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1 Introduction

Open systems are usually understood as a small Hamiltonian system (i.e. with a fi-
nite number of degrees of freedom) in contact with one or several large reservoirs.
There are several ways to model reservoirs and we will take the point of view that
the reservoirs are also Hamiltonian systems themselves. It is a convenient physi-
cal and mathematical idealization to separate scales and assume that the reservoirs
have infinitely many degrees of freedom. We will also assume that, to start with, the
reservoirs are in equilibrium, i.e., the initial states of the reservoirs are distributed
according to Gibbs distribution with given temperatures. It is also mathematically
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convenient to assume that the Gibbs measures of the reservoir have very good er-
godic properties. This is, in general, a mathematically difficult problem and we will
circumvent it by assuming that our reservoirs have a linear dynamics (i.e the Gibbs
measures are Gaussian measures).

Our model of a reservoir will be the classical field theory given by a linear wave
equation in Rd

∂2
t ϕt(x) = ∆ϕt(x) . (1)

This is a Hamiltonian system for the Hamiltonian

H(ϕ, π) =
∫

Rd

(|∇xϕ(x)|2 + |π(x)|2) . (2)

If we consider a single particle in a confining potential with Hamiltonian

H(p, q) =
p2

2
+ V (q) , (3)

we will take as Hamiltonian of the complete system

H(ϕ, π) + H(p, q) + q

∫

Rd

∇ϕ(x)ρ(x) dx , (4)

which corresponds to a dipole coupling approximation (ρ(x) is a given function
which models the coupling of the particle with the field).

If one considers finite-energy solutions for the wave equation, we will say the
model is at temperature zero. In this case the physical picture is “radiation damping”.
The particle energy gets dissipated into the field and relaxes to a stationary point of
the Hamiltonian (i.e. p = 0, ∇V (q) = 0). This problem is studied in [14] for a
slightly different model.

We will say the model is at inverse temperature β if we assume that the initial
conditions of the wave equations are distributed according to a Gibbs measure at
inverse temperature β. Typical configurations of the field have then infinite energy
and thus provide enough energy to let the system “fluctuate”. In this case one ex-
pects “return to equilibrium”, an initial distribution of the system will converge to a
stationary state which is given by the Gibbs distribution

Z−1e−βH(p,q)dpdq . (5)

The property of return to equilibrium is proved [13] under rather general conditions.
If the small system is coupled to more than one reservoir and the reservoirs have

different temperatures (and/or chemical potentials), then one can extract an infinite
amount of energy or work from the reservoirs and transmit them through the small
system from reservoir to reservoir. Doing this, one can maintain the small systems
in a stationary (i.e time independent) nonequilibrium states in which energy and/or
matter is flowing. Think e.g. of a bar of metal which is heated at one end and cooled
at the other. Contrary to the two previous situations where we know a priori the final
state of the system, in nonequilibrium situations, in general, we do not. Even the
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existence of a stationary state turns out to be a nontrivial mathematical problem and
requires a quite detailed understanding of the dynamics. In these lectures we will
consider a simple, yet physically realistic model of heat conduction through a lattice
of anharmonic oscillators.

Our small system will consist of a chain of anharmonic oscillators with Hamil-
tonian

H(p, q) =
n∑

i=1

p2
i

2
+ V (q1, · · · , qn) ,

V (q) =
n∑

i=1

U (1)(qi) +
n−1∑

i=1

U (2)(qi − qi+1) . (6)

where V (q) is a confining potential. The number oscillators, n, will be arbitrary (but
finite). In a realistic model, the coupling should occur only at the boundary and we
will couple the first particle of the chain to one reservoir at inverse temperature β1

and the n-th particle to another reservoir at inverse temperature βn. The Hamiltonian
of the complete system is

H(ϕ1, π1) + q1

∫

Rd

∇ϕ1(x)ρ1(x) + H(p1, · · · , pn, q1, · · · , qn)

+qn

∫

Rd

∇ϕn(x)ρn(x) + H(ϕn, πn) . (7)

Our analysis of this model will establish, that under suitable assumptions on the
potential energy V and on the coupling functions ρi, we have

1. Existence and uniqueness of stationary states which generalize the Gibbs states
of equilibrium.

2. Exponential rate of convergence of initial distribution to the stationary distribu-
tion. This is a new result even for equilibrium.

3. Existence of a positive heat flow through the system if the temperatures of the
reservoir are different or in other words positivity of entropy production.

4. ”Universal” properties of the entropy production. Its (large) fluctuations satisfy a
symmetry known as Gallavotti-Cohen fluctuation theorem (large deviation theo-
rem) recently discovered in [8,11]. Its small fluctuations (of central limit theorem
type) are governed by Green-Kubo formula which we prove for this model.

See [24, 25] for results on the linear chain and [4–7, 12, 21–23] for results on the
nonlinear chain. We follow here mostly [22, 23]

An important ingredient in our approach is the use of rather special coupling
functions ρ (“rational couplings”). They will allow us to reduce the dynamics of the
coupled system to a Markov process in a suitable enlarged phase space and therefore
to take advantage of the numerous analytical tools developed for Markov processes
(semigroups, PDE’s, control theory, see our lecture on Markov processes in these
volumes [20]). Physically these couplings are not unreasonable, but it would be nice
to go beyond and prove similar results for more general couplings.
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We conclude this introduction by mentioning one outstanding problem in math-
ematical physics: describe quantitatively the transport properties in large systems.
One would like, for example, to establish the dependence of the heat flow on the size
of the system (here the number n of oscillators). For heat conduction the relevant
macroscopic law is the Fourier law of heat conduction. If we denote by J the station-
ary value of the heat flow and δT the temperature difference between the reservoirs,
one would like to prove for example that for large n

J ≈ κ
δT

n
, (8)

where the coefficient κ is known as the heat conductivity. A more refined version of
this law would to prove that a (local) temperature gradient is established through the
system and that the heat flow is proportional to the temperature gradient

J ≈ −κ∇T , (9)

This is a stationary version of the time dependent macroscopic equation

cv∂tT (x, t) = −∇J(x, t) = ∇κ∇T (x, t) , (10)

where cv is the specific heat of the system. This is just the heat equation! In other
words the challenge is to derive the heat equation from a microscopic Hamiltonian
system. No mechanical model has been shown to obey Fourier law of heat conduction
so far (see [1, 17] for reviews of this problem and references).

2 Derivation of the model

2.1 How to make a heat reservoir

Our reservoir is modeled by a linear wave equation in R (the restriction to one-
dimension is for simplicity, similar considerations apply to higher dimensions),

∂2
t ϕt(x) = ∂2

xϕt(x) , (11)

with t ∈ R and x ∈ R. The equation (11) is a second order equation and we rewrite
it as a first order equation by introducing a new variable π(x)

∂tϕt(x) = πt(x) ,

∂tπt(x) = ∂2
xϕt(x) . (12)

The system (12) has an Hamiltonian structure. Let us consider the Hamiltonian func-
tion

H(ϕ, π) =
∫

R

(|∂xϕ(x)|2 + |π(x)|2) dx . (13)

then Eqs. (12) are the Hamiltonian equations of motions for the Hamiltonian (13).
Let us introduce the notation φ = (ϕ, π) and the norm



Open Classical Systems 45

‖φ‖ =
∫

R

(|∂x(x)|2 + |π|2) dx . (14)

We have then H(φ) = 1
2‖φ‖2 and denote H = Ḣ1(R) × L2(R) the corresponding

Hilbert space of finite configurations.
In order to study the statistical mechanics of such systems we need to consider

the Gibbs measure for such systems. We recall that for an Hamiltonian systems with
finitely many degrees of freedom with Hamiltonian H(p, q) = p2/2 + V (q), p, q ∈
Rn, the Gibbs measure for inverse temperature β is given by

µβ(dpdq) = Z−1e−βH(p,q) dpdq , (15)

where β = 1/T is the inverse temperature and Z =
∫

exp(−βH(p, q)) dp dq is
a normalization constant which we assume to be finite. One verifies easily that the
probability measure µβ is invariant under the dynamics, i.e., if (pt, qt) is a solution
of Hamiltonian equations of motion then

∫
f(pt, qt)µβ(dpdq) (16)

is independent of t. (Use conservation of energy and Liouville theorem)
We now construct Gibbs measures for the linear wave equation Eq. (11). If we

think of {ϕ(x), π(x)}x∈R as the dynamical variables, the Gibbs measure should be,
formally, given by

µβ(dϕdπ) = ′′Z−1 exp(−βH(ϕ, π))
∏

x∈R

dϕ(x)dπ(x)′′ . (17)

It turns out that this expression is merely formal: it is a product of three factors
which are all infinite, nevertheless the measure can be constructed. We sketch this
construction.

We first note that this measure should be a Gaussian measure since H is quadratic
in φ = (ϕ, π). A Gaussian measure µβ on R with mean 0 and variance β is com-
pletely characterized by the fact that its characteristic function (the Fourier transform
of the measure) is given by

S(ξ) =
∫

ei〈ξ , x〉µβ(dx) = e−
1
2β 〈x , x〉 . (18)

is again a Gaussian. Let H be an infinite dimensional Hilbert space, φ ∈ H, ξ ∈
H∗ = H. Can we construct a measure µβ on the Hilbert space H, such that

S(ξ) =
∫

ei〈φ , ξ〉µβ(dφ) = e−
1
2β 〈ξ , ξ〉 ? (19)

The answer is NO.

Proof. By contradiction. Let {en} be an orthonormal basis of H. We then have
S(en) = e−1/2β . For any φ ∈ H, 〈φ , en〉 → 0 as n → ∞. By dominated conver-
gence we have
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lim
n→∞

S(en) = 1 �= e−
1
2β . (20)

and this is a contradiction. 
�

All what this says is that we must give up the requirement that the measure µ be
supported on the Hilbert space H (i.e., on finite energy configurations). The Bochner-
Minlos Theorem allows us to construct such measures supported on larger spaces of
distributions. Let A be the operator on H given by

A =
(

(1 − ∂2
x + x2)

1
2 0

0 (1 − ∂2
x + x2)

1
2

)
. (21)

We it leave to the reader to verify that A has compact resolvent and that A−s is
Hilbert-Schmidt if s > 1/2. For s > 0 we define Hilbert spaces

Ks = {u ∈ L2 ; ‖u‖s ≡ ‖Asu‖ < ∞} , (22)

and for s < 0, Ks = K∗
−s where ∗ is the duality in H. We have, for 0 ≤ s1 ≤ s2,

Hs2 ⊂ Hs1 ⊂ L2 ⊂ H−s1 ⊂ H−s2 , (23)

with dense inclusions. We set

S =
⋂

s

Hs , S ′ =
⋃

s

Hs . (24)

The space S ′ is simply a space of tempered distributions.

Theorem 2.1. (Bochner-Minlos Theorem) There is a one-to-one correspondence
between measures on S ′ and functions S : S → R which satisfy

1. S is continuous.
2. S(0) = 1.
3. S is of positive type, i.e.

∑n
i,j=1 S(fi − fj)zizj ≥ 0, for all n ≥ 1, for all

f1, · · · , fn ∈ S, and for all z ∈ Cn.

The function S is the characteristic function of the measure. The Gaussian Gibbs
measures µβ are then specified by the characteristic function

S(ξ) =
∫

ei〈φ , ξ〉µβ(dφ) = e−
1
2β 〈ξ , ξ〉 . (25)

where 〈φ , ξ〉 denotes now the S − S ′ duality. If we put ξ = a1ξ1 + a2ξ2, the
characteristic function allows us to compute the correlation functions (differentiate
with respect to a1, a2 and compare coefficients):

∫

S′
〈φ , ξ〉µβ(dφ) = 0 ,

∫

S′
〈φ , ξ1〉 〈φ , ξ2〉µβ(dφ) = β−1〈ξ1 , ξ2〉 . (26)

We have then
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Lemma 2.2. If s > 1
2 , then

∫
‖A−sφ‖2 µβ(dφ) = β−1trace(A−2s) < ∞ . (27)

and thus ‖A−sφ‖ is finite µβ a.s.

Proof. Let λj denote the eigenvalues of A and ej the orthonormal basis of eigenvec-
tors of A. We have A−sφ =

∑
j λ−s

j ej〈φ , ej〉 and thus

∫
‖A−sφ‖2 µβ(dφ) =

∑

j

λ−2s
j

∫
(〈φ , ej〉)2µβ(dφ) = β−1

∑

j

λ−2s
j . (28)


�

As a consequence we see that for a typical element φ = (ϕ, π) in the support
of µβ , ϕ has 1

2 − ε derivatives for all ε > 0 and π has − 1
2 − ε derivatives. Let us

compute now the correlations
∫

π(x1)π(x2)µβ(dφ) and
∫

ϕ(x1)ϕ(x2)µβ(dφ) . (29)

These expressions have to be interpreted in the distribution sense. Our computations
are formal but can be easily justified. If we choose ξ1 = (0, δ(x − x1)) and ξ2 =
(0, δ(x − x2)) we obtain from Eq. (26)

∫
π(x1)π(x2)µβ(dφ) = β−1δ(x1 − x2) , (30)

i.e., if we think of x as ”time” then π(x) is a white noise process. On the other hand
if we choose ξ1 = (θ(x − t), 0) and ξ2 = (θ(x − s), 0) and use that ∂xθ(x) = δ(x)
we obtain from Eq. (26)

∫
(ϕ(x1) − ϕ(x2))2µβ(dφ) =

∫ x2

x1

∫ x2

x1

∫
∂xϕ(t)∂xϕ(s)µβ(dφ) dt ds

= β−1

∫ x2

x1

∫ x2

x1

δ(t − s) dt ds

= β−1|x2 − x1| . (31)

i.e., if we think of x as ”time” then ϕ(x) is a Brownian motion. Note that if we
combine this computation with Kolmogorov Continuity Theorem we obtain that the
paths of Brownian motion are almost surely Hölder continuous with exponents α <
1/2 and almost never Hölder continuous with exponents α ≥ 1/2.

If we consider the wave equation in Rd, then one obtains similar results (random
fields indexed by Rd instead of ”stochastic processes”).
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2.2 Markovian Gaussian stochastic processes

In this section we describe a few facts on Gaussian stochastic process, in particular
we describe a situation when Gaussian stochastic processes are Markovian (see [3]).

Let us consider a one dimensional Gaussian stochastic process xt. Recall that
Gaussian means that for all k and all t1 < · · · < tk, the random variable Z =
(xt1 , · · · , xtk

) is a normal random variable. Let us assume that xt has mean 0,
E[xt] = 0, for all t. Then the Gaussian process is uniquely determined by the expec-
tations

E[xtxs] . (32)

which are called the covariance of xt. If xt is stationary, then (32) depends only on
|t − s|:

C(t − s) = E[xtxs] . (33)

Note that C(t − s) is positive definite. If C is a continuous function then a special
case of Bochner-Minlos theorem (with S ′ = R) implies that

C(t) =
∫

R

eiktd∆(k) , (34)

where ∆(k) is an odd nondecreasing function with limk→∞ ∆(k) < ∞. If we as-
sume that ∆(k) has no singular part, then d∆(k) = ∆′(k)dk and the function ∆′(k)
is called the spectral function of the Gaussian process xt. Note that

∆′(k) ≥ 0 , (35)

since ∆ is nondecreasing and that

∆′(k) = ∆′(−k) , (36)

since C(t) is real. We will consider here only the special case when (∆′)−1 is a
polynomial. By the conditions (35) and (36) there is a polynomial

p(k) =
∑

m

cm(−ik)m , (37)

with real coefficients cm and root in the upper half plane such that

∆′(k) =
1

|p(k)|2 . (38)

Under these conditions we have

Proposition 2.3. If p(k) =
∑M

m cm(−ik)m is a polynomial with real coefficients
and roots in upper half plane then the Gaussian process with spectral density
|p(k)|−2 is the solution of the stochastic differential equation

(
p

(
−i

d

dt

)
xt

)
dt = dBt (39)
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Proof. The proof follows from the following representation of xt: let us define a
kernel k(t) by

k(t) =
1√
2π

∫

R

eikt 1
p(k)

dk . (40)

Since the zeros of p are in the upper half-plane, we have k(t) = 0 if t < 0. We claim
that xt can be represented as the stochastic integral

xt =
∫ ∞

−∞
k(t − t′)dBt′ =

∫ t

−∞
k(t − t′)dBt′ (41)

It suffices to compute the variance, we have

E[xtxs] =
1
2π

∫

R

∫

R

k(t − t′)k(s − s′)E[dBt′dBs′ ]

=
1
2π

∫

R

∫

R

k(t − t′)k(s − s′)δ(t′ − s′) dt′ ds′

=
1
2π

∫

R

k(t − s′)k(s − s′) ds′

=
1
2π

∫

R

∫

R

∫

R

eik(t−s′)eik′(s−s′) 1
p(k)p(k′)

ds′ dk dk′

=
∫

R

∫

R

eikteik′s 1
p(k)p(k′)

δ(k + k′) dk dk′

=
∫

R

ei(t−s)k 1
p(k)p(−k)

dk (42)

and this proves the claim. From Eq. (41) we obtain

p

(
−i

d

dt

)
xt =

∫ t

−∞

∫

R

p

(
−i

d

dt

)
eik(t−t′) 1

p(k)
dk dBt′

=
∫ t

−∞

∫

R

eik(t−t′) dk dBt′ =
dB

dt
. (43)

and this concludes the proof of the proposition. 
�

For example let us take

∆′(k) =
γ

π

1
k2 + γ2

(44)

and so p(k) ∝ (ik + γ) Then

C(t) =
γ

π

∫
eikt 1

k2 + γ2
dk = e−γ|t| , (45)

and
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k(t) =
√

2γe−γt , t ≥ 0 .

x(t) =
√

2γ

∫ t

−∞
e−γ(t−t′)dBt′ (46)

and we obtain
dxt = −γxt +

√
2γdBt . (47)

This is the Ornstein-Uhlenbeck process.
It is good exercise to compute the covariances C(t) and derive the corresponding

stochastic differential equations for the spectral densities with p(k) ∝ (ik + iu +
γ)(ik − iu + γ) and p(k) ∝ (ik + γ)2.

2.3 How to make a Markovian reservoir

We derive effective equations for the small system. In spirit we are close to [21],
although we are deriving different equations. Let us consider first a model of one
single particle with Hamiltonian HS(p, q) = p2/2 + V (q), where (p, q) ∈ R × R,
coupled to a single reservoir. The total Hamiltonian is, using the notation (14)

H(φ, p, q) =
1
2
‖φ‖2 + p2 + V (q) + q

∫
∂xϕ(x)ρ(x) dx (48)

= HB(φ) + HS(p, q) + q〈φ , α〉 ,

where, in Fourier space, α̂(k) = (−ikρ̂(k)/k2, 0) . Let L be the linear operator given
by

L =
(

0 1
∂2

x 0

)
. (49)

In Fourier space the semigroup etL is given by

etL =
(

cos(kt) k−1 sin(kt)
−k sin(kt) cos(kt)

)
. (50)

Let us introduce the covariance function C(t) = 〈exp (Lt)α , α〉. We have

C(t) =
∫

k2 ik

k2
ρ̂(k) cos(kt)

−ik

k2
ρ̂(k) dk =

∫
|ρ̂(k)|2eikt dk , (51)

and thus C(t) is the covariance function of a Gaussian process with spectral density
|ρ(k)|2. We also define a coupling constant λ by setting

λ2 = C(0) =
∫

dk|ρ(k)|2 . (52)

The equations of motion of the coupled system particle and reservoir are

q̇t = pt ,

ṗt = −∂qV (qt) − 〈φ, α〉 , (53)

φ̇t(k) = L (φt(k) + qtα(k)) .
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Integrating the last equation of (53) we have

φt(k) = eLtφ0(k) +
∫ t

0

eL(t−s)Lα(k)qs ds . (54)

Inserting into the second equation of (53) we obtain

q̇t = pt ,

ṗt = −∂qV (qt) −
∫ t

0

D(t − s)qs ds − 〈φ0, e
−Ltα〉 . (55)

where
D(t) = 〈eLtLα , α〉 = Ċ(t) . (56)

Let us assume that the initial conditions of the reservoir φ0 are distributed according
to the Gibbs measure µβ defined in Section 2.1. Then

yt = 〈ψ0e
−Ltα〉 , (57)

is a Gaussian process with covariance

E[ytys] =
∫
〈φ0, e

−Ltα〉〈φ0, e
−Lsα〉µβ(dφ) = β−1C(t − s) . (58)

The equation (55) is a random integro-differential equation, since it contains mem-
ory terms both deterministic and random. The relation between the kernel D in the
deterministic memory term and the covariance of the random term goes under the
general name of Fluctuation-Dissipation Theorem. The solution of (55) is a random
process. Note that the randomness in this equation comes from our choice on initial
conditions of the reservoir. Let us choose the coupling function ρ, as in Section 2.2,
such that

|ρ(k)|2 =
1

|p(k)|2 , (59)

where p is a real polynomial in ik with roots in the lower half-plane. For simplicity
we choose p(k) ∝ (ik+γ) This assumption together with the fluctuation-dissipation
relation permits, by extending the phase space with one auxiliary variable, to rewrite
the integro-differential equations (55) as a Markov process. We have then C(t) =
λ2e−γ|t|. It is convenient to introduce the variable r which is defined defined by

λrt = λ2qt +
∫ t

0

D(t − s)qs ds + yt , (60)

and we obtain from Eqs.(55) the set of Markovian differential equations:

dqt = dpt dt ,

dpt = (−∂qVeff(qt) − λrt) , (61)

drt = (−γrt + λpt) dt +
√

2β−1γ dBt .
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where Veff(q) = V (q) − λ2q2/2. The potential V is renormalized by the coupling
to the reservoir. This is an artifact of the dipole approximation we have been using.
Namely if we start with a translation invariant coupling of the form

∫
φ(x)ρ(x − q) dx , (62)

the dipole expansion leads to terms of the form

q

∫
∂xφ(x)ρ(x) dx +

q2

2

∫
|ρ(x)|2 dx , (63)

and the second term exactly compensates the normalization of the potential. We will
ignore this renormalization in the sequel.

If one chooses other polynomials, similar equations can be derived. One should
add one auxiliary variable for each pole of the polynomial p(k). It is a good exercise
to derive the SDE’s for a particle coupled to a wave equation if we choose p(k) ∝
(ik + iu − γ)(ik − iu − γ) or p(k) ∝ (ik − γ)2.

One can recover the Langevin equation,

dqt = dpt dt ,

dpt = (−∂V (qt) dt − κpt) dt +
√

2β−1κ dBt .

but only in a suitable limit. Formally one would obtain these equations if C(t− s) ∝
δ(t− s) (this corresponds to choosing ρ(k) = 1 which is not square integrable). But
then the coupling constant λ2 = C(0) becomes infinite. Rather one should consider
a suitable sequence of covariance which tends to a delta function and simultaneously
rescale the coupling constant.

3 Ergodic properties: the chain

We consider here a model of non-equilibrium statistical mechanics: a one-dimensional
“crystal” coupled at each end to reservoirs at different temperatures.

Let us consider a chain of n anharmonic oscillators given by the Hamiltonian

HS(p, q) =
n∑

i=1

p2
i

2
+ V (q1, · · · , qn) ,

V (q) =
n∑

i=1

U (1)(qi) +
n−1∑

i=1

U (2)(qi − qi+1) .

where (pi, qi) ∈ R × R. Our assumptions on the potential V (q) are

(H1) Growth at infinity: The potentials U (1)(x) and U (2)(x) are C∞ and grow at
infinity like |x|k1 and |x|k2 : There exist constants Ci, Di, i = 1, 2 such that
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lim
λ→∞

λ−kiU (i)(λx) = a(i)|x|ki , (64)

lim
λ→∞

λ−ki+1∂xU (i)(λx) = a(i)ki|x|ki−1 , (65)

|∂2
xU (i)(x)| ≤ (Ci + DiU

(i)(x))1−
2

ki . (66)

Moreover we will assume that

k2 ≥ k1 ≥ 2 , (67)

so that, for large |x| the interaction potential U (2) is ”stiffer” than the one-body
potential U (1).

(H2) Non-degeneracy: The coupling potential between nearest neighbors U (2) is
non-degenerate in the following sense: For any q ∈ R, there exists m = m(q) ≥ 2
such that ∂mU (2)(q) �= 0. This means that U (2) has no flat pieces nor infinitely
degenerate critical points. Note that we require this condition for U (2) only and not
for U (1).

For example if U (1) and U (2) are polynomials of even degree, with a positive coef-
ficients for the monomial of highest degree and degU (2) ≥ degU (1) ≥ 2, then both
conditions H1 and H2 are satisfied.

We couple the first and the nth particle to reservoirs at inverse temperatures β1

and βn, respectively. We assume that the couplings to be as in Section 2.3 so that,
by introducing two auxiliary variables r1 and rn, we obtain the set of stochastic
differential equations equations

dq1t = dp1t dt ,

dp1t = (−∂q1V (qt) − λr1t)dt ,

dr1t = (−γr1t + λp1t) dt + (2β−1
1 γ)1/2dB1t ,

dqjt = dpjt dt , j = 2, . . . , n − 1 ,

dpjt = −∂qj
V (qt) dt , j = 2, . . . , n − 1 , (68)

dqnt = pnt dt ,

dpnt = (−∂qnt
V (qt) − λrnt) dt ,

drnt = (−γrnt + λpnt) dt + (2β−1
n γ)1/2dBnt .

It will be useful to introduce the following notation. We define the linear maps Λ :
Rn → R2 by Λ(x1, . . . , xn) = (λx1, λxn) and T : R2 → R2 by T (x, y) =
(β−1

1 x, β−1
n y). We can rewrite Eq.(68) in the compact form

dqt = pt dt ,

dpt = (−∇qV (qt) − Λ∗r) dt ,

drt = (−γrt + Λpt) dt + (2γT )1/2dBt . (69)
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where B = (B1, Bn) is a two dimensional Brownian motion. The solution xt =
(pt, qt, rt) ∈ R2n+2 of Eq.(69) is a Markov process. We denote Tt the associated
semigroup and Pt(x, dy) the transition probabilities

Ttf(x) = Ex[f(xt)] =
∫

Rn

Pt(x, dy)f(y) . (70)

The generator of Tt is given by

L = γ (∇rT∇r − r∇r) + (Λp∇r − rΛ∇p) + (p∇q − (∇qV (q))∇p) , (71)

and the adjoint of L (Fokker-Planck operator) is given by

L∗ = γ (∇rT∇r + ∇rr) − (Λp∇r − rΛ∇p) − (p∇q − (∇qV (q))∇p) . (72)

There is a natural energy function which is associated to Eq.(69), given by

G(p, q, r) =
r2

2
+ H(p, q) . (73)

Since we assumed that H(p, q) is a smooth function, we have local solutions for the
SDE (69). A straightforward computation shows that we have

LG(p, q, r) = γ(tr(T ) − r2) ≤ γtr(T ) . (74)

Therefore we obtain global existence for the solutions of (69) (see Theorem 5.9
in [20]). Also a straightforward computation shows that in the special case of equi-
librium, i.e., if β1 = βn = β we have

L∗e−βG(p,q,r) = 0 , (75)

and therefore Z−1e−βG(p,q,r) is, in that special case, the density of a stationary dis-
tribution for the Markov process x(t). In the sequel we will refer to G as the energy
of the system.

We are going to construct a Liapunov function (see Section 8 of [20]) for this
system and it is quite natural to try functions of the energy G: let us denote

Wθ = exp (θG) . (76)

A computation shows that

LWθ = γθWθ (Tr(T ) − r(1 − θT )r) (77)

This not quite a Liapunov function, but nearly so. The r.h.s. of Eq. (77) is negative
provided θ/βi < 1 which we will always assume in the sequel and provided r is not
too close to 0. Our proof is based on the following idea: at times r will be small,
this corresponds to the situation where there is no dissipation of energy into the
reservoir. But we will show that over small time interval, if we start the system at
sufficiently large energy E, then with very large probability r2 will be of order Eα
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where α = 2/k2 is related to the growth exponent of the interaction energy in the
chain (this where we use that k2 ≥ k1). So if we integrate the equation of a small
time interval [0, t] we will show that if G(x) > E and E is large enough

TtWθ(x) ≤ κ(E)Wθ(x) (78)

where κ(E) ∼ exp(−Eα).
We denote as | · |θ the weighted total variation norm given by

‖π‖θ = sup
|f |≤Wθ

∣∣∣∣
∫

fdπ

∣∣∣∣ , (79)

for any (signed) measure π. We introduce norms ‖ · ‖θ and Banach spaces Hθ given
by

‖f‖θ = sup
x∈X

|f(x)|
Wθ(x)

, Hθ = {f : ‖f‖θ < ∞} , (80)

and write ‖K‖θ for the norm of an operator K : Hθ → Hθ.
Our results on the ergodic properties of Eqs. (69) are summarized in

Theorem 3.1. : Ergodic properties Let us assume condition H1 and H2.

(a) The Markov process x(t) has a unique stationary distribution µ and µ has a C∞

everywhere positive density.

(b) For any θ with 0 < θ < βmin = min(β1, βn) the semigroup Tt : Hθ → Hθ is
compact for all t > 0. In particular the process x(t) converges exponentially fast to
its stationary state µ: there exist constants γ = γ(θ) > 0 and R = R(θ) < ∞ such
that

|Pt(x, ·) − µ|θ ≤ Re−γtWθ(x) , (81)

for all x ∈ X or equivalently

‖Tt − µ‖θ ≤ Re−γt . (82)

(c) The Markov process xt is ergodic: For any f ∈ L1(µ)

lim
t→∞

1
t

∫ t

0

f(xs) ds =
∫

f(x)µ(dx) , (83)

for all initial condition x and for almost all realizations of the noise Bt. The Markov
process is exponentially mixing: for all functions f , g with f2, g2 ∈ Hθ and all t > 0
we have

∣∣∣∣
∫

gTtf dµ −
∫

f dµ

∫
g dµ

∣∣∣∣ ≤ Re−γt‖f2‖1/2
θ ‖g2‖1/2

θ . (84)

With the tools we have developed in our lecture on Markov process citeRB, in
order to prove Theorem 3.1 it will suffice to prove the following properties:
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1. Strong-Feller property. The transition probabilities have a density pt(x, y)
which is C∞ in (t, x, y).

2. Irreducibility. For all t > 0, and all x supp Pt(x, ·) = X .
3. Liapunov function. For any t > 0, θ < βmin, and E > 0 there exists functions

κ(E) = κ(E, θ, t) and b(E) = b(E, θ, t) with limE→∞ κ(E) = 0 such that

TtWθ(x) ≤ κ(E)Wθ(x) + b(E)1G≤E(x) . (85)

3.1 Irreducibility

Using the results of Section 6 in [20] we consider the control system

q̇t = pt ,

ṗt = −∇qV (qt) − Λ∗rt ,

ṙt = −γrt + Λpt + ut . (86)

where t �→ ut ∈ R2 is a piecewise smooth control. One shows that for this system
the set of accessible points from x in time t

At(x) = R2n+2 , (87)

for any x ∈ R2n+2 and any t > 0.
We will illustrate here how this can be done sketching the proof by for the

simpler problem of two oscillators coupled to a single reservoir and by assuming
that ∂qU

(2)(q) is a diffeomorphism. Our assumption H2 only ensures that the map
∂qU

(2)(q) is surjective and that we can find a piecewise smooth right inverse. This is
enough to generalize the following argument, but one has to be careful if the initial or
final points are one of the points where the right inverse of ∂qU

(2)(q) is not smooth.
Let us consider the control system

ṙt = −γrt + λp1t + ut ,

q̈1t = −∂q1U
(1)(q1t) − ∂q1U

(2)(q1t − q2t) − λrt ,

q̈2t = −∂q2U
(1)(q2t) − ∂q2U

(2)(q1t − q2t) . (88)

and let us choose arbitrary initial and final conditions

x0 = (q10, p10, q20, p20, r0)
x1 = (q1t, p1t, q2t, p2t, rt) . (89)

Since the map ∂qU
(2)(q) is a diffeomorphism we first rewrite Eq. (88) as

ut = f1(rt, ṙt, q̇1t) ,

rt = f2(q1t, q2t, q̈1t) ,

q1t = f3(q2t, q̈2t) , (90)

for some smooth function fi. Then there exists a function F such that
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ut = F (q2t, q̇2t, · · · , q
(5)
2t ) . (91)

On the other hand by differentiating repeatedly the equation of motion we find func-
tion smooth function gk such that

q
(k)
2t = gk(q1t, q̇1t, q2t, q̇2t, rt) . (92)

for k = 0, 1, 2, 3, 4. Let us choose now any curve q2t which satisfies the boundary
conditions

q
(k)
20 = gk(q10, q̇10, q20, q̇20, r0) ,

q
(k)
2t = gk(q1t, q̇1t, q2t, q̇2t, rt) . (93)

We then define the desired control ut by

ut = F (q2t, q̇2t, · · · , q
(5)
2t ) . (94)

which drives the system from x0 to x1 in time t. Since x0 and x1, and t are arbitrary
this proves (87).

3.2 Strong Feller Property

We apply Hörmander’s Theorem (see Section 7 of [20]) to show that the transition
probabilities have a smooth density.

The generator of the Markov process x(t) can be written in the form

L =
2∑

i=1

X2
i + X0 . (95)

with X1 = ∂r1 X2 = ∂rn
and

x0 = −γr∇r + (Λp∇r − rΛ∇p) + (p∇q − (∇qV (q))∇p) , (96)

Let us verify that Hörmander condition is satisfied.
The vector fields Xi, i = 1, 2 are, up to a constant, ∂ri

, i = 1, n. We have

[∂r1 , X0] = −γ∂r1 − λ∂p1 ,

[∂p1 , X0] = λ∂r1 + ∂q1 ,

and so we can express the vector fields ∂p1 and ∂q1 as linear combinations of X1,
[X1,X0], [[X1,X0]X0]. Furthermore

[∂q1 , X0] = (∂2U (1)(q1) + ∂2U (1)(q1 − q2))∂q1 − ∂2U (2)(q1 − q2)∂p2 . (97)

If U (2) is strictly convex, ∂2U (2)(q1 − q2) is positive and this gives ∂p2 as a linear
combination X1, [X1,X0], [[X1,X0]X0], and [[[X1,X0]X0]X0]. In general case we
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use Condition H2: for any q, there exists m > 2 such that ∂mU (2)(q) �= 0 and we
consider the commutators

[
∂q1 ,

[
· · · ,

[
∂q1 , ∂2U (2)(q1 − q2)∂p2

]]]

= ∂mU (2)(q1 − q2)∂p2 .

and therefore we can express, at a given point q, ∂p2 as a linear combination of
commutators.

Proceeding by induction, we obtain, see Corollary 7.2 of [20]

Proposition 3.2. If Condition H2 is satisfied then the Lie algebra

{Xi}2
i=1 , {[Xi,Xi]}2

i,j=0 , {[[Xi,Xj ],Xk]}2
i,j,k=0 , · · · (98)

has rank R2n+2 at every point x. The transition probabilities Pt(x, y) have a density
pt(x, y) which is C∞ in (t, x, y).

3.3 Liapunov Function

We first consider the question of energy dissipation for the following deterministic
equations

q̇t = pt ,

ṗt = −∇qV (qt) − Λ∗rt ,

ṙt = −γrt + Λpt , (99)

obtained from Eq.(69) by setting β1 = βn = ∞. This corresponds to an initial
condition 0 for the reservoirs. A simple computation shows that the energy G(p, q, r)
is non-increasing along the flow xt = (pt, qt, rt) given by Eq.(99):

d

dt
G(pt, qt, rt) = −γr2

t ≤ 0 . (100)

We now show by a scaling argument that for any initial condition with sufficiently
high energy, after a small time, a substantial amount of energy is dissipated.

At high energy, the two-body interaction U (2) in the potential dominates the term
U (1) since k2 ≥ k1 and so for an initial condition with energy G(x) = E, the
natural time scale – essentially the period of a single one-dimensional oscillator in
the potential |q|k2 – is E1/k2−1/2. We scale a solution of Eq.(99) with initial energy
E as follows

p̃t = E− 1
2 p

E
1

k2
− 1

2 t
,

q̃t = E− 1
k2 q

E
1

k2
− 1

2 t
,

r̃t = E− 1
k2 r

E
1

k2
− 1

2 t
. (101)
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Accordingly the energy scales as G(p, q, r) = EG̃E(p̃, q̃, r̃), where

G̃E(p̃, q̃, r̃) = E
2

k2
−1 r̃2

2
+

p̃2

2
+ ṼE(q̃) ,

ṼE(q̃) =
n∑

i=1

Ũ (1)(q̃i) +
n−1∑

i=1

Ũ (2)(q̃i − q̃i+1) ,

Ũ (i)(x̃) = E−1Ũ (i)(E
1

k2 x) , i = 1, 2 .

The equations of motion for the rescaled variables are

˙̃qt = p̃t ,

˙̃pt = −∇q̃ṼE(q̃t) − E
2

k2
−1Λ∗rt ,

˙̃rt = −E
1

k2
− 1

2 γr̃t + Λp̃t . (102)

By assumption H1, as E → ∞ the rescaled energy becomes

G̃∞(p̃, q̃, r̃) ≡ lim
E→∞

G̃E(p̃, q̃, r̃)

=

{
p̃2/2 + Ṽ∞(q̃) k1 = k2 > 2 or k2 > k1 ≥ 2

r̃2/2 + p̃2/2 + Ṽ∞(q̃) k1 = k2 = 2
,

where

V∞(q̃) =

{∑
a(1)|q̃i|k2 +

∑
a(2)|q̃i − q̃i+1|k2 k1 = k2 ≥ 2

∑
a(2)|q̃i − q̃i+1|k2 k2 > k1 ≥ 2

. (103)

The equations of motion scale in this limit to

˙̃qt = p̃t ,

˙̃pt = −∇q̃Ṽ∞(q̃t) ,

˙̃rt = Λp̃t , (104)

in the case k2 > 2, while they scale to

˙̃qt = p̃t ,

˙̃pt = −∇q̃Ṽ∞(q̃t) − Λ∗r̃t ,

˙̃rt = −γr̃t + Λp̃t , (105)

in the case k1 = k2 = 2.

Remark 3.3. Had we supposed, instead of H1, that k1 > k2, then the natural time
scale at high energy would be E1/k1−1/2. Scaling the variables (with k2 replaced by
k1) would yield the limiting Hamiltonian p̃2/2 +

∑
a(1)|q̃i|k1 , i.e., the Hamiltonian

of n uncoupled oscillators. So in this case, at high energy, essentially no energy is
transmitted through the chain. While this does not necessary preclude the existence
of an invariant measure, we expect in this case the convergence to a stationary state
to be much slower. In any case even the existence of the stationary state in this case
remains an open problem.
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Theorem 3.4. Given τ > 0 there are constants c > 0 and E0 < ∞ such that for any
x with G(x) = E > E0 and any solution x(t) of Eq.(99) with x(0) = x we have the
estimate, for tE = E1/k2−1/2τ ,

G(xtE
) − E ≤ −cE

3
k2

− 1
2 . (106)

Remark 3.5. In view of Eqs. (106) and (100), this shows that r is at least typically
O(E1/k2) on the time interval [0, E1/k2−1/2τ ].

Proof. Given a solution of Eq.(99) with initial condition x of energy G(x) = E, we
use the scaling given by Eq.(101) and we obtain

G(x(tE)) − E = −γ

∫ tE

0

dt r2
t = −γE

3
k2

− 1
2

∫ τ

0

dt r̃2
t , (107)

where r̃t is the solution of Eq.(102) with initial condition x̃ of (rescaled) energy
G̃E(x̃) = 1. By Assumption H2 we may choose E0 so large that for E > E0 the
critical points of G̃E are contained in, say, the set {G̃E ≤ 1/2}.

For a fixed E and x with G(x) = E, we show that there is a constant cx,E > 0
such that ∫ τ

0

dt r̃2
t ≥ cx̃,E . (108)

The proof is by contradiction. Suppose that
∫ τ

0
dt r̃2

t = 0, then we have r̃t = 0, for
all t ∈ [0, τ ]. From the third equation in (102) we conclude that p̃1t = p̃nt = 0 for all
t ∈ [0, τ ], and so from the first equation in (102) we see that q̃1t and q̃nt are constant
on [0, τ ]. The second equation in (102) gives then

0 = ˙̃p1(t) = −∂q1 Ṽ (q̃t) = −∂q1Ũ
(1)(q̃1t) − ∂q1Ũ

(2)(q̃1t − q̃2t) , (109)

together with a similar equation for ˙̃pn. By our assumption H1 the map ∇Ũ (2) has a
right inverse g which is piecewise smooth thus we obtain

q̃2t = q̃1t − g(Ũ (1)(q̃1t)) . (110)

Since q̃1 is constant, this implies that q̃2 is also constant on [0, τ ]. Similarly we see
that q̃n−1 is constant on [0, τ ]. Using again the first equation in (102) we obtain now
p̃2t = p̃n−1t = 0 for all t ∈ [0, τ ]. Inductively one concludes that r̃t = 0 implies
p̃t = 0 and ∇q̃Ṽ = 0 and thus the initial condition x̃ is a critical point of G̃E . This
contradicts our assumption and Eq. (108) follows.

Now for given E, the energy surface G̃E is compact. Using the continuity of
the solutions of O.D.E with respect to initial conditions we conclude that there is a
constant cE > 0 such that

inf
x̃∈{G̃E=1}

∫ τ

0

dt r̃2
t ≥ cE . (111)

Finally we investigate the dependence on E of cE . We note that for E = ∞, G̃∞
has a well-defined limit given by Eq.(103) and the rescaled equations of motion, in
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the limit E → ∞, are given by Eqs. (104) in the case k2 > 2 and by Eq. (105) in the
case k1 = k2 = 2. Except in the case k1 = k2 = 2 the energy surface {G̃∞ = 1}
is not compact. However, in the case k1 = k2 > 2, the Hamiltonian G̃∞ and the
equation of motion are invariant under the translation r �→ r + a, for any a ∈ R2.
And in the case k2 > k1 > 2 the Hamiltonian G̃∞ and the equation of motion are
invariant under the translation r �→ r + a q �→ q + b, for any a ∈ R2 and b ∈ Rn.
The quotient of the energy surface {G̃∞ = 1} by these translation, is compact.

Note that for a given x̃ ∈ {G̃∞ = 1} a similar argument as above show that∫ τ

0
dt(r̃+a)2 > 0, for any a > 0 and since this integral clearly goes to ∞ as a → ∞

there exists a constant c∞ > 0 such that

inf
x̃∈{G̃∞=1}

∫ τ

0

r̃2
t dt > c∞ . (112)

Using again that the solution of O.D.E depends smoothly on its parameters, we ob-
tain

inf
E>E0

inf
x̃∈{G̃E=1}

∫ τ

0

dt r̃2
t > c . (113)

This estimate, together with Eq. (107) gives the conclusion of Theorem 3.4. 
�

Next we show, that at sufficiently high energies, the overwhelming majority of
the random paths xt = xt(ω) solving Eqs.(69) follows very closely the determinis-
tic paths xdet

t solving Eqs.(99). As a consequence, for most random paths the same
amount of energy is dissipated into the reservoirs as for the corresponding determin-
istic ones. We need the following a priori “no-runaway” bound on the growth of
G(xt).

Lemma 3.6. Let θ ≤ (max{T1, Tn})−1. Then Ex[exp (θG(xt))] satisfies the bound

Ex[exp (θG(xt))] ≤ exp (γTr(T )θt) exp (θG(x)) . (114)

Moreover for any x with G(x) = E and any δ > 0 we have the estimate

Px

{
sup

0≤s≤t
G(xs)) ≥ (1 + δ)E

}
≤ exp (γTr(T )θt) exp (−δθE) . (115)

Remark 3.7. The lemma shows that for E sufficiently large, with very high probabil-
ity, G(xt) = O(E) if G(x) = E. The assumption on θ here arises naturally in the
proof, where we need (1 − θT ) ≥ 0, cf. Eq. (116).

Proof. For θ ≤ (max{T1, Tn})−1 we have the bound (the generator L is given by
Eq. (11))

L exp (θG(x)) = γθ exp (θG(x)) (Tr(T ) − r(1 − θT )r)

≤ γθTr(T ) exp (θG(x)) , (116)

Then we apply Theorem 5.4 of [20]. 
�



62 Luc Rey-Bellet

We have the following “tracking” estimates to the effect that the random path
closely follows the deterministic one at least up to time tE for a set of paths which
have nearly full measure. We set ∆xt ≡ xt(ω) − xdet

t = (∆rt,∆pt,∆qt) with both
xt(ω) and xdet

t having initial condition x. Consider the event

S(x,E, t) = {x·(ω) ; G(x) = E and sup
0≤s≤t

G(xs) < 2E} . (117)

By Lemma 3.6, P{S(x,E, t)} ≥ 1 − exp (γθTr(T )t − θE).

Proposition 3.8. There exist constants E0 < ∞ and c > 0 such that for paths
xt(ω) ∈ S(x,E, tE) with tE = E1/k2/−1/2τ and E > E0 we have

sup
0≤t≤tE

⎛

⎝
‖∆qt‖
‖∆pt‖
‖∆rt‖

⎞

⎠ ≤ c sup
0≤t≤tE

‖
√

2γTBt(ω)‖

⎛

⎜⎝
E

2
k2

−1

E
1

k2
− 1

2

1

⎞

⎟⎠ . (118)

Proof. We write differential equations for ∆xt again assuming both the random and
deterministic paths start at the same point x with energy G(x) = E. These equations
can be written in the somewhat symbolic form:

d∆qt = ∆ptdt ,

d∆pt =
(
O(E1−2/k2)∆qt − Λ∗∆rt

)
dt ,

d∆rt = (−γ∆rt + Λ∆pt) dt +
√

2γTdBt (119)

The O(E1−2/k2) coefficient refers to the difference between forces, −∇qV (·) eval-
uated at xt(ω) and xdet

t ; we have that G(xt) ≤ 2E, so that ∇qV (qt(ω)) −
∇qV (qdet

t ) = O(∂2V )∆qt = O(E1−2/k2)∆qt. For later purposes we pick a con-
stant c′ so large that

ρ = ρ(x) = c′E1− 2
k2 ≥ sup

i

∑

j

sup
{q:V (q)≤2E}

∣∣∣∣
∂2V (q)
∂qi∂qj

∣∣∣∣ (120)

for all sufficiently large E.
In order to estimate the solutions of Eqs. (119), we consider the 3 × 3 matrix

which bounds the coefficients in this system, and which is given by

M =

⎛

⎝
0 1 0
ρ 0 λ
0 λ γ

⎞

⎠ (121)

We have the following estimate on powers of M ; For ∆X(0) = (0, 0, 1)T , we set
∆X(m) ≡ Mm∆X(0). For α = max(1, γ + λ), we obtain ∆X(1) ≤ α(0, 1, 1)T ,
∆X(2) ≤ α2(1, 1, 1)T , and, for m ≥ 3,

∆X(m) ≡

⎛

⎝
u(m)

v(m)

w(m)

⎞

⎠ ≤ αm2m−2

⎛

⎜⎝
ρ

m−2
2

ρ
m−1

2

ρ
m−2

2

⎞

⎟⎠ ,
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where the inequalities are componentwise. From this we obtain the bound

etM

⎛

⎝
0
0
1

⎞

⎠ ≤

⎛

⎝
1
2 (αt)2e

√
ρ2αt

αte
√

ρ2αt

1 + αt + 1
2 (αt)2e

√
ρ2αt

⎞

⎠ . (122)

If 0 ≤ t ≤ tE we have
√

ρt <
√

c′. Then the exponentials in the above equation are
bounded, and

etM

⎛

⎝
0
0
1

⎞

⎠ ≤ c

⎛

⎝
1/ρ

1/
√

ρ
1

⎞

⎠ , (123)

for some constant c.
Returning now to the original differential equation system Eq.(119), we write

this equation in the usual integral equation form:
⎛

⎝
∆qt

∆pt

∆rt

⎞

⎠ =
∫ t

0

⎛

⎝
∆ps

−∇qV (qs(ω)) ds + ∇qV (qdet
s ) − Γ ∗∆rs

−γ∆rs + Λ∆ps

⎞

⎠ ds

+

⎛

⎝
0
0√

2γTBt

⎞

⎠ . (124)

From this we obtain the bound
⎛

⎝
‖∆qt‖
‖∆pt‖
‖∆rt‖

⎞

⎠ ≤
∫ t

0

M

⎛

⎝
‖∆qt‖
‖∆pt‖
‖∆rt‖

⎞

⎠ ds +

⎛

⎝
0
0

Bmax

⎞

⎠ , (125)

where M is given by Eq.(121), and Bmax = supt≤tE
‖
√

2γTBt‖. Note that the
solution of the integral equation

∆Xt =
∫ t

0

dsM∆Xs +

⎛

⎝
0
0

Bmax

⎞

⎠ , (126)

is ∆Xt = exp (tM)(0, 0, Bmax)T . We can solve both Eq. (124) and Eq. (126)
by iteration. Let ∆xms, ∆Xms denote the respective mth iterates (with ∆x0s =
(0, 0,

√
2γTBs)T , and ∆X0s = (0, 0, Bmax)T , 0 ≤ s ≤ tE). The ∆Xm’s are

monotone increasing in m. Then it is easy to see that
⎛

⎝
‖∆qmt‖
‖∆pmt‖
‖∆rmt‖

⎞

⎠ ≤ ∆Xmt ≤ ∆Xt , (127)

for each iterate. By Eqs.(122), (123), and the definition of ρ the conclusion Eq. (118)
follows. 
�

As a consequence of Theorem 3.4 and Proposition 3.8 we obtain
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Corollary 3.9. Let Ω(E) = Eα with α < 1/k2 and assume that Bt is such that
sup0≤t≤tE

‖
√

2γTBt‖ ≤ Ω(E) and x·(ω) ∈ S(x,E, tE). Then there are constants
c > 0 and E0 < ∞ such that all paths xt(ω) with initial condition x with G(x) =
E > E0 satisfy the bound

∫ tE

0

r2
sds ≥ cE

3
k2

− 1
2 . (128)

Remark 3.10. For large energy E, paths not satisfying the hypotheses of the corollary
have measure bounded by

Px

{
sup

0≤s≤tE

‖
√

2γTBs‖ > Ω(E)
}

+ P
{
S(x,E, tE)C

}

≤ a

2
exp

(
− Ω(E)2

bγTmaxtE

)
+ exp (θ(γTr(T )tE − E))

≤ a exp
(
− Ω(E)2

bγTmaxtE

)
, (129)

where a and b are constants which depend only on the dimension of ω. Here we have
used the reflection principle to estimate the first probability and Eq. (115) and the
definition of S to estimate the second probability. For E large enough, the second
term is small relative to the first.

Proof: It is convenient to introduce the L2-norm on functions on [0, t], ‖f‖t ≡(∫ t

0
‖fs‖2ds

)1/2

. By Theorem 3.4, there are constants E1 and c1 such that for

E > E1 the deterministic paths xdet
s satisfy the bound

‖rdet‖2
tE

=
∫ tE

0

(rdet
s )2ds ≥ c1E

3
k2

− 1
2 . (130)

By Proposition 3.8, there are constants E2 and c2 such that ‖∆rs‖ ≤ c2Ω(E),
uniformly in s, 0 ≤ s ≤ tE , and uniformly in x with G(x) > E2. So we have

‖r‖tE
≥ ‖rdet‖tE

− ‖∆r‖tE
≥
(
c1E

3
k2

− 1
2

)1/2

− c2Ω(E)
(
E

1
k2

− 1
2

)1/2

. (131)

But the last term is O(Eα−1/4+1/2k2), which is of lower order than the first since
α < 1/k2, so the corollary follows, for an appropriate constant c and E sufficiently
large. 
�

With these estimates we now prove the existence of a Liapunov function.

Theorem 3.11. Let t > 0 and θ < βmin. Then there are functions κ(E) =
κ(E, t, θ) < 1 and b(E) = b(E, t, θ) < ∞ such that

TtWθ(x) ≤ κ(E)Wθ(x) + b(E)1{G≤E}(x) . (132)
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The function κ(E) satisfies the bound

κ(E) ≤ A exp(−BE2/k2) , (133)

for some constants A and B.

Proof. For any compact set U and for any t, T t exp (θG)(x) is a bounded function
on U , uniformly on [0, t]. So, in order to prove Eq.(132), we only have to prove that
there exist a compact set U and κ < 1 such that

sup
x∈UC

Ex [exp (θ(G(xt) − G(x)))] ≤ κ < 1 . (134)

Using Ito’s Formula to compute G(xt) − G(x) in terms of a stochastic integral we
obtain

Ex [exp (θ(G(xt) − G(x)))]

= exp (θγtr(T )t)Ex

[
exp

(
−θ

∫ t

0

γr2
s ds + θ

∫ t

0

√
2γTrsdBs

)]
. (135)

For any θ < βmin, we choose p > 1 such that θp < βmin. Using Hölder inequality
we obtain,

Ex

[
exp

(
−θ

∫ t

0

γr2
s ds + θ

∫ t

0

√
2γTrsdBs

)]

= Ex

[
exp

(
−θ

∫ t

0

γr2
s ds +

pθ2

2

∫ t

0

(
√

2γTrs)2 ds

)
×

× exp
(
−pθ2

2

∫ t

0

(
√

2γTrs)2 ds + θ

∫ t

0

√
2γTrsdBs

)]

≤ Ex

[
exp

(
−qθ

∫ t

0

γr2
s ds +

qpθ2

2

∫ t

0

(
√

2γTrs)2 ds

)]1/q

×

× Ex

[
exp

(
−p2θ2

2

∫ t

0

(
√

2γTrs)2 ds + θp

∫ t

0

√
2γTrsdBs

)]1/p

= Ex

[
exp

(
−qθ

∫ t

0

γr2
s ds +

qpθ2

2

∫ t

0

(
√

2γTrs)2 ds

)]1/q

.

Here, in the next to last line, we have used Girsanov theorem and so the second
expectation is equal to 1. Finally we obtain the bound

Ex [exp (θ(G(xt) − G(x)))]

≤ exp (θγtr(T )t)Ex

[
exp

(
−qθ(1 − pθTmax)

∫ t

0

γr2
s ds

)]1/q

. (136)

In order to proceed we need to distinguish two cases according if 3/k2 − 1/2 > 0
or 3/k2 − 1/2 ≤ 0 (see Corollary 3.9). In the first case we let E0 be defined by
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t = E
1/k2−1/2
0 τ . For E > E0 we break the expectation Eq. (136) into two parts

according to whether the paths satisfy the hypotheses of Corollary 3.9 or not. For
the first part we use Corollary 3.9 and that

∫ t

0
r2
sds ≥

∫ tE

0
r2
s ≥ cE3/k2−1/2; for

the second part we use estimate (129) in Remark 3.10 on the probability of unlikely
paths together with the fact that the exponential under the expectation in Eq. (136) is
bounded by 1. We obtain for all x with G(x) = E > E0 the bound

Ex [exp (θ(G(xt) − G(x)))] ≤ exp (θγtr(T )tE0) ×

×
[
exp

(
−qθ(1 − pθTmax)cE

3
k2

− 1
2

)
+ a exp

(
−Ω(E)2θ0

bγtE

)]1/q

.(137)

Choosing the set U = {x ; G(x) ≤ E1} with E1 large enough we can make the term
in Eq. (137) as small as we want.

If 3/k2 − 1/2 ≤ 0, for a given t and a given x with G(x) = E we split
the time interval [0, t] into E1/2−1/k2 pieces [tj , tj+1], each one of size of order
E1/k2−1/2t. For the “good” paths, i.e., for the paths xt which satisfy the hypotheses
of Corollary 3.9 on each time interval [tj , tj+1], the tracking estimates of Propo-
sition 3.8 imply that G(xt) = O(E) for t in each interval. Applying Corollary
3.9 and using that G(xtj

) = O(E) we conclude that
∫ t

0
r2
s ds is at least of order

E3/k2−1/2 × E1/2−1/k2 = E2/k2 . The probability of the remaining paths can be
estimated, using Eq. (129), not to exceed

1 −
(

1 − a exp
(
−Ω2

maxθ0

bγtE

))E
1
2− 1

k2

. (138)

The remainder of the argument is essentially as above, Eq. (137) and this concludes
the proof of Theorem 3.11. 
�

4 Heat Flow and Entropy Production

In this section we study some thermodynamical properties of the stationary distri-
bution. Most interesting is the case where the temperatures of the two reservoirs
are different, we expect then to have heat (i.e., energy) flowing through the system
from the hot reservoir into the cold one. Very little is known about the properties of
systems in a nonequilibrium stationary state. The Kubo formula and Onsager reci-
procity relations are such properties which are known to hold near equilibrium (i.e.,
if the temperatures of the reservoirs are close). In the recent years a new general
fact about nonequilibrium has been discovered, the so-called Gallavotti-Cohen fluc-
tuation Theorem. It asserts that the fluctuation of the ergodic mean of the entropy
production has a certain symmetry. This symmetry can be seen as a generalization
of Kubo formula and Onsager reciprocity relations to situations far from equilib-
rium. It has been discovered in numerical experiments in [8]. As a theorem it has
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been proved for Anosov maps [11], these deterministic systems are used to model
nonequilibrium systems with reservoirs described by non-Hamiltonian deterministic
forces (the so-called Gaussian thermostat). The fluctuation theorem has been formu-
lated and extended to Markov process in [15, 16, 18] and proved for simple systems
like Markov chains with a finite state space or non-degenerate diffusions.

We will prove this fluctuation theorem for our model. Both the degeneracy of
the Markov process and the non-compactness of the phase space are the technical
difficulties which have to be overcome. Our model is the first model which is com-
pletely derived from first principles (it is Hamiltonian to start with) and for which
the fluctuation theorem can be proved.

To define the heat flow and the entropy production we write the energy of the
chain H as a sum of local energies H =

∑n
i=1 Hi where

H1 =
p2
1

2
+ U (1)(q1) +

1
2
U (2)(q1 − q1) ,

Hi =
p2

i

2
+ U (1)(qi) +

1
2

(
U (2)(qi−1 − qi) + U (2)(qi − qi+1)

)
, (139)

Hn =
p2

n

2
+ U (1)(qn) +

1
2
U (2)(qn − qn−1) .

Using Ito’s Formula one finds

dHi(xt) = (Φi−1(xt) − Φi(xt)) dt , (140)

where

Φ0 = −λr1p1 ,

Φi =
(pi + pi+1)

2
∂qU

(2)(qi − qi+1) , (141)

Φn = λrnpn .

It is natural interpret Φi, i = 1, · · · , n−1 as the heat flow from the ith to the (i+1)th

particle, Φ0 as the flow from the left reservoir into the chain, and Φn as the flow from
the chain into the right reservoir. We define corresponding entropy productions by

σi = (βn − β1)Φi . (142)

There are other possible definitions of heat flows and corresponding entropy produc-
tion that one might want to consider. One might, for example, consider the flows at
the boundary of the chains, and define σb = β1Φ0 − βnΦn. Also our choice of local
energy is somewhat arbitrary, other choices are possible but this does not change the
subsequent analysis. Our results on the heat flow are summarized in

Theorem 4.1. : Entropy production

(a) Positivity of entropy production. The expectation of the entropy production σj

in the stationary state is independent of j and nonnegative
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∫

σjdµ ≥ 0 , (143)

and it is positive away from equilibrium
∫

σjdµ = 0 if and only if β1 = βn . (144)

(b) Large deviations and fluctuation theorem. The ergodic averages

σj
t ≡ 1

t

∫ t

0

σj(xs) (145)

satisfy the large deviation principle: There exist a neighborhood O of the interval
[−

∫
σjdµ,

∫
σjdµ] and a rate function e(w) (both are independent of j) such that

for all intervals [a, b] ⊂ O we have

lim
t→∞

−1
t

log Px{σj
t ∈ [a, b]} = inf

w∈[a,b]
e(w) . (146)

The rate function e(w) satisfy the relation

e(w) − e(−w) = −w , (147)

i.e., the odd part of e is linear with slope −1/2.

(c) Kubo formula and central limit theorem. Let us introduce the parameters β =
(β1 + βn)/2 and η = βn − β1. We have

∂

∂η

(∫
φjdµ

)∣∣∣∣
η=0

=
∫ ∞

0

(∫
(T eq

t φj)φjdµeq

)
ds , (148)

where µeq is the Gibbs stationary distribution at equilibrum (see Eq. (75)) and T eq
t

is the semigroup at equilibrium. Moreover, if we consider the fluctuations of the heat
flow at equilibrium, they satisfy a central limit theorem

Px

{
a <

1√
κ2t

∫ t

0

Φj(xs) ds < b

}
−→ 1√

2π

∫ b

a

exp(−y2

2
) dy (149)

as t → ∞, the constant κ2 is positive, independent of j, and is given by

κ2 =
∫ ∞

0

(∫
Φj(x)T eq

s Φj(x)µ(dx)
)

ds . (150)

Loosely speaking the fluctuation theorem has the following interpretation,

Px

{
σj

t ≈ a
}

Px

{
σj

t ≈ −a
} ≈ eta , (151)

in other words this gives a bound on the probability to observe a fluctuation of the
entropy production which would give rise to a energy flow from the cold reservoir
to the hot reservoir (i.e., a “violation” of the second law of thermodynamics). As we
will see the Kubo formula is a consequence of the fluctuation theorem and thus we
can also view the fluctuation theorem as a generalization of Kubo formula to large
fields. We will elaborate on this interpretation later.



Open Classical Systems 69

4.1 Positivity of entropy production

Let us consider the functions Rj given by

Rj = β1

(
r2
1

2
+

j∑

k=1

Hk(p, q)

)
+ βn

⎛

⎝
n∑

k=j+1

Hk(p, q) +
r2
n

2

⎞

⎠ , (152)

so that exp (−Rj) is a kind of “two-temperatures” Gibbs state. We also denote by
J the time reversal operator which changes the sign of the momenta of all particles
Jf(p, q, r) = f(−p, q, r).

The following identities can be regarded as operator identities on C∞ functions.
That the left and right side of Eq. (154) actually generate semigroups for some non
trivial domain of α is a non trivial result which we will discuss later.

Lemma 4.2. Let us consider eRi and e−Ri as multiplication operators. Then we
have the operator identities

eRiJL∗Je−Ri = L − σi , (153)

and also for any constant α

eRiJ(L∗ − ασi)Je−Ri = L − (1 − α)σi . (154)

Proof. We write the generator L as L = L0 + L1 with

L0 = γ (∇rT∇r − r∇r) (155)

L1 = (Λp∇r − rΛ∇p) + (p∇q − (∇qV (q))∇p) . (156)

Since L1 is a first order differential operator we have

e−RiL1e
Ri = L1 + L1Ri = L1 + σi . (157)

Using that ∇rRi = T−1r we obtain

e−RiL0e
Ri = e−Riγ(∇r − T−1r)T∇re

Ri

= γ∇rT (∇r + T−1r) = L∗
0 .

This gives
e−RiLeRi = L∗

0 + L1 + σi = JL∗J + σi , (158)

which is Eq. (153). Since JσiJ = −σi, Eq. (154) follows immediately from Eq.
(153). 
�

Proof of Theorem 4.1 (a): We write the positive density ρ(x) of µ(dx) = ρ(x)dx
as

ρ = Je−Rj e−Fj . (159)
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Let L† denote the adjoint of L on L2(µ), it is given by L† = ρ−1L∗ρ and using Eq.
(153) a simple computation shows that

JLdagger = eFj (L − σj)e−Fj

= L − σj − (LFj) − 2(T∇rFj)∇r + |T 1/2∇rFj |2) . (160)

It is easy to see that the operator JL†J satisfies JL†J1 = 0 and so applying the
Eq. (160) to the constant function we find

σj = |T 1/2∇Fj |2 − LFi . (161)

The first term is obviously positive while the expectation of the second term in the
stationary state vanishes and so we obtain Eq. (143).

In order to prove positivity of the entropy production, we will make a proof by
contradiction. Let us suppose that β1 �= βn and that

∫
σi(x)µ(dx) = 0. Since all σi

have the same stationary value, it is enough to consider one of them and we choose
σ0 = (β1−βn)λp1r1. The assumption implies that

∫
|T 1/2∇rF0|2µ(dx) = 0. Since

ρ is positive, this means that ∇rF0 = 0, and therefore F0 does not depend on the r
variables. From Eq. (161) we obtain

σ0 = −LF0 . (162)

Using the definition of L and σ0 and the fact that F0 does not depend on r, we obtain
the equation

0 = (p · ∇qϕ − (∇qV ) · ∇p) F0 + λr1∂p1F0 + λrn∂pn
F0 = (βn − β1)λr1p1 .

Since F0 does not depend on r we get the sytem of equations

(p∇q − (∇qV )∇p)F0 = 0 ,

∂p1F0 = (βn − β1)p1 ,

∂pn
F0 = 0 . (163)

We will show that this system of linear equations has no solution unless β1 = βn. To
see this we consider the system of equations

(p∇q − (∇qV )∇p)F0 = 0 ,

∂p1F0 = (βn − β1)p1 . (164)

This system has a solution which is given by (βn − β1)H(q, p). We claim that this
the unique solution (up to an additive constant) of Eq. (164). If this holds true, then
the only solution of Eq. (163) is given by (βn − β1)H(q, p) and this is incompatible
with the third equation in (163) when β1 �= βn.

Since Eq. (164) is a linear inhomogeneous equation, it is enough to show that the
only solutions of the homogeneous equation

(p∇q − (∇qV )∇p)F0 = 0 ,

∂p1F0 = 0 . (165)
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are the constant functions. Since ∂p1F0 = 0, F0 does not depend on p1, we conclude
that the first equation in (165) reads

p1∂q1F0 + f1(q1, . . . , qn, p2, . . . pn) = 0 , (166)

where f1 does not depend on the variable p1. Thus we see that ∂q1F0 = 0 and
therefore F0 does not depend on the variable q1 either. By the first equation in (165)
we now get

(∂q1U
(2)(q1 − q2))∂p2F0 + f2(q2, . . . , qn, p2, . . . , pn) = 0 , (167)

where f2 does not depend on p1 and q1. By condition H2 we see that ∂p2ϕ = 0 and
hence f does not depend on p2. Iterating the above procedure we find that the only
solutions of (165) are the constant functions.

As a consequence, the stationary state µ = µβ1,βn
sustains a non-vanishing heat

flow in the direction from the hotter to the colder reservoir. Of course if β1 = βn the
heat flow vanishes since Φj is an odd function of p and the density of the stationary
distribution is even in p. 
�

4.2 Fluctuation theorem

Let us consider now the part (b) of Theorem 4.1. Let us first give an outline of
the proof. To study the large deviations of t−1

∫ t

0
σi(xs)ds one considers moment

generating function

Γ j
x(t, α) = Ex

[
e
−α

∫ t

0
σj(xs) ds

]
. (168)

A formal application of Feynman-Kac formula gives

d

dt
Ex

[
e
−α

∫ t

0
σj(xs) ds

f(xt)
]

= (L − ασj)
[
e
−α

∫ t

0
σj(xs) ds

f(xt)
]

, (169)

but since is σj is not a bounded function, it is not clear that the expectation Γ j
x(t, α)

is even well defined. We will show below that there exists a neighborhood O of the
interval [0, 1] such that Γ j

x(t, α) is well defined if α ∈ O. We denote then T
(α)
t the

semigroup with generator (L − ασj). We then have

Γ j
x(t, α) = Ex

[
e
−α

∫ t

0
σj(xs) ds

]
= T

(α)
t 1(x) (170)

Next one shows that the following limit

e(α) ≡ lim
t→∞

−1
t

log Γ j
x(t, α) , (171)

exists, is independent of x and j, and is a C1 function of α. We will do this by a
Perron-Frobenius like argument and identify exp(−te(α)) as the (real) eigenvalue
of T

(α)
t with biggest modulus (on a suitable function space).
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Then a standard and general argument of the theory of large deviations [2] (the
Gärtner-Ellis Theorem) gives a large deviation principle for the ergodic average
t−1

∫ t

0
σi(xs)ds with a large deviation functional e(w) which is given by the Legen-

dre transform of the function e(α).
Formally, from Eq. (154) we see that T

(α)
t is conjugated to (T (1−α)

t )∗, but since
T

(α)
t has the same spectrum as (T (α)

t )∗ we conclude that

e(α) = e(1 − α) . (172)

Taking now a Legendre transform we have

I(w) = sup
α

{e(α) − αw} = sup
α

{e(1 − α) − αw}

= sup
β

{e(β) − (1 − β)w} = I(−w) − w .

and this gives the part (b) of Theorem 4.1.
Let us explain how to make this argument rigorous, by making yet another con-

jugation.

Lemma 4.3. We have the identity

L − ασj = eαRj Lαe−αRj , (173)

where
Lα = L̃α −

(
(α − α2)γrT−1r − αtr(γI)

)
(174)

and
L̃α = L + 2αγr∇r . (175)

Proof. As in Lemma 4.2 we write the generator L as L = L0 + L1, see Eqs.(156)
and (155). Since L1 is a first order differential operator we have

e−αRj L1e
αRj = L1 + α(L1Rj) = L1 + ασj . (176)

Using that ∇rRj = T−1r is independent of j we find that

e−αRj L0e
αRj = γ

(
(∇r + αT−1r)T (∇r + αT−1r) − r(∇r + αT−1r)

)

= L0 + αγ(r∇r + ∇rr) + (α2 − α)γrT−1r

= L0 + 2αγr∇r + (α2 − α)γrT−1r + αtrγI . (177)

Combining Eqs. (176) and (177) gives the desired result. 
�

The point of this computation is that it shows that L − ασi is conjugated to the
operator Lα which is independent of i. Furthermore Lα has the form L plus terms
which are quadratic in r and ∇r. Combining Feynman-Kac and Girsanov formulas
we can analyze the spectral properties of this operator by the same methods as the
operator L. The basic identity here is as in Section 3.3.
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Lα exp θG(x) =

= exp θG(x)γ
[
tr(θT + αI) + r(θ2T − (1 − 2α)θ − α(1 − α)T−1)r

]

≤ C exp θG(x) , (178)

provided α and Ti, i = 1, n satisfy the inequality

θ2Ti − (1 − 2α)θ − α(1 − α)T−1
i ≤ 0 , (179)

or
−α < θTi < 1 − α . (180)

In particular we see that the semigroup T
(α)

t defined by

T
(α)

t = e−αRj T
(α)
t eαRj (181)

and with generator Lα is well defined on the Banach space Hθ if −α < θTi < 1−α.
Furthermore it has the following properties

1. Strong-Feller property. The semigroup T
(α)

t has a kernel p
(α)
t (x, y) which is

C∞ in (t, x, y).
2. Irreducibility. For all t > 0, and all nonnegative f , T

(α)

t f is positive.
3. Liapunov function. For any t > 0 and θ such that −α < θTi < 1 − α, there

exists functions κ(E) = κ(E, θ, t) and b(E) = b(E, θ, t) with limE→∞ κ(E) =
0 such that

T
(α)

t Wθ(x) ≤ κ(E)Wθ(x) + b(E)1G≤E(x) . (182)

These properties are proved exactly as in for the operator L, using in addition Gir-
sanov and Feynman-Kac formula (see [22] for details).

As a consequence, by Theorem 8.9 of [20], we obtain that on Hθ, with −α <

θTi < 1 − α the semigroup T
(α)

t is a compact semigroup, it has exactly one eigen-

value with maximal modulus which, in addition is real. In particular T
(α)

t has a spec-
tral gap. We then obtain

Theorem 4.4. If

α ∈
(
− βmax

βmin − βmax
, 1 +

βmax

βmin − βmax

)
, (183)

then

e(α) = lim
t→∞

−1
t

log Γ j
x(t, α) (184)

exists, is finite and independent both of j and x.

Proof. The semigroup T
(α)

t is well defined onHθ if

−α < θTi < 1 − α . (185)
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A simple computation shows that for given α, β1, and βn the set of θ we can choose
is non-empty provided if

α ∈
(
− βmax

βmin − βmax
, 1 +

βmax

βmin − βmax

)
, (186)

Using the definition of Ri, Eq. (152), e−αRi ∈ Hθ since −α + θTi < 0. Using now
Lemma 2.7, we see that Γ i

x(t, α) exists and is given by

Γ i
x(t, α) = T

(α)
t 1(x) = eαRiT

(α)

t e−αRi(x) . (187)

From the spectral properties of T
(α)

t we infer the existence of a one-dimensional
projector Pα such that

1. Pαf > 0 if f ≥ 0
2. We have

T
(α)

t = e−te(α)Pα + T
(α)

t (1 − Pα) , (188)

and there exists a constants d(α) > e(α) and C such that

‖T (α)

t (1 − Pα)‖ ≤ Ce−td(α) , (189)

or, in other words,

|T (α)

t (1 − Pα)g| ≤ Ce−td(α)‖g‖θWθ(x) . (190)

From Lemma 4.3 and Eq. (190) we obtain, for all x, that

lim
t→∞

−1
t

log Γ j
x(t, α)

= lim
t→∞

−1
t

log eαRj T
(α)

t e−αRj (x)

= lim
t→∞

−1
t

log eαRj e−te(α)Rj

(
Pαe−αRj + ete(α)T

(α)

t (1 − Pα)e−αRj (x)
)

= lim
t→∞

−1
t

(αRj(x) − te(α)+

log
(
Pαe−αRi(x) + ete(α)T

(α)

t (1 − Pα)e−αRi(x)
))

= e(α) .

This concludes the proof of Theorem 4.4. 
�

It is straightforward now to obtain the symmetry of the Gallavotti-Cohen fluctu-
ation theorem

Theorem 4.5. If

α ∈
(
− Tmin

Tmax − Tmin
, 1 +

Tmin

Tmax − Tmin

)
, (191)

then
e(α) = e(1 − α) . (192)
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Proof. Let us consider the dual semigroup (T
(α)

t )∗ acting on H∗
θ . Since T

(α)

t has

a smooth kernel, (T
(α)

t )∗ν is a measure with a smooth density, and we denote by

(T
(α)

t )∗ its action on densities

(T
(α)

t )∗ν(dx) =
(
(T

(α)

t )∗ρ(x)
)

dx . (193)

Combining Lemmas 4.2 and 4.3 we have

Lα = e−αRj (L − ασj)eαRj

= e−(1−α)Rj J(L − (1 − α)σj)∗Je(1−α)Rj

= J
(
e(1−α)Rj (L − (1 − α)σj)e−(1−α)Rj

)∗
J

= JL1−α
∗
J (194)

or
T

(α)

t = J(T
(1−α)

t )∗J . (195)

The spectral radius formula concludes the proof of Theorem 4.5. 
�

Combining this fact with the formal argument given above, we obtain the proof
of part (b) of Theorem 4.1 .

4.3 Kubo Formula and Central Limit Theorem

One can derive the Kubo formula of linear response theory from the fluctuation the-
orem. Here the external “field” driving the system out of equilibrium is the inverse
temperature difference η = (βn−β1) and we have σj = ηφj . Instead of the function
e(α), we consider a the function f(a, η) given by

f(a, η) ≡ lim
t→∞

−1
t

log Eµ

[
e
−a

∫ t

0
φi(x(s)) ds

]
, (196)

where a = αη and the second variable in f indicates the dependence of the dynamics
and of the stationary state µ on η. From our compactness results for the semigroup,
one can show that f(a, η) is a real-analytic function of both variables a and F . The
relation e(α) = e(1 − α) now reads

f(a, η) = f(η − a, η) . (197)

Differentiating this relation one finds

∂2f

∂a∂η
(0, 0) = − ∂2f

∂a∂η
(0, 0) − ∂2f

∂a2
(0, 0) . (198)

and thus
∂2f

∂a∂η
(0, 0) = −1

2
∂2f

∂a2
(0, 0) . (199)
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This relation is indeed Kubo formula, although in a disguised form. Differentiating
and using the stationarity we find

∂f

∂a
(0, η) = Eµ

[
1
t

∫ t

0

φj(xs)ds

]
=

∫
φjdµ , (200)

and therefore
∂2f

∂a∂η
(0, 0) =

∂

∂η

(∫
φjdµ

)∣∣∣∣
∆β=0

(201)

is the derivative of the heat flow at equilibrium. On the other hand

∂2f

∂a2
(0, η)

= lim
t→∞

Eµ

[
1
t

∫ t

0

φj(xs)ds

]2

− Eµ

[
1
t

∫ t

0

φj(xs)ds

∫ t

0

φj(xu)du

]
.(202)

At equilibrium, η = 0, the first term vanishes since there is no heat flow at equilib-
rium. For the second term, we obtain, using stationarity, and changing variables

1
t

∫ t

0

ds

∫ t

0

duEµ [φj(xs)φj(xu)]

= 2
1
t

∫ t

0

ds

∫ t

s

duEµ [φj(xs)φj(xu)]

= 2
1
t

∫ t

0

ds

∫ t

s

duEµ [φj(x0)φj(xu−s)]

= 2
1
t

∫ t

0

ds

∫ t−s

0

duEµ [φj(x0)φj(xu)]

= 2
1
t

∫ t

0

ds

∫ s

0

duEµ [φj(x0)φj(xu)] (203)

By Theorem 3.1 we obtain

Eµ [φj(x0)φj(xu)] =
∫

φj(x)Tuφj(x)µ(dx) ≤ Ce−uγ‖φ2
j‖W∞ (204)

and thus it is an integrable function of u. We then obtain

∂2f

∂a2
(0, 0) = lim

t→∞
2
1
t

∫ t

0

ds

∫ s

0

duEµ [φj(x0)φj(xu)]

= 2
∫ ∞

0

ds

∫
φj(x)Tuφj(x)µ(dx) , (205)

is the integral of the flow autocorrelation function. Combining Eqs. (199), (201), and
(205) we obtain
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∂

∂η

(∫
φjdµ

)∣∣∣∣
η=0

=
∫ ∞

0

(∫
(Ttφj)φjdµ

)
ds , (206)

and this is the familiar Kubo formula. Note that this formula involves only the equi-
librium dynamics and the equilibrium stationary distribution.

The appearance of an autocorrelation function is not fortuitous and can be inter-
preted in terms of the central limit theorem. With the strong ergodic properties we
have established in Theorem 3.1, one can prove [19] a central limit theorem for any
function f such that f2 ∈ Hθ (see the condition for exponential mixing in Theorem
3.1). For any such function we have that

Px

{
a <

1√
κ2t

∫ t

0

(
f(xt) −

∫
f(x)µ(dx)

)
ds < b

}
−→ 1√

2π

∫ b

a

e−
y2

2 dy

(207)
provided the variance

κ2 =
∫ ∞

0

(∫
g(x)Ttg(x)µ(dx) − (

∫
g(x)µ(dx))2

)
(208)

does not vanish. In our case f = φj , it follows from (206) and from the positivity of
entropy production that κ2 is positive.
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