magnetization when 
h is negative. For β = 1.6, there is a phase transition at the point h = 0 and the linearized bounds make a relatively poor 
estimation around h = 0 since there the models are far apart, see Fig. 5(b).
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7. Applicability to more general quantities of interest

As we discussed in the Remark following Theorem 5.2, the UQ bounds (8) are also applicable to observables which are 
not limited to averaged quantities such as (57), or for QoIs satisfying (11). Indeed this is the case under the condition that 
the probability measures in the UQ bounds of Theorem 5.2 are transition invariant and ergodic, and for general observables 
for which the pressure terms in the UQ bounds are finite.

Furthermore, an important special case of applicability of our bounds arises when we consider localized perturbations to 
statistical models such as the Gibbs measures in Section 5. Then, the corresponding interaction � includes only local per-
turbations to the interaction �, e.g. local defects encoded in the interaction potential J = J (x, y), or localized perturbations 
to the external field h = h(x) in the case of Ising-type models. Defects of finite temperature multiscale models are a con-
tinuous source of interest in the computational materials science community, see for instance [55], and the lattice models 
considered in Section 5 constitute an important class of simplified prototype problems. In the case of localized perturbations 
to the interaction � in (55) we do not have anymore the scaling (7); in fact the Hamiltonians scale as

H�
N (σ
N ) = H�

N (σ
N ) + O (1) ,

and thus the corresponding relative entropy satisfies

R(μ�
N ‖μ�

N ) = O (1) ,

uniformly in the system size N . Then, the asymptotic expansion (10) readily yields that the only necessary condition for the 
QoIs f N is that

V arP ( f N) = O (1) , (83)

uniformly in the system size N . A corresponding result can be easily obtained for �±(Q ‖ P ; f ) and the full UQ bound (8). 
In this context, we can obtain UQ bounds for wide class of observables, for example purely local observables pertinent to 
the defects, that do not need to be averages such as (57) satisfying the condition (11).

8. Conclusions

In this paper we first showed that the classic information inequalities such as Pinsker-typer inequalities and other in-
equalities based on the Hellinger distance, the χ2-divergence, or the Rényi divergence perform poorly for the purpose of 
controlling QoIs of systems with many degrees of freedom, and/or in long time regimes. On the other hand we demon-
strated that the goal oriented divergence introduced in [33] scales properly and allows to control QoIs provided they can be 
written as ergodic averages or spatial averages, e.g. quantities like autocorrelation, mean magnetization, specific energy, and 
so on. We illustrated the potential of our approach by computing uncertainty quantification bounds for phase diagrams for 
Gibbs measures, that is for systems in the thermodynamic limit. We showed that the bounds perform remarkably well even 
in the presence of phase transitions.

Although we provided computable bounds and exact calculations, there is still a lot to be done towards developing 
efficient Monte Carlo samplers for the goal oriented divergences �± , which is a central mathematical object in our approach. 
An additional strength of our approach is that it also applies to non-equilibrium systems which do not necessarily satisfy 
detailed balance, providing robust nonlinear response bounds. The key insight here is to study the statistical properties 
of the paths of the systems and to use the thermodynamic formalism for space–time Gibbs measures. Our results can be 
applied to a wide range of problems in statistical inference, coarse graining of complex systems, steady states sensitivity 
analysis for non-equilibrium systems and Markov random fields.
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Appendix A. Hellinger-based inequalities

Lemma A.1. Suppose P and Q be two probability measures on some measure space (X , A) and let f : X → R be some quantity of 
interest (QoI), which is measurable and has second moments with respect to both P and Q . Then∣∣E Q ( f ) − E P ( f )

∣∣≤ √
2H(Q , P )

√
V arP ( f ) + V arQ (g) + 1

2
(E Q ( f ) − E P ( f ))2. (A.1)

Proof. By Lemma 7.14 in [41], we have∣∣E Q ( f ) − E P ( f )
∣∣≤ √

2H(Q , P )

√
E P ( f 2) + E Q ( f 2).
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For any c ∈R, replace f by f − c, we have

|E Q ( f ) − E P ( f )| = |E P ( f − c) − E Q ( f − c)|
≤ √

2H(Q , P )

√
E P (( f − c)2) + E Q (( f − c)2).

Thereby,

|E Q ( f ) − E P ( f )| ≤ inf
c

√
2H(Q , P )

√
E P (( f − c)2) + E Q (( f − c)2)

By some straight calculations, we can find the optimal c is:

c∗ = E P ( f ) + E Q ( f )

2
.

Thus, we have

|E Q ( f ) − E P ( f )| ≤ √
2H(Q , P )

√
E Q [( f − c∗)2] + E P [( f − c∗)2]

= √
2H(Q , P )

√
V arP ( f ) + V arQ (g) + 1

2
(E Q ( f ) − E P ( f ))2. �

Appendix B. Proof of Lemmas 2.1 and 2.2

B.1. I.I.D. sequences

Proof of Lemma 2.1. Assume σ N = (σ1, ..., σN ), since P N and Q N are product measures we have dQ N
dP N

(σ N) =∏N
j=1

dQ
dP (σ j).

For the relative entropy we have

R(Q N ‖ P N) =
∫
XN

log
dQ N

dP N
dQ N =

∫
XN

N∑
j=1

log
dQ

dP
(σ j)dQ N(σ N)

=
N∑

j=1

∫
X

log
dQ

dP
(σ j)dQ (σ j) = N R(Q ‖ P ) . (B.1)

For the Reny relative entropy we have

Dα(Q N ‖ P N) = 1

α − 1
log
∫
XN

(
dQ N

dP N
(σ N)

)α

dP N(σ N) = 1

α − 1
log
∫
XN

N∏
j=1

(
dQ

dP
(σ j)

)α

dP N(σ N)

=
N∑

j=1

1

α − 1
log
∫
X

(
dQ

dP
(σ j)

)α

dP (σ j) = N Dα(Q ‖ P ) . (B.2)

For the χ2 distance we note first that

χ2(Q ‖ P ) =
∫ (

dQ

dP
− 1

)2

dP =
∫ ((

dQ

dP

)2

− 2
dQ

dP
+ 1

)
dP =

∫ (
dQ

dP

)2

dP − 1 ,

and therefore we have

χ2(Q N ‖ P N) =
∫
XN

⎛⎝ N∏
j=1

dQ

dP
(σ j)

⎞⎠2

dP N(σ N) − 1 =
N∏

j=1

∫
X

(
dQ

dP
(σ j)

)2

dP (σ j) − 1

=
(

1 + χ2(Q ‖ P )
)N − 1 . (B.3)

For the Hellinger distance we note first that

H2(Q , P ) =
∫ (√

dQ

dP
− 1

)2

dP =
∫ (

dQ

dP
− 2

√
dQ

dP
+ 1

)
dP = 2 − 2

∫ √
dQ

dP
dP ,
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and thus 
∫ √ dP

dQ dQ = 1 − 1
2 H2(P , Q ). Therefore we have

H2(Q N , P N) = 2 − 2
∫
XN

√√√√√ N∏
j=1

dQ

dP
(σ j)dP (σ N) = 2 − 2

N∏
j=1

∫
X

√
dQ

dP
(σ j)dP (σ j)

= 2 − 2

(
1 − H2(Q , P )

2

)N

. (B.4)

This concludes the proof of Lemma 2.1. �
B.2. Markov sequences

Proof of Lemma 2.2: The convergence of the relative entropy rate is well known and we give here a short proof for the 
convenience of the reader.

Recall that νp and νq are the initial distributions of the Markov chain at time 0 with transition matrices p and q
respectively. We write νk

p the distribution at time k as a row vector and we have then νk
p(σ ) ≡ νp pk(σ ) where pk is the 

matrix product.
By expanding the logarithm and integrating we find

1

N

∫
log

dQ N

dP N
dQ N

= 1

N

∑
σ0,···σN

log

(
νq(σ0)q(σ0,σ1) · · ·q(σn−1,σn)

νp(σ0)p(σ0,σ1) · · · p(σn−1,σn)

)
νq(σ0)q(σ0,σ1) · · ·q(σn−1,σn),σn)

= 1

N

∑
σ0

log
νq(σ0)

νp(σ0)
νq(σ0) + 1

N

N∑
k=1

∑
σ0,··· ,σk

νq(σ0)p(σ0,σ1) · · ·q(σk−1,σk) log
q(σk−1,σk)

p(σk−1,σk)

= 1

N

∑
σ0

log
νq(σ0)

νp(σ0)
νq(σ0) + 1

N

N∑
k=1

∑
σ ,σ ′

νk
q (σ )q(σ ,σ ′) log

q(σ ,σ ′)
p(σ ,σ ′)

. (B.5)

The first term goes to 0 as N → ∞ while for the second term, by the ergodic theorem we have that for any initial condition 
νq , limN→∞ 1

N

∑N
k=1 νk

q = μq where μq is stationary distribution. Therefore we obtain that

lim
N→∞

1

N

∫
log

dQ N

dP N
dQ N =

∑
σ ,σ ′

μq(σ )q(σ ,σ ′) log
q(σ ,σ ′)
p(σ ,σ ′)

.

Finally we note that the limit can be written as a averaged relative entropy, since∑
σ ,σ ′

μq(σ )q(σ ,σ ′) log
q(σ ,σ ′)
p(σ ,σ ′)

=
∑
σ

μq(σ )R (q(σ , ·)‖ p(σ , ·)) .

As a consequence the relative entropy rate vanishes if and only if R (q(σ , ·)‖ p(σ , ·)) = 0 for every σ that is if and only if 
q(σ , σ ′) = p(σ , σ ′) for every σ and σ ′ .

We turn next to Rényi entropy. As it will turn out understanding the scaling properties of the Rényi entropy will allow 
us immediately to understand the scaling properties of the chi-squared and Hellinger divergences as well. We have

1

N
Dα(Q N ‖ P N) = 1

N

1

α − 1
log

∑
σ0,···σN

νp(σ0)
1−ανq(σ0)

α
N∏

j=1

q(σ j−1,σ j)
α p(σ j−1,σ j)

1−α.

Let Fα be the non-negative matrix with entries

Fα(σ ,σ ′) = q(σ ,σ ′)α p(σ ,σ ′)1−α.

Since p and q are irreducible and mutually absolutely continuous the matrix Fα is irreducible as well. Let v be the row 
vector with entries v(σ ) = νp(σ )1−ανq(σ )α and 1 the column vector with all entries equal to 1. Then we have

1

N
Dα(Q N ‖ P N) = 1

α − 1
v F N

α 1,

and thus by the Perron–Frobenius Theorem [43], we have



M.A. Katsoulakis et al. / Journal of Computational Physics 336 (2017) 513–545 537
lim
N→∞

1

N
Dα(Q N ‖ P N) = 1

α − 1
logρ(α),

where ρ(α) is the maximal eigenvalue of the non-negative matrix Fα .
It remains to show that the limit is 0 only if p = q. In order to do this we will use some convexity properties of the 

Rényi entropy [38]. For 0 < α ≤ 1 the Rényi entropy Dα(Q ‖ P ) is jointly convex in Q and P , i.e. for any ε ∈ [0, 1] we have

Dα(εQ 0 + (1 − ε)Q 1 ‖εP0 + (1 − ε)P1) ≤ εDα(Q 0 ‖ P0) + (1 − ε)Dα(Q 1 ‖ P1).

For α > 1 the Rényi entropy is merely jointly quasi-convex, that is

Dα(εQ 0 + (1 − ε)Q 1 ‖εP0 + (1 − ε)P1) ≤ max {Dα(Q 0 ‖ P0), Dα(Q 1 ‖ P1)} .

In any case let us assume that p 
= q is such that

lim
N→∞

1

N
Dα(Q N ‖ P N) = 0 .

Then by convexity, or quasi-convexity we have for any ε ∈ [0, 1]

lim
N→∞

1

N
Dα(εQ N + (1 − ε)P N ‖ P N) = 0 .

On the other hand, for any smooth parametric family Pθ we have that, [38],

Dα(P θ ′ ‖ P θ ) = α

2
(θ − θ ′)2F(P θ ) + O ((θ ′ − θ)3)

where F(P θ ) is the Fisher information. If P θ is a discrete probability distribution then the Fisher information is F(P θ ) =∑
σ P θ (σ )( d

dθ
log P θ (σ ))2.

To compute F(P θ
N) we can use the relative entropy R(P θ ′

N ‖ P θ
N) = D1(P θ ′

N ‖ Q θ
N) and from (B.5) with q = pθ ′

and p = pθ

we obtain

R(P θ ′
N ‖ P θ

N) = (θ ′ − θ)2
∑
σ

νpθ (σ )

(
d

dθ
logνpθ (σ )

)2

+1

2
(θ − θ ′)2

N∑
k=1

∑
σ ,σ ′

(νpθ )k(σ )pθ (σ ,σ ′)
(

d

dθ
log pθ (σ ,σ ′)

)2

+ O ((θ − θ ′)3).

So as N → ∞ we obtain

lim
N→∞

1

N
R(P θ ′

N ‖ P θ
N) = 1

2
(θ − θ ′)2

∑
σ ,σ ′

μpθ (σ )pθ (σ ,σ ′)
(

d

dθ
log pθ (σ ,σ ′)

)2

+ O ((θ − θ ′)3) (B.6)

If we now apply this to the family P ε = P N + ε(Q N − P N) we have that

lim
N→∞

1

N
R(P N + ε(Q N − P N)‖ P N) = 1

2
ε2
∑
σ ,σ ′

μp(σ )
(q(σ ,σ ′) − p(σ ,σ ′))2

p(σ ,σ ′)
+ O (ε3)

since the term of order ε2 is strictly positive unless p = q this contradicts our assumption that lim
N→∞

1
N Dα(εQ N + (1 −

ε)P N ‖ P N) = 0.
We can now easily deduce the scaling of the χ2 divergence from the Rényi relative entropy because of the relation 

χ2(Q N ‖ P N) = eD2(Q N ‖ P N ) − 1. This implies that χ2(Q N ‖ P N) grows exponentially in N unless lim
N→∞

1
N D2(Q N ‖ P N) = 0

which is possible if and only if p = q.

Similarly for the Hellinger distance we use the relation H2(Q N , P N) = 2 − 2e
− 1

2 D 1
2
(Q N ‖ P N )

and the scaling of the Rényi 
entropy to see H(Q N , P N) converges to 

√
2 unless p = q. This concludes the proof of Lemma 2.2.

Appendix C. Background for Section 5

C.1. Ising models and mean field models

One-dimensional Ising model. Consider an Ising model on the lattice 
N which a line of N sites, labeled successively 
x = 1, 2, ..., N . At each site there is a spin σ(x), with two possible values: +1 or −1. The Hamiltonian is given by
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H N(σ
N ) = −β J
N−1∑
x=1

σ(x)σ (x + 1) − βh
∑

x∈
N

σ(x). (C.1)

The configuration probability is given by the Boltzmann distribution with inverse temperature β ≥ 0:

dμN (σ
N ) = 1

Z N
e−H N (σ
N )dP N(σ
N ), (C.2)

where

Z N =
∑
σ
N

e−H N (σ
N ) (C.3)

is the partition function and P N (σ
N ) is the counting measure on 
N .
By [54], the magnetization is

M = e Jβ sinh(hβ)√
e2 Jβ sinh2(hβ) + e−2 Jβ

, (C.4)

and the pressure is

P = lim
N

1

N
log Z N = log[eβ J cosh(βh) +

√
e2 Jβ sinh2(hβ) + e−2 Jβ ]. (C.5)

Differentiating (C.3) with respect to J and using (C.5), one obtain

lim
N

1

N
EμN [

∑
x∈
N

σ(x)σ (x + 1)] = lim
N

1

β

∂

∂ J
(

1

N
log Z N) = 1 − 1

k1

2e−2β J

eβ J cosh(βh) + k1
, (C.6)

where

k1 =
√

e2 Jβ sinh2(hβ) + e−2 Jβ . (C.7)

Consider the susceptibility X , by Section 1.7 in [54], we have

X = ∂M

∂h
= β lim

N

1

N
V arμN (

∑
x∈
N

σ(x)). (C.8)

Thus, by differentiating (C.4) with respect to h, we obtain

lim
N

1

N
V arμN (

∑
x∈
N

σ(x)) = e− Jβ cosh(hβ)

k3
1

. (C.9)

Square lattice zero-field Ising model. Consider an Ising model on the square lattice 
N with |
| = N . Similarly with the 
1-d Ising model, the spins {σ(x)}N

x=1 ∈ {−1, 1}N . Assume there is no external magnetic field, then Hamiltonian for the 2-d 
zero-field Ising model is given by

H N(σ
N ) = −β J
∑

〈x,y〉⊂
N

σ(x)σ (y), (C.10)

where the first sum is over pairs of adjacent spins (every pair is counted once). The notation 〈x, y〉 indicates that sites x
and y are nearest neighbors. Then the configuration probability is given by:

dμN (σ
N ) = 1

Z N
e
β J

∑
〈x,y〉⊂
N

σ (x)σ (y)

dP N(σ
N ), (C.11)

where

Z N =
∑
σ
N

e
β J

∑
〈x,y〉⊂
N

σ (x)σ (y)

(C.12)

is the partition function and P N (σ
N ) =∏N
x=1 P (σ
N ) is the prior distribution with P (σ (x) = 1) = P (σ (x) = −1) = 0.5. By 

Section 7.10 in [54], the spontaneous magnetization is
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M0 =
{

[1 − sinh−4(2β J )]1/8 β > βc ,

0 β < βc ,

where βc = log(1+√
2)

2 J . Actually, this formula for the spontaneous magnetization is given by the definition M0 = lim
h→0+〈σ(x)〉. 

Sometimes, we can also consider the spontaneous magnetization by using the other definition M = lim
h→0−〈σ(x)〉, which 

actually is the opposite of (C.13).
And the pressure is also given by [54]

P = lim
N→∞

1

N
log Z N = log 2

2
+ 1

2π

π∫
0

log[cosh2(2β J ) + k(θ)]dθ, (C.13)

where

k(θ) =
√

sinh4(2β J ) + 1 − 2 sinh2(2β J ) cos(2θ). (C.14)

And, by (C.12) and (C.13), we obtain

lim
N→∞

1

N
EμN (

∑
〈x,y〉⊂
N

σ(x)σ (y)) = 1

β

∂

∂ J
(

1

N
log Z N) = sinh(4β J )

π

π∫
0

1

k(θ)
[1 − 1 + cos(2θ)

cosh2(2β J ) + k(θ)
]dθ. (C.15)

Mean field model. Given the Lattice 
N in d-dimension and set |
| = N , consider the Hamiltonian for d-dimensional Ising 
model

H N(σ
N ) = −β J
∑

〈x,y〉⊂
N

σ(x)σ (y) − βh
N∑

x∈
N

σ(x) = −
∑

x∈
N

σ(x){1

2
β J

n.n∑
y

σ(y) + βh},

where the first sum is over pairs of adjacent spins (every pair is counted once). The notation 〈x, y〉 indicates that sites x and 
y are nearest neighbors. And, {σ(x)}N

x=1 ∈ {−1, 1}N are Ising spins. Replace 
∑n.n

y σ(y) by 
∑n.n

y 〈σ(y)〉 in (C.16), we obtain 
the mean field Hamiltonian

H N;mf (σ
N ) = −
∑

x∈
N

σ(x){1

2
β J

n.n∑
y

〈σ(y)〉 + βh}

= −
∑

x∈
N

σ(x){1

2
β J 2dm + βh}

= −
∑

x∈
N

σ(x){β Jdm + βh}

= −βhmf

∑
x∈
N

σ(x) (C.16)

where hmf = h + Jdm. Then, we have the probability

dμN;mf (σ
N ) = 1

Z N;mf
e−H N;mf (σ
N )dP N(σ
N ) = 1

Z N;mf
e
β
∑

x∈
N

hmf σ (x)

dP N(σ
N ). (C.17)

So the partition function is

Z N;mf =
∑
σ (x)

e
β
∑

x∈
N

hmf σ (x)

=
∑
σ (x)

∏
x∈
N

eβhmf σ (x)

=
∏

x∈
N

∑
σ (x)

eβhmf σ (x)

=
∏

x∈
N

(eβhmf + e−βhmf )

= (eβhmf + e−βhmf )N

= Z1;mf
N , (C.18)
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where Z1;mf = eβhmf + e−βhmf . So the pressure is

Pmf = lim
N

1

N
log Z N;mf = log(eβhmf + e−βhmf ) (C.19)

And, we can also consider the μN;mf as a product measure

dμN;mf (σ
N ) = 1

Z N;mf
e
β
∑

x∈
N

hmf σ (x)

dP N(σ
N ) =
∏

x∈
N

1

Z1;mf
eβhmf σ (x)dP (σ (x)). (C.20)

It is easy to find the magnetization

m = 1

N
EμN;mf [

∑
x∈
N

σ(x)]

= 1

N

∑
x∈
N

EμN;mf [σ(x)]

= 1

N

∑
x∈
N

∑
σ (x)

σ (x)
1

Z1;mf
eβhmf σ (x)

= 1

N

∑
x∈
N

∑
σ (x)

σ (x)
1

Z1;mf
eβhmf σ (x)

= 1

N

∑
x∈
N

1

Z1;mf
(eβhmf − e−βhmf )

= 1

eβhmf + e−βhmf
(eβhmf − e−βhmf )

= tanh(βhmf )

= tanh(βh + β Jdm) (C.21)

and

1

N
V arμN;mf (

∑
x∈
N

σ(x)) = 1

N
V arμN;mf (

∑
x∈
N

σ(x))

= 1

N
(EμN;mf [

∑
x∈
N

σ(x)]2 − N2m2)

= 1

N
(EμN;mf [

∑
x∈
N

σ 2(x) +
∑
x
=y

σ(x)σ (y)] − Nm2)

= {
∑
σ (x)

σ 2(x)
1

Z1;mf
eβhmf σ (x) + (N − 1)EμN;mf [σ(x)σ (y)]} − Nm2

= {1 + (N − 1)m2} − Nm2

= 1 − m2. (C.22)

So we can obtain the magnetization m by solving the implicit equation (C.21).

C.2. Computation of goal-oriented divergences

Mean field versus mean field. Given two mean field models, assume μN;mf and μ′
N;mf are their two configuration proba-

bilities with

dμN;mf (σ ) = 1

Z N;mf
e−H N;mf (σ
N )dP N(σ
N ) = 1

Z N;mf
e
β
∑

x∈
N

hmf σ (x)

dP N(σ
N ) (C.23)

and

dμ′
N;mf (σ ) = 1

Z ′ e−H ′
N;mf (σ
N )dP N(σ
N ) = 1

Z ′ e
β ′ ∑

x∈
N

h′
mf σ (x)

dP N(σ
N ), (C.24)

N;mf N;mf



M.A. Katsoulakis et al. / Journal of Computational Physics 336 (2017) 513–545 541
where hmf = h + d Jm and h′
mf = h′ + d J ′m′ . Then, by (59), the relative entropy between μ′

N;mf and μN;mf is given by

R(μ′
N;mf ‖μN;mf ) = log Z N;mf − log Z ′

N;mf + Eμ′
N;mf

[H N;mf (σ
N ) − H ′
N;mf (σ
N )]

= log
Z N;mf

Z ′
N;mf

+ (β ′h′
mf − βhmf )Eμ′

N;mf
(
∑

x∈
N

σ(x))

= N log
Z1;mf

Z ′
1;mf

+ (β ′h′
mf − βhmf )Nm′

= N log
eβhmf + e−βhmf

e−β ′h′
mf + eβ ′h′

mf
+ N(β ′h′

mf − βhmf )m
′. (C.25)

Therefore, we have

1

N
R(μ′

N;mf ‖μN;mf ) = log
eβhmf + e−βhmf

e−β ′h′
mf + eβ ′h′

mf
+ (β ′h′

mf − βhmf )m
′. (C.26)

And, the cumulant generating function of N f N = N 1
N

∑
x∈
N

σ(x) = ∑
x∈
N

σ(x) is


μN;mf ,N f N (c) = log EμN;mf (e
cN 1

N

∑
x∈
N

σ (x)

)

= log
∑
σ (x)

e
cN 1

N

∑
x∈
N

σ (x) 1

Z N;mf
e
βhmf

∑
x∈
N

σ (x)

= log
∑
σ (x)

1

Z N;mf
e
(c+βhmf )

∑
x∈
N

σ (x)

= log
∑
σ (x)

∏
x∈
N

1

Z1;mf
e(c+βhmf )σ (x)

= log
∏

x∈
N

∑
σ (x)

1

Z1;mf
e(c+βhmf )σ (x)

= log
∏

x∈
N

1

Z1;mf
{e(c+βhmf ) + e−(c+βhmf )}

= N log
e(c+βhmf ) + e−(c+βhmf )

e−βhmf + eβhmf
. (C.27)

Thus,

1

N

μN;mf ,N f N (c) = log

e(c+βhmf ) + e−(c+βhmf )

e−βhmf + eβhmf
. (C.28)

Also, by (C.22), we have

1

N
V arμN;mf (N f N) = 1 − m2. (C.29)

One-dimensional Ising model versus mean field. Consider the Ising model and mean field model in 1-d and assume μN

and μN;mf are the configuration probabilities for 1-d Ising model and mean field model respectively, which are defined in 
section C.1. Then, by (59), the relative entropy between μN and μN;mf is

R(μN‖μN;mf ) = log Z N;mf − log Z N + EμN (H N;mf (σ
N ) − H N(σ
N ))

= log Z N;mf − log Z N + β J EμN (
∑

〈x,y〉⊂
N

σ(x)σ (y)) − β JmEμN (
∑

x∈
N

σ(x)). (C.30)

Thus, by (C.19), (C.5), (C.6) and (C.21), we have



542 M.A. Katsoulakis et al. / Journal of Computational Physics 336 (2017) 513–545
lim
N

1

N
R(μN‖μN;mf )

= lim
N

1

N
log Z N;mf − lim

N

1

N
log Z N + β J lim

N

1

N
EμN (

∑
〈x,y〉⊂
N

σ(x)σ (y)) − lim
N

β Jm
1

N
EμN (

∑
x∈
N

σ(x))

= log
eβ[h+ Jm] + e−β[h+ Jm]

eβ J cosh(βh) + k1
+ β J

k1
(k1 − 2e−2β J

eβ J cosh(βh) + k1
− me Jβ sinh(hβ)) (C.31)

And, by (72) and by (73),we obtain

1

N

μN;mf ,N f N (c) = log

e[c+β(h+ Jm)] + e−[c+β(h+ Jm)]

e−β[h+ Jm] + eβ[h+ Jm] (C.32)

and

1

N
V arμN;mf (N f N). = 1 − m2. (C.33)

Two-dimensional Ising model with h = 0 versus mean field. Assuming μN and μN;mf are two configuration probabilities 
for two-dimensions zeros Ising model and two-dimensions zeros mean field model respectively. By Section C.1,

μN(σ
N ) = μN(σ
N ) = 1

Z N
e−H N (σ
N ) P N(σ
N ) = 1

Z N
e
β J

∑
〈x,y〉⊂
N

σ (x)σ (y)

P N(σ
N ) (C.34)

and

μN;mf (σ
N ) = 1

Z N;mf
e−H N;mf (σ
N )dσ = 1

Z N;mf
e
β
∑

x∈
N

hmf σ (x)

P N(σ
N ), (C.35)

where Z N;mf = (eβhmf + e−βhmf )N and hmf = 2 Jm.
Then, by (59), the relative entropy between μN and μN;mf is

R(μN‖μN;mf ) = log Z N;mf − log Z N + EμN (H N;mf (σ
N ) − H N(σ
N ))

= log Z N;mf − log Z N + β J EμN (
∑

〈x,y〉⊂
N

σ(x)σ (y)) − 2β JmEμN (
∑

x∈
N

σ(x)). (C.36)

Thus, by (C.19), (C.13), (C.15) and (C.21), we have

lim
N

1

N
R(μN‖μN;mf )

= lim
N

1

N
log Z N;mf − lim

N

1

N
log Z N + β J lim

N

1

N
EμN (

∑
〈x,y〉⊂
N

σ(x)σ (y)) − lim
N

2β Jm
1

N
EμN (

∑
x∈
N

σ(x))

= log
eβ[h+ Jm] + e−β[h+ Jm]

eβ J cosh(βh) + k1
+ β J

k1
(k1 − 2e−2β J

eβ J cosh(βh) + k1
− me Jβ sinh(hβ))

= log[e−2β Jm + e2β Jm] − log 2

2
− 1

2π

π∫
0

log[cosh2(2β J ) + k(θ)]dθ

+ β J
sinh(4β J )

π

π∫
0

1

k(θ)
[1 − 1 + cos(2θ)

cosh2(2β J ) + k(θ)
]dθ − 2β JmM (C.37)

And, by (72) and by (C.22), we obtain

1

N

μN;mf ,N f N (c) = log

e(c+2β Jm) + e−(c+2β Jm)

e−2β Jm + e2β Jm
(C.38)

and

1

N
V arμN;mf (N f N). = 1 − m2. (C.39)

One-dimensional Ising model versus Ising model. Consider two Ising models in 1-d and μN and μ′
N are their configuration 

probabilities defined in Section C.1. Then, by (C.5), (C.6) and (C.4), we have



M.A. Katsoulakis et al. / Journal of Computational Physics 336 (2017) 513–545 543
lim
N

1

N
R(μ′

N‖μN)

= lim
N

1

N
Eμ′

N
(log

μ′
N

μN
)

= lim
N

1

N
log

Z N

Z ′

,N

+ lim
N

1

N
Eμ′

N
(H(σ
N ) − H ′

N(σ
N ))

= lim
N

1

N
log Z N − lim

N

1

N
log Z ′


,N + (β ′ J ′ − β J ) lim
N

1

N
Eμ′

N
(
∑

〈x,y〉⊂
N

σ(x)σ (y))

+ (β ′h′ − βh) lim
N

1

N
Eμ′

N
(
∑

x∈
N

σ(x))

= log
eβ J cosh(βh) +

√
e2 Jβ sinh2(hβ) + e−2 Jβ

eβ ′ J ′ cosh(β ′h′) +
√

e2 J ′β ′ sinh2(h′β ′) + e−2 J ′β ′
+ (β ′ J ′ − β J )(1 − 1

k′
1

2e−2β ′ J ′

eβ ′ J ′ cosh(β ′h′) + k′
1

)

+ (β ′h′ − βh)
1

k′
1

e J ′β ′
sinh(h′β ′) (C.40)

And,

lim
N

1

N

μN (c) = lim

N

1

N
log EμN (e

cN 1
N

∑
x∈
N

σ (x)

)

= lim
N

1

N
log
∑
σ
N

e
cN 1

N

∑
x∈
N

σ (x) 1

Z N
e
β J

∑
〈x,y〉⊂
N

σ (x)σ (y)+βh
∑

x∈
N

σ (x)

= lim
N

1

N
log

1

Z N

∑
σ
N

e
β J

∑
〈x,y〉⊂
N

σ (x)σ (y)+β(h+ c
β

)
∑

x∈
N

σ (x)

= lim
N

1

N
log

1

Z N
Z̃
,N

= lim
N

1

N
log Z̃
,N − lim

N

1

N
log Z N , (C.41)

where Z̃
,N = ∑
σ
N

e
β J

∑
〈x,y〉⊂
N

σ(x)σ (y)+β(h+ c
β

)
∑

x∈
N

σ(x)

. By [54], we have

lim
N

1

N
log Z̃
,N = log[eβ J cosh(βh + c) +

√
e2 Jβ sinh2(hβ + c) + e−2 Jβ ] (C.42)

and

lim
N

1

N
log Z N = log[eβ J cosh(βh) +

√
e2 Jβ sinh2(hβ) + e−2 Jβ ]. (C.43)

Thus,

lim
N

1

N

μN (c) = log

eβ J cosh(βh + c) +
√

e2 Jβ sinh2(hβ + c) + e−2 Jβ

eβ J cosh(βh) +
√

e2 Jβ sinh2(hβ) + e−2 Jβ
. (C.44)

And, by (C.9)

lim
N

1

N
V arμN (

∑
x∈
N

σ(x)) = e− Jβ cosh(hβ)

k3
1

. (C.45)
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