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Abstract. We construct an invariant weighted Wiener measure associated to the periodic deriva-
tive nonlinear Schrödinger equation in one dimension and establish global well-posedness for data
living in its support. In particular almost surely for data in a Fourier–Lebesgue space FLs,r (T)

with s � 1/2, 2 < r < 4, (s � 1)r < �1 and scaling like H 1/2�✏(T), for small ✏ > 0. We also
show the invariance of this measure.

1. Introduction

In the past few years, methods such as those by J. Bourgain (high-low method, e.g. [5,
6]) on the one hand and by J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao
(I-method or method of almost conservation laws, e.g. [15, 16, 17]) on the other, have
been applied to study the global in time existence for dispersive equations at regulari-
ties which are right below or in between those corresponding to conserved quantities. It
turns out, however, that for many dispersive equations and systems there still remains a
gap between the local in time results and those that could be globally achieved. In those
cases, it seems natural to return to one of Bourgain’s early approaches for periodic dis-
persive equations (NLS, KdV, mKdV, Zakharov system) [3, 4, 5, 7, 8, 9] where global in
time existence was studied in the almost sure sense via the existence and invariance of
the associated Gibbs measure (cf. Lebowitz, Rose and Speer’s and Zhidkov’s works [30],
[48]). More recently this approach has been used for example by N. Tzvetkov [44, 45]
for subquintic radial nonlinear wave equation on the disc, N. Burq and N. Tzvetkov [12,
13] for subcubic and subquartic radial nonlinear wave equations on 3d ball, N. Burq,
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L. Thomann, and N. Tzvetkov [11] for the nonlinear Schrödinger equation with har-
monic potential, and by T. Oh [33, 34, 35, 36] for the periodic KdV-type coupled systems,
Schrödinger–Benjamin–Ono system and white noise for the KdV equation.

Failure to show global existence by Bourgain’s high-low method or the I-method
might come from certain ‘exceptional’ initial data set, and the virtue of the Gibbs mea-
sure is that it does not see that exceptional set. At the same time, the invariance of the
Gibbs measure, just like the usual conserved quantities, can be used to control the growth
in time of those solutions in its support and extend the local in time solutions to global
ones almost surely. The difficulty in this approach lies in the actual construction of the
associated Gibbs measure and in showing both its invariance under the flow and the al-
most sure global well-posedness, since, on the one hand, we need invariance to show
global well-posedness, and on the other hand we need globally defined flow to discuss
invariance.

Our goal in this paper is to construct an invariant weighted Wiener measure associated
to the periodic derivative nonlinear Schrödinger equation DNLS in (2.1) in one dimension
and establish global well-posedness for data living in its support. In particular almost
surely for data in a Fourier–Lebesgue space FLs,r defined in (2.2) below (cf. [27, 21, 14,
22]) and scaling like H 1/2�✏(T), for small ✏ > 0. The motivation for this paper stems
from the fact that by scaling DNLS should be well-posed for data in H � , � � 0, but the
results obtained so far are much weaker.

Local well-posedness is known for � � 1/2 for the nonperiodic [40] and periodic
[26] cases while global well-posedness is known for � � 1/2 for the nonperiodic case
(� > 1/2 in [16] and � � 1/2 in [31]) and for � > 1/2 in the periodic case [47]. Further-
more, in the nonperiodic case the Cauchy initial value problem for DNLS is ill-posed for
data in H � (R), � < 1/2 [40], [2], a strong indication that ill-posedness should also be
expected in the periodic case in that range. Grünrock and Herr [22] have recently estab-
lished local well-posedness for the periodic DNLS in Fourier–Lebesgue spaces FLs,r ,

which for appropriate choices of (s, r) scale like H � (T) for any � > 1/4. Their result is
the starting point of this work (cf. Section 2 for a more detailed discussion).

The measure we construct is based on the energy functional rather than the Hamilto-
nian. Hence we simply refer to it as weighted Wiener measure rather than Gibbs measure
since the name ‘Gibbs measure’ has traditionally been reserved for those weighted Wiener
measures constructed using the Hamiltonian. By invariance of a measure µ we mean that
if8(t) denotes the flow map associated to our nonlinear equation then8(t) is defined for
all t 2 R, µ-almost surely and for all f 2 L1(µ) and all t 2 R,

Z

f (8(t)(�)) µ(d�) =
Z

f (�) µ(d�).

In general terms our aim is to construct a well defined measure µ so that local well-
posedness of the periodic DNLS holds in some space B containing the support of µ. Then
we show almost sure global well-posedness as well as the invariance of µ via a combina-
tion of the methods of Bourgain and Zhidkov [48] in the context of NLS, KdV, mKdV. In
implementing this scheme however we need to overcome two main obstacles due to the
need to gauge the equation to show local well-posedness (e.g. [40, 26]) and to construct
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an invariant measure. The symplectic form associated to the periodic gauged derivative
nonlinear Schrödinger equation GDNLS in (2.6) does not commute with Fourier modes
truncation and so the truncated finite-dimensional systems are not necessarily Hamilto-
nian. The first (mild) obstacle is to show the conservation of the Lebesgue measure asso-
ciated to the finite-dimensional approximation to the periodic gauged derivative nonlinear
Schrödinger equation FGDNLS, defined in (3.1) by hand, rather than by using the Hamil-
tonian structure. The second obstacle is much more serious and is at the heart of this
work. The energy E defined in (2.13) associated to the gauged periodic DNLS1 which
we prove to be conserved in time, ceases to be so when computed on solutions of the
finite-dimensional approximation equation, that is, d

dt E(vN) 6= 0, when vN is a solution
to the finite-dimensional gauged DNLS (see (4.9)). In other words the finite-dimensional
weighted Wiener measure is not invariant any longer and unlike in Zhidkov’s work [48]
on KdV we do not have a priori knowledge of global well-posedness. We show however
that it is almost invariant in the sense that we can control the growth in time of E(vN)(t).
This idea is reminiscent of the I-method. However, while in the I-method one needs to
estimate the variation of the energy of solutions to the infinite-dimensional equation at
time t smoothly projected onto frequencies of size up to N , here one needs to control
the variation of the energy E of the solution vN to the finite-dimensional approxima-
tion equation FGDNLS. We note that the loss in energy conservation for solutions to the
finite-dimensional equation is principally due to the manner one chooses to approximate
the infinite-dimensional gauged equation by using Fourier projections onto the first N th
frequencies. In [3] Bourgain describes an alternative approach that relies on using a dis-
crete system of ODE which seems to preserve the conservation of energy. This approach
however entails a number of other difficulties, for one needs to replace the circle T by the
cyclic group ZN and carry out the analysis on cyclic groups. We choose not to follow this
path here.

We expect the ungauged invariant Wiener measure associated to DNLS (2.1) we ob-
tain in Section 7 to be absolutely continuous with respect to the weighted Wiener measure
constructed by Thomann and Tzvetkov [42]. This question is addressed in a forthcoming
paper [32].

The paper is organized as follows. In Section 2 we present some general background,
notation and results on the derivative nonlinear Schrödinger equation in one dimension.
In Section 3 we discuss FGDNLS. In Section 4 we overcome the first two obstacles men-
tioned above. Namely we prove the invariance of the Lebesgue measure associated to
FGDNLS and devote the rest of the section to prove our energy growth estimate Theorem
4.2. In Section 5 we carry out the construction of the weighted Wiener measure associated
to the GDNLS. In Section 6 we prove the almost sure global well-posedness result for the
GDNLS and the invariance of the measure constructed in section 5. Finally in Section 7
we translate back our results to the ungauged DNLS equation.
Notation. Whenever we write a+ for a 2 R we mean a + " for some " > 0; similarly
for a�. In addition, we write A . B to mean there exists some absolute constant C > 0
such that A  CB.

1 We emphasize E is not the Hamiltonian of the gauged DNLS.
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2. The derivative NLS equation in one dimension

The initial value problem for DNLS takes the form
(

ut � iuxx = �(|u|2u)x,

u
�

�

t=0 = u0,
(2.1)

where either (x, t) 2 R⇥ (�T , T ) or (x, t) 2 T⇥ (�T , T ) and � is real. In this paper we
will take � = 1 for convenience. DNLS is a Hamiltonian PDE whose flow conserves also
mass and energy, i.e. the following quantities are conserved in time2 (cf. [28, 25, 26]):

mass: M(u)(t) =
Z

|u(x, t)|2 dx,

energy: E(u)(t) =
Z

|ux |2 dx + 3
2

Im
Z

u2u ux dx + 1
2

Z

|u|6 dx,

hamiltonian: H(u)(t) = Im
Z

uux dx + 1
2

Z

|u|4 dx.

DNLS was introduced as a model for the propagation of circularly polarized Alfvén
waves in a magnetized plasma with a constant magnetic field (cf. Sulem–Sulem [39]).
The equation is scale invariant for data in L2, i.e. if u(x, t) is a solution then ua(x, t) =
a↵u(ax, a2t) is also a solution if and only if ↵ = 1/2. Thus a priori one expects some
form of existence and uniqueness results for (2.1) for data in H � , � � 0. Many results
are known for the Cauchy problem with smooth data, including data in H 1, such as those
by M. Tsutsumi and I. Fukuda [43], N.Hayashi [23], N. Hayashi and T. Ozawa [24, 25]
and T. Ozawa [37] and others (cf. references therein).

In looking for solutions to (2.1) we face a derivative loss arising from the nonlinear
term (|u|2u)x = u2ux + 2|u|2ux and hence for low regularity data the key is to somehow
make up for this loss.

For the nonperiodic case (x 2 R) Takaoka [40] proved sharp local well-posedness
(LWP) in H 1/2(R) relying on the gauge transformation used by Hayashi and Ozawa [24,
25] and the so-called Fourier restriction norm method. Then, Colliander–Keel–Staffilani–
Takaoka and Tao [15, 16] established global well-posedness (GWP) for data in H � (R),
� > 1/2, of small L2 norm using the so-called I-method on the gauge equivalent equa-
tion (see also [41]). Here, small in L2 just means less than an appropriate constant

p
2⇡/�

which forces the associated ‘energy’ to be positive via the Gagliardo–Nirenberg inequal-
ity. This result was recently improved by Miao, Wu and Xu to � � 1/2. The Cauchy
initial value problem for DNLS is ill-posed for data in H � and � < 1/2 (data map fails to
be C3 or uniformly C0 [40], [2]). In [21] A. Grünrock proved that the nonperiodic DNLS
is locally well-posed in the Fourier–Lebesgue spaces FLs,r (R) which for appropriate
choices of (s, r) scale like H � (R) for any � > 0 (cf. (2.2) below).

In the periodic setting, S. Herr [26] showed that the Cauchy problem associated to
periodic DNLS is locally well-posed for initial data u(0) 2 H � (T), � � 1/2, in the sense

2 In fact, DNLS is completely integrable.
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of local existence, uniqueness and continuity of the flow map. Herr’s proof is based on an
adaptation to the periodic setting of the gauge transformation introduced by Hayashi [23]
and Hayashi and Ozawa [24, 25] on R, in conjunction with sharp multilinear estimates for
the gauged equivalent equation in periodic Fourier restriction norm spaces Xs,b that yield
local well-posedness for the gauged equation. Moreover, by use of conservation laws, the
problem is also shown to be globally well-posed for � � 1 and data which is small in
L2 (as in [15, 16]) [26]. More recently, Win [47] applied the I-method to prove GWP in
H � (T) for � > 1/2.

A. Grünrock and S. Herr [22] showed that the Cauchy problem associated to DNLS
is locally well-posed for initial data u0 2 FLs,r (T) with 2 < r < 4 and s � 1/2 where

ku0kFLs,r (T) := khnisbu0k`rn(Z). (2.2)

These spaces scale like the Sobolev H � (T) ones where � = s +1/r �1/2. The proof
is based on Herr’s adapted periodic gauge transformation and new multilinear estimates
for the gauged equivalent equation in an appropriate variant of Fourier restriction norm
spaces Xs,b

r,q introduced by Grünrock–Herr [22].3

For s, b 2 R, r, q � 1 we define the space Xs,b
r,q as the completion of the Schwartz

space S(T ⇥ R) with respect to the norm

kuk
X

s,b
r,q

:= khnish⌧ + n2ibbu(n, ⌧ )k`rnL
q
⌧

where first we take the L
q
⌧ norm and then the `rn one. We also define the space

kuk
X

s,b
r,q;�

:= khnish⌧ � n2ibbu(n, ⌧ )k`rnL
q
⌧
,

and note that u 2 Xs,b
r,q if and only if u 2 Xs,b

r,q;�.
For � > 0 fixed, we define the restriction space Xs,b

r,q (�) of all v = u|[��,�] for some
u 2 Xs,b

r,q with norm

kvk
X

s,b
r,q (�)

:= inf{kuk
X

s,b
r,q

: u 2 Xs,b
r,q and v = u|[��,�]}.

When we take q = 2 we simply write Xs,b
r,2 = Xs,b

r . Note Xs,b
2,2 = Xs,b. Later we will also

use the space
Zs

r (�) := X
s,1/2
r,2 (�) \ Xs,0

r,1 (�).

Some simple embeddings are as follows. For s, b1, b2 2 R, r � 1 and b1 > b2 + 1/2,

X
s,b1
r,2 ⇢ X

s,b2
r,1 and Xs,0

r,1 ⇢ C(R,FLs,r )

which follow by Cauchy–Schwarz with respect to the L1
⌧ norm and by F�1L1 ⇢ L1

respectively. In particular

Zs
r (�) ⇢ C([��, �],FLs,r ).

3 Note that in our notation the indices (r, q) are the dual of the corresponding ones in Grünrock–
Herr [22].



1280 Andrea R. Nahmod et al.

We finally recall the following estimate4 heavily used in the proof of Theorem 4.2
below.

Lemma 2.1 ([22, Lemma 5.1]). Let 1/3 < b < 1/2 and s > 3(1/2 � b). Then

kuvwkL2
xt
. kukXs,bkvkXs,bkwkX0,b .

In particular if b = (1/2)�, then

kuvwkL2
xt
. kuk

X
✏, 1

2 �kvk
X
✏, 1

2 �kwk
X

0, 1
2 � , (2.3)

for small ✏ > 0; while when b = (1/3)+,

kuvwkL2
xt
. kuk

X
1
2 �, 1

3 +kvk
X

1
2 �, 1

3 +kwk
X

0, 1
3 + . (2.4)

2.1. The periodic gauged derivative NLS equation

We first recall S. Herr’s gauge transformation. For f 2 L2(T), let

G(f )(x) := exp(�iJ (f ))f (x)

where

J (f )(x) := 1
2⇡

Z 2⇡

0

Z x

✓

✓

|f (y)|2 � 1
2⇡

kf k2
L2(T)

◆

dy d✓ . (2.5)

Note G(f ) is 2⇡ -periodic since its integrand has zero mean value. Then for u 2
C([�T , T ]; L2(T)) and m(u) := 1

2⇡
R

T |u(x, 0)|2dx the adapted periodic gauge is de-
fined as5

G(u)(t, x) := G(u(t))(x � 2tm(u)).

Note the L2 norm of G(u)(t, x) is still conserved since the torus is invariant under trans-
lation. The map

G : C([�T , T ]; H � (T)) ! C([�T , T ]; H � (T))

is a homeomorphism for any � � 0 and locally bi-Lipschitz on subsets of
C([�T , T ]; H � (T)) with prescribed ku(0)kL2 ([26]). Moreover the same is true if we
replace H � (T) by FLs,r with s > 1/2 � 1/r when 2 < r < 1 and s � 0 when r = 2
([22]).

Then if u is a solution to DNLS (2.1) and v := G(u) we see that v solves the gauged
DNLS equation (GDNLS)

vt � ivxx = �v2vx + i

2
|v|4v � i (v)v � im(v)|v|2v (2.6)

4 This is a trilinear refinement of Bourgain’s L6(T) Strichartz estimate [10].
5 Recall m(u)(t) is conserved under the flow of (2.1).
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with initial data v(0) = G(u(0)), where

m(v)(t) := 1
2⇡

Z

T
|v(x, t)|2 dx, (2.7)

 (v)(t) := � 1
⇡

Z

T
Im(vvx) dx + 1

4⇡

Z

T
|v|4 dx � m(v)2. (2.8)

Note that m(v) is conserved in time, more precisely m(v)(t) = 1
2⇡

R

T |v(x, 0)|2 dx =
m(u), and both m(v) and  (v) are real.

The initial value problem associated to (2.6) with data in FLs,r (T) is locally well-
posed in Zs

r (�), 2 < r < 4, s � 1/2, for some � > 0. This was proved in Theorem 7.2
of [22].

Remark 2.2. Local well-posedness for GDNLS (2.6) implies local existence, uniqueness
and continuity of the flow map for DNLS (2.1) [26, 22]. One cannot however carry back
to solutions to DNLS all the auxiliary estimates coming from the local well-posedness
result for GDNLS.

Now we show how the energy E(u) and H(u) transform under the gauge. Let u be
the solution to DNLS (2.1) and define

w = e�iJ (u)u.

Then w solves GDNLS (2.6) with the extra m(w)wx term in the linear part of the equation
[26]. So the gauge transform is, properly speaking, the transformation w = e�iJ (u)u

followed by the transformation

v(x, t) = w(t, x � 2m(w)t).

But all the terms involved in the conserved quantities we considered are invariant under
this second transformation w 7! v (the torus is invariant under translation). We also
notice that m(u) = m(w) = m(v), hence below we will be simply using m for this
quantity.

Since
u = eiJ (w)w

we have
ux = eiJ (w)(wx + iJ (w)xw)

with J (w)x = |w|2 � m.
We have

H(u) = Im
Z

T
uux dx + 1

2

Z

T
|u|4 dx

= Im
Z

T
w(wx � iJ (w)xw) dx + 1

2

Z

T
|w|4 dx

= Im
Z

T
wwx dx � 1

2

Z

T
|w|4 dx + 2⇡m2 =: H (w).
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In addition

uxux = (wx + iJ (w)xw)(wx � iJ (w)xw)

= wxwx + iJ (w)x(wwx � wwx) + J (w)2
x |w|2

= wxwx � 2 Im J (w)xwwx + (|w|6 � 2m|w|4 + m2|w|2)
= wxwx � 2 Im w2w wx + 2m Im wwx + (|w|6 � 2m|w|4 + m2|w|2). (2.9)

By the same calculations we also have

u2uux = w2wwx � i|w|6 + im|w|4. (2.10)

We now recall that

E(u)(t) =
Z

|ux |2 dx + 3
2

Im
Z

u2u ux dx + 1
2

Z

|u|6 dx, (2.11)

hence by using (2.11), (2.9), (2.10) we find

E(u) =
Z

wxwx dx� 1
2

Im
Z

w2w wx dx+2m Im
Z

wwx dx� 1
2
m

Z

|w|4 dx+2⇡m3.

If we define

E (w) :=
Z

T
|wx |2 dx � 1

2
Im

Z

T
w2w wx dx + 1

4⇡

✓

Z

T
|w(t)|2 dx

◆✓

Z

T
|w(t)|4 dx

◆

,

(2.12)
then E(u) can be rewritten as

E(u) = E (w) + 2mH (w) � 2⇡m3 =: E(w). (2.13)

Remark 2.3. We observe that H(u)(t) = H (w)(t) and d
dt H(u)(t) = 0 since H is the

Hamiltonian for DNLS (2.1), hence d
dt H (w)(t) = 0. On the other hand, we also know

that d
dt E(u)(t) = 0, hence d

dt E (w)(t) = 0. By the translation invariance of integration
over T, we find that (2.13) holds with v in place of w and

d

dt
H (v)(t) = 0 = d

dt
E (v)(t).

3. Finite-dimensional approximation of GDNLS

We denote by PNf = P

|n|N
bf (n)einx the finite-dimensional projection onto the first

2N +1 modes and P ?
N := I �PN . Then the finite-dimensional approximation (FGDNLS)

is

vN
t = ivN

xx � PN((vN)2vN
x ) + i

2
PN(|vN |4vN) � i (vN)(t)vN � im(vN)PN(|vN |2vN)

(3.1)
with initial data

vN
0 = PNv0, (3.2)

where m and  are as defined in (2.7) and (2.8) respectively.
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Lemma 3.1. We have

d

dt
m(vN)(t) := d

dt

1
2⇡

Z

T
|vN(x, t)|2 dx = 0.

Proof. Indeed for simplicity let us momentarily denote by w := vN a solution to (3.1);
note PNw = w. Then using that for any F ,

R

PN(F (vN))vN dx =
R

F(vN)PNvN dx =
R

F(vN)vN dx, we obtain

d

dt
(2⇡m(w)) = 2 Re

Z

wtw dx

= 2 Re
✓

�i

Z

|wx |2 �
Z

PN(w2wx)w + i

2

Z

PN(|w|4w)w

� i (w)(t)

Z

|w|2 � im(w)(t)

Z

PN(|w|2w)w

◆

= 2 Re
✓

�
Z

(w2wx)w + i

2

Z

|w|6 � i (w)

Z

|w|2 � im(w)

Z

|w|4
◆

= �
Z

w2w wx �
Z

wwxw
2 = �1

2

Z

@x(|w|4) = 0. ut

Theorem 3.2 (Local well-posedness). Let 2 < r < 4 and s � 1/2. Then for every

vN
0 2 BR := {vN

0 2 FLs,r (T) : kvN
0 kFLs,r (T) < R}

and � . R�� , for some � > 0, there exists a unique solution

vN 2 Zs
r (�) ⇢ C([��, �];FLs,r (T))

of (3.1) and (3.2). Moreover the map

(BR, k · kFLs,r (T)) ! C([��, �];FLs,r (T)) : vN
0 7! vN

is real analytic.

Proof. The proof follows the argument in [22, Theorem 7.2] since PN acts on a multilin-
ear nonlinearity and it is a bounded operator in Lp, 1 < p < 1, and commutes with Ds .
Also, although the proof in [22] is presented for s = 1/2, a simple argument of persis-
tence of regularity gives the result for any s � 1/2. ut
The following lemma gives control on how close the finite-dimensional approximations
are to the solution of (2.6). Our proof is a variation of Bourgain’s Lemma 2.27 in [3] (see
also [12]).

Lemma 3.3 (Approximation lemma). Let v0 2 FLs,r (T), s > 1/2, 2 < r < 4, be
such that kv0kFLs,r (T) < A, for some A > 0, and let N be a large integer. Assume the
solution vN of (3.1) with initial data vN

0 (x) := PN(v0) satisfies the bound

kvN(t)kFLs,r (T)  A for all t 2 [�T , T ],
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for some given T > 0. Then the IVP GDNLS (2.6) with initial data v0 is well-posed on
[�T , T ] and there exist C0, C1 > 0 such that its solution v(t) satisfies the estimate

kv(t) � vN(t)kFLs1,r (T) . exp[C0(1 + A)C1T ]Ns1�s (3.3)

for all t 2 [�T , T ] and 1/2  s1 < s.

Proof. We first observe that from the local well-posedness theory ([22] and Theorem
3.2), GDNLS (2.6) with initial data v0 and FGDNLS (3.1) with initial data vN

0 are both
well-posed in [��, �] for � ⇠ (1 + A)�� . Let w := v � vN ; then w satisfies the equation

wt � iwxx = F(v) � PNF(vN) = PN [F(v) � F(vN)] + (1 � PN)F (v),

where F(·) is the nonlinearity of (2.6). By the Duhamel principle we have

w(t) = S(t)[v0 � vN
0 ] +

Z t

0
S(t � t 0)

�

PN [F(v) � F(vN)](t 0) + (1 � PN)F (v)(t 0)
�

dt 0,

where S(t) = eit1, and from the proof of Theorem 7.2 in [22] we have the bound

kwk
Z

s1
r (�)

. kv0 � vN
0 kFLs1,r (T) + �� (1 + kvNk

Z
s1
r (�)

+ kvk
Z

s1
r (�)

)4kwk
Z

s1
r (�)

+
�

�

�

�

(1 � PN)

Z t

0
S(t � t 0)F (v)(t 0) dt 0

�

�

�

�

Z
s1
r (�)

. ANs1�s + �� (1 + kvNk
Z

s1
r (�)

+ kvk
Z

s1
r (�)

)4kwk
Z

s1
r (�)

+Ns1�s�� (1 + kvkZs
r (�))

5. (3.4)

By choosing a smaller � if necessary we obtain from (3.4)

kwk
Z

s1
r (�)

 CANs1�s + 1
2
kwk

Z
s1
r (�)

,

for some absolute constant C > 0,which implies

kv(t) � vN(t)kFLs1,r (T)  2CANs1�s for all t 2 [��, �] (3.5)

and by iteration (3.3) follows. ut

4. Analysis of the finite-dimensional equation FGDNLS

Recall that equation DNLS is Hamiltonian and hence its gauge equivalent formulation
should stay Hamiltonian (change of coordinates). However, the gauge transformation is
not a ‘canonical map’ and the symplectic form in the new coordinates depends on v; that
is, we lose the simple expression the symplectic form (namely @x) had in the original
coordinates. Two problems arise from the lack of commutativity between the gauged
skew-selfadjoint form J and PN :
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(1) The conservation of Lebesgue measure associated to FGDNLS is not obvious as be-
fore. We must prove that this is indeed the case; see Subsection 4.1 below.

And more seriously:

(2) We lose the conservation of the energy E(vN) for the finite-dimensional approxima-
tions, that is, dE(vN)/dt 6= 0. In particular we lose the invariance of µN , the as-
sociated finite-dimensional weighted Wiener measure. However we have an estimate
controlling its growth, namely Theorem 4.2 below.

4.1. Invariance of the Lebesgue measure

If we rewrite FGDNLS (3.1) as a system of complex ODE’s for the Fourier coefficients
ck ⌘ cvN(k) we obtain a set of 2N +1 complex equations of the form d

dt ck = Fk({cj , c̄j }),
or equivalently 4N + 2 equations d

dt ak = Re Fk({cj , c̄j }) and d
dt bk = Im Fk({cj , c̄j }) for

the real functions ak = Re Fk and bk = Im Fk .
To show that this set of equations preserves volume we need to verify that the diver-

gence of the vector field vanishes, i.e.,

X

k

✓

@ Re Fk

@ak
+ @ Im Fk

@bk

◆

= 0.

This is easily shown to be equivalent to

X

k

✓

@Fk

@ck
+ @F̄k

@ c̄k

◆

= 0.

And indeed we have

Lemma 4.1. The Lebesgue measure
Q

|j |N dajdbj is invariant under the flow of the
system of ODE’s (4.1).

Proof. The FGDNLS (3.1) as a system of complex ODE’s for the Fourier coefficients ck

takes the form

d

dt
ck = �ik2ck + i

X

n1,n2,n3

n3cn1cn2 c̄n3�n1+n2�n3�k

+ i

2

X

n1,n2,n3,n4,n5

cn1cn2cn3 c̄n4 c̄n5�n1+n2+n3�n4�n5�k

� i ({cj , c̄j })ck � im({cj , c̄j })
X

n1,n2,n3

cn1cn2 c̄n3�n1+n2�n3�k (4.1)

with m({cj , c̄j }) = P

j |cj |2 and

 ({cj , c̄j }) = �2
X

k

k|ck|2 + 1
2

X

n1,n2,n3,n4

cn1cn2 c̄n3 c̄n4�n1+n2�n3�n4 �
⇣

X

j

|cj |2
⌘2

.
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To show that this set of equations preserves volume we need to verify

X

k

✓

@Fk

@ck
+ @F̄k

@ c̄k

◆

= 0.

The vector field Fk consists of several terms which we analyze separately.

(1) F
(1)
k = �ik2ck . Then @F

(1)
k

@ck
+ @F̄

(1)
k

@ c̄k
= �ik2 + ik2 = 0.

(2) F
(2)
k = i

P

n1,n2,n3
n3cn1cn2 c̄n3�n1+n2�n3�k . To differentiate we consider the terms

with n1 = k and n2 = k to obtain

@F
(2)
k

@ck
= i2⇡

X

n2,n3

n3cn2 c̄n3�n2�n3 + i2⇡
X

n1,n3

n3cn1 c̄n3�n1�n3 = i4⇡
X

n

n|cn|2

and similarly
@F̄

(2)
k

@ c̄k
= �i4⇡

X

n

n|cn|2,

and thus all the contributions of this term to the divergence disappear.

(3) F
(3)
k = i

2
P

n1,n2,n3,n4,n5
cn1cn2cn3 c̄n4 c̄n5�n1+n2+n3�n4�n5�k . This term is treated sim-

ilarly to (2) and is left to the reader.

(4) F
(4)
k = 2i(

P

j j |cj |2)ck . We have

@F
(4)
k

@ck
= 2ik|ck|2 + 2i

X

j

j |cj |2,
@F̄

(4)
k

@ c̄k
= �2ik|ck|2 � 2i

X

j

j |cj |2,

and so these terms do not contribute to the divergence.

(5) F
(5)
k = i(

P

j |cj |2)2ck . We have

@F
(5)
k

@ck
= 2i

⇣

X

j

|cj |2
⌘

|ck|2 + i
⇣

X

j

|cj |2
⌘2

and again @F
(5)
k

@ck
+ @F̄

(5)
k

@ c̄k
= 0.

(6) F
(6)
k = � i

2
P

n1,n2,n3,n4
cn1cn2 c̄n3 c̄n4�n1+n2�n3�n4ck . We have

@F
(6)
k

@ck
= � i

2

X

n1,n2,n3,n4

cn1cn2 c̄n3 c̄n4�n1+n2�n3�n4

� i
X

n2,n3,n4

ckcn2 c̄n3 c̄n4�k+n2�n3�n4 (4.2)
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and

@F̄
(6)
k

@ c̄k
= + i

2

X

n1,n2,n3,n4

c̄n1 c̄n2cn3cn4�n1+n2�n3�n4

+ i
X

n2,n3,n4

c̄k c̄n2cn3cn4�k+n2�n3�n4 . (4.3)

The first terms in (4.2) and (4.3) cancel for each k. By summing the second terms over k,
we see that they do not contribute to the divergence.

(7) F
(7)
k = �i

P

j |cj |2
P

n1,n2,n3
cn1cn2 c̄n3�n1+n2�n3�k . We have

@F
(7)
k

@ck
= �i

X

n1,n2,n3

cn1cn2 c̄n3 c̄k�n1+n2�n3�k � 2i
⇣

X

j

|cj |2
⌘2

,

@F̄
(7)
k

@ c̄k
= i

X

n1,n2,n3

c̄n1 c̄n2cn3ck�n1+n2�n3�k + 2i
⇣

X

j

|cj |2
⌘2

.

The second terms add to 0 for each k while the first terms cancel if we sum over all k. ut

4.2. Energy growth estimate

Theorem 4.2. Let vN(t) be a solution to FGDNLS (3.1) in [��, �], and let K > 0 be
such that kvNk

X
(2/3)�,1/2
3 (�)

 K. Then there exists � > 0 such that

|E(vN(�)) � E(vN(0))| =
�

�

�

�

Z �

0

d

dt
E(vN)(t) dt

�

�

�

�

. C(�)N�� max(K6, K8). (4.4)

Remark 4.3. It is possible that the estimate (4.4) may still hold for a different choice of
X

s,1/2
r (�) norm, with s � 1/2, 2 < r < 4 so that local well-posedness holds. On the other

hand the pair (s, r) should also be such that (s �1) · r < �1 in order for FLs,r to contain
the support of the Wiener measure (cf. Section 5). Our choice of s = (2/3)� and r = 3
allows us to prove (4.4) while satisfying the conditions for local well-posedness and the
support of the measure. Note that FL(2/3)�,3 scales like H(1/2)�.

4.3. Preparation for the proof of Theorem 4.2

Let vN denote the solution of FGDNLS (3.1) which we rewrite as

vN
t = LvN + P ?

N ((vN)2vN
x ) � i

2
P ?

N (|vN |4vN) + im(vN)P ?
N (|vN |2vN),

where

LvN := ivN
xx � (vN)2vN

x + i

2
|vN |4vN � i (vN)vN � im(vN)|vN |2vN . (4.5)
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We first observe that from (2.13) and Lemma 3.1 we have

d

dt
E(vN) = d

dt
E (vN) + 2mN

d

dt
H (vN), (4.6)

where mN := m(vN).

Lemma 4.4. With the above notation we have

d

dt
E (vN)(t) = �2 Im

Z

vN vNvN
x P ?

N ((vN)2vN
x ) dx + Re

Z

vN vNvN
x P ?

N (|vN |4vN) dx

� 2mN Re
Z

vN vNvN
x P ?

N (|vN |2vN) dx + 2mN Re
Z

vN vN
2
P ?

N ((vN)2vN
x ) dx

+ mN Im
Z

vN vN
2
P ?

N (|vN |4vN) dx � 2m2
N Im

Z

vN vN
2
P ?

N (|vN |2vN) dx, (4.7)

d

dt
H (vN)(t) = �2 Re

Z

T
(vN)2vNP ?

N ((vN)2vN
x ) dx

+ Im
Z

vN(vN)2P ?
N (|vN |4vN) dx � 2mN Im

Z

vN(vN)2P ?
N (|vN |2vN) dx, (4.8)

and

d

dt
E(vN)(t) = �2 Im

Z

vN vNvN
x P ?

N ((vN)2vN
x ) dx + Re

Z

vN vNvN
x P ?

N (|vN |4vN) dx

� 2mN Re
Z

vN vNvN
x P ?

N (|vN |2vN) dx � 2mN Re
Z

T
(vN)2vNP ?

N ((vN)2vN
x ) dx

+ 3mN Im
Z

vN(vN)2P ?
N (|vN |4vN) dx � 6mN Im

Z

vN(vN)2P ?
N (|vN |2vN) dx. (4.9)

Proof. From (2.12) and integration by parts we have

d

dt
E (vN)(t) = �2 Re

Z

vN
t vN

xx dx � 2 Im
Z

vNvN
t vNvN

x dx

+ 2mN Re
Z

vNvN
t vN

2
dx. (4.10)

Due to the energy conservation for the GDNLS (infinite system), one can see that the con-
tribution in (4.10) from LvN defined in (4.5) is zero. On the other hand by orthogonality
we also have

�2 Re
Z

vN
xx

✓

P ?
N ((vN)2vN

x ) � i

2
P ?

N (|vN |4vN) + im(vN)P ?
N (|vN |2vN)

◆

dx = 0.

Hence (4.7) follows. By a similar argument we obtain (4.8) as well. The lemma follows
by substituting (4.7) and (4.8) into (4.6). ut
Remark 4.5. To establish Theorem 4.2 we need to estimate the terms in (4.9). In doing
so we will ignore absolute constants and whether we are looking at the real or imaginary
parts of the terms.
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The first term in (4.9) gives a contribution to (4.4) which is essentially

I1 =
Z �

0

Z

vN vNvN
x P ?

N ((vN)2 vN
x ) dx dt.

This term is the hardest to control since it has two derivatives, so we will treat this one first.
We start by discussing how to absorb the rough time cut-off. Assume � is any function in
X

(2/3)�,1/2
3 such that

�|[��,�] = vN .

Then we write

I1 =
Z

T⇥R
�[0,�](t)P

?
N ((vN)2@xvN)vN vNvN

x dx dt

=
Z

T⇥R
P ?

N ((�[0,�]�
N)2�[0,�]�N

x )�[0,�]�
N�[0,�]�N�[0,�]�N

x dx dt

and by denoting
w := �[0,�]�, w = PN(w),

we will in fact show that

|I1| =
�

�

�

�

Z

T⇥R
P ?

N ((w)2@xw)w wwx dx dt

�

�

�

�

 C(�)N��kwk6

X
2
3 �, 1

2 �
3

. (4.11)

To go back to vN we use the following lemma:

Lemma 4.6 (time cutoff). Let b < b1 < 1/2. Then the exists C0(�) > 0 such that

kwk
X

2
3 �,b

3

 C0(�)k�k
X

2
3 �,b1
3

 C0(�)kvNk
X

2
3 �, 1

2
3 (�)

where w,� and vN are as above.

Proof. Since the regularity in x does not play any role, without any loss of generality we
ignore the power s = (2/3)�. Then

kwk
X

0,b
3

=
✓

X

n

✓

Z

| \�[0,�]�(n, ⌧ )|2h⌧ + n2i2b d⌧

◆3/2◆1/3

=
✓

X

n

✓

Z

�

�

�

�

Z

⌧1

[�[0,�](⌧ � ⌧1)b�(n, ⌧1) d⌧1

�

�

�

�

2
h⌧ + n2i2b d⌧

◆3/2◆1/3
. (4.12)

Writing ⌧ + n2 = (⌧ � ⌧1) + (⌧1 + n2) we bound (4.12) by

.
✓

X

n

✓

Z

�

�

�

�

Z

⌧1

[�[0,�](⌧ � ⌧1)h⌧ � ⌧1ibb�(n, ⌧1) d⌧1

�

�

�

�

2
d⌧

◆3/2◆1/3
(4.13)

+
✓

X

n

✓

Z

�

�

�

�

Z

⌧1

[�[0,�](⌧ � ⌧1)b�(n, ⌧1)h⌧1 + n2ib d⌧1

�

�

�

�

2
d⌧

◆3/2◆1/3
. (4.14)

We treat the first sum (4.13), the second one (4.14) being similar. If h⌧ � ⌧1i < h⌧1 + n2i
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then by Young’s inequality, (4.13) can be bounded by

. k[�[0,�](⌧ )/h⌧ i"kL1
�

�kb�(⌧, n)h⌧ + n2ib+"kL2
�

�

`3 . k�kH�k�k
X

0,b1
3

by Cauchy–Schwarz on the b� term provided � + " > 1/2, � < 1/2 and where b1 :=
b + " < 1/2.

On the other hand if h⌧ � ⌧1i � h⌧1 + n2i, then again by Young’s inequality, (4.13)
can be bounded by

. k \�[0,�](⌧ )h⌧ ib+"kL2
�

�kb�(⌧, n)h⌧ + n2i�"kL1
�

�

`3 . k�kHb+"k�k
X

0,b1
3

by Cauchy–Schwarz on the b� term provided b1 + " > 1/2 and b1 < 1/2. Finally by
taking the infimum and using the definition of X

0,1/2
3 (�), a bound in terms of kvNk

X
0,1/2
3 (�)

follows. ut

4.4. Proof of Theorem 4.2

Returning to (4.11) we write

I1 =
Z

T⇥R
P ?

N (w2@xw)wwwx dxdt

=
Z

⌧

X

|n|>N

\(w2wx)(n, ⌧ ) \(wwwx)(n, ⌧ ) d⌧

=
Z

X

|n|>N

✓

Z

⌧=⌧1+⌧2�⌧3

X

n=n1+n2�n3
|nj |N

bw(n1, ⌧1)bw(n2, ⌧2)(�in3)bw(n3, ⌧3) d⌧1 d⌧2

◆

⇥
✓

Z

�⌧=⌧4�⌧5�⌧6

X

�n=n4�n5�n6
|nj |N

bw(n4, ⌧4)bw(n5, ⌧5)(�in6)bw(n6, ⌧6) d⌧4 d⌧5

◆

d⌧

=
Z

X

N<|n|3N

✓

Z

⌧=⌧1+⌧2+⌧3

X

n=n1+n2+n3
|nj |N

bw(n1, ⌧1)bw(n2, ⌧2)(in3)bw(n3, ⌧3) d⌧1 d⌧2

◆

⇥
✓

Z

�⌧=⌧4+⌧5+⌧6

X

�n=n4+n5+n6
|nj |N

bw(n4, ⌧4)bw(n5, ⌧5)(in6)bw(n6, ⌧6) d⌧4 d⌧5

◆

d⌧

=
Z

X

N<|n|3N

✓

Z

⌧=⌧1+⌧2+⌧3

X

n=n1+n2+n3
|nj |N

cw1(n1, ⌧1)cw2(n2, ⌧2)(in3)cw3(n3, ⌧3) d⌧1 d⌧2

◆

⇥
✓

Z

�⌧=⌧4+⌧5+⌧6

X

�n=n4+n5+n6
|nj |N

cw4(n4, ⌧4)cw5(n5, ⌧5)(in6)cw6(n6, ⌧6) d⌧4 d⌧5

◆

d⌧,

where w1 = w2 = w4 = w and w3 = w5 = w6 = w.
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Remark 4.7. In what follows we always think of Nj , N as dyadic; more precisely Nj

:= 2Kj , N := 2K where Kj < K since nj 2 Z. By a slight abuse of notation we then
denote by Nj both |nj | and the dyadic interval [2Kj , 2Kj +1) to which |nj | belongs when
nj 6= 0. Moreover we denote by wNj the function such that dwNj (nj ) = �{|nj |⇠Nj }cwj(nj ).

From the expression above we then have

|nj |  N, N  |n|  3N, n = n1 + n2 + n3, �n = n4 + n5 + n6, (4.15)
N ⇠ max(N1, N2, N3) ⇠ max(N4, N5, N6), (4.16)

⌧ + n2 � (⌧1 + n2
1) � (⌧2 + n2

2) � (⌧3 � n2
3) = 2(n � n1)(n � n2), (4.17)

⌧ + n2 + (⌧4 + n2
4) + (⌧5 � n2

5) + (⌧6 � n2
6) = 2(n + n5)(n + n6). (4.18)

So if we let �̃j := ⌧j ± n2
j and �j := h⌧j ± n2

j i, by subtracting (4.17) from (4.18) we have

6
X

j=1
�̃j = �2(n(n1 + n2 + n5 + n6) � n1n2 + n5n6). (4.19)

This in turn can also be rewritten using n1+n2+n3+n4+n5+n6 = 0 or n = n1+n2+n3
and �n = n4 + n5 + n6 as

6
X

j=1
�̃j = 2(n(n3 + n4) + n1n2 � n5n6). (4.20)

In addition, since ⌧1 +⌧2 +⌧3 +⌧4 +⌧5 +⌧6 = 0, adding and subtracting n2
j , j = 1, . . . , 6,

in the appropriate fashion, we obtain

6
X

j=1
�̃j = (n2

3 + n2
5 + n2

6) � (n2
1 + n2

2 + n2
4). (4.21)

Hence we need to estimate

|I1| =
�

�

�

�

X

NiN;i=1,...6

Z

R

Z

T
P ?

N (wN1wN2@xwN3)wN4wN5@xwN6 dx dt

�

�

�

�

=
�

�

�

�

X

NiN;i=1,...6

X

|n|�N

Z

⌧

✓

Z

⌧=⌧1+⌧2+⌧3

X

n=n1+n2+n3

dwN1 dwN2(in3)dwN3 d⌧1 d⌧2

◆

⇥
✓

Z

�⌧=⌧4+⌧5+⌧6

X

�n=n4+n5+n6

dwN4
dwN5(in6)dwN6 d⌧4 d⌧5

◆

d⌧

�

�

�

�


X

N|n|3N

X

NiN;i=1,...6

Z

⌧

✓

Z

⌧=⌧1+⌧2+⌧3

X

n=n1+n2+n3

|dwN1 | |dwN2 | |n3| |dwN3 | d⌧1 d⌧2

◆

⇥
✓

Z

�⌧=⌧4+⌧5+⌧6

X

�n=n4+n5+n6

|dwN4 | |dwN5 | |n6| |dwN6 | d⌧4 d⌧5

◆

d⌧. (4.22)
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Remark 4.8. This expression (4.22) will be our point of departure in beginning our esti-

mate. In what follows we will abuse notation and write wNj for

[
|dwNj | and wNk for

[

|dwNk |
since at the end we will estimate all functions in the Xs,b

r norms which depend solely on
the absolute value of the Fourier transform.

We start by laying out all possible cases and organizing them according to the sizes
of the two derivative terms.

Types:

I. N3 ⇠ N and N6 ⇠ N ,
II. N3 ⇠ N and N6 ⌧ N ,

III. N6 ⇠ N and N3 ⌧ N ,
IV. N3 ⌧ N and N6 ⌧ N .

Now we subdivide into all subcases in each situation and group them according to how
many low frequencies (i.e. Nj ⌧ N ) we have overall, taking into account (4.16).

All cases for each type:

IA. N3 ⇠ N, N6 ⇠ N and 4 lows: N1, N2, N4, N5 ⌧ N .
IB. N3 ⇠ N, N6 ⇠ N and 3 lows:

(i) N1, N2, N4 ⌧ N and N5 ⇠ N ,
(ii) N1, N2, N5 ⌧ N and N4 ⇠ N ,

(iii) N1, N4, N5 ⌧ N and N2 ⇠ N ,
(iv) N2, N4, N5 ⌧ N and N1 ⇠ N .

IC. N3 ⇠ N, N6 ⇠ N and 2 lows:
(i) N1, N2 ⌧ N and N4, N5 ⇠ N ,

(ii) N1, N4 ⌧ N and N2, N5 ⇠ N ,
(iii) N1, N5 ⌧ N and N2, N4 ⇠ N .
(iv) N2, N4 ⌧ N and N1, N5 ⇠ N ,
(v) N2, N5 ⌧ N and N1, N4 ⇠ N ,

(vi) N4, N5 ⌧ N and N1, N2 ⇠ N .
ID. N3 ⇠ N, N6 ⇠ N and 1 low:

(i) N1 ⌧ N and N2, N4, N5 ⇠ N ,
(ii) N2 ⌧ N and N1, N4, N5 ⇠ N ,

(iii) N4 ⌧ N and N1, N2, N5 ⇠ N ,
(iv) N5 ⌧ N and N1, N2, N4 ⇠ N .

IE. N3 ⇠ N, N6 ⇠ N and N1, N2, N4, N5 ⇠ N .
IIA. N3 ⇠ N and N6 ⌧ N and 3 lows:

(i) N1, N2, N4 ⌧ N and N5 ⇠ N ,
(ii) N1, N2, N5 ⌧ N and N4 ⇠ N ,

IIB. N3 ⇠ N and N6 ⌧ N and 2 lows:
(i) N1, N2 ⌧ N and N4, N5 ⇠ N ,

(ii) N1, N4 ⌧ N and N2, N5 ⇠ N ,
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(iii) N1, N5 ⌧ N and N2, N4 ⇠ N ,
(iv) N2, N4 ⌧ N and N1, N5 ⇠ N .
(v) N2, N5 ⌧ N and N1, N4 ⇠ N .

IIC. N3 ⇠ N and N6 ⌧ N and 1 low:
(i) N1 ⌧ N and N2, N4, N5 ⇠ N ,

(ii) N2 ⌧ N and N1, N4, N5 ⇠ N ,
(iii) N4 ⌧ N and N1, N2, N5 ⇠ N ,
(iv) N5 ⌧ N and N1, N2, N4 ⇠ N .

IID. N3 ⇠ N and N6 ⌧ N and N1, N2, N4, N5 ⇠ N .
IIIA. N6 ⇠ N and N3 ⌧ N and 3 lows:

(i) N2, N4, N5 ⌧ N and N1 ⇠ N ,
(ii) N1, N4, N5 ⌧ N and N2 ⇠ N .

IIIB. N6 ⇠ N and N3 ⌧ N and 2 lows:
(i) N4, N5 ⌧ N and N1, N2 ⇠ N ,

(ii) N1, N4 ⌧ N and N2, N5 ⇠ N ,
(iii) N1, N5 ⌧ N and N2, N4 ⇠ N ,
(iv) N2, N4 ⌧ N and N1, N5 ⇠ N ,
(v) N2, N5 ⌧ N and N1, N4 ⇠ N .

IIIC. N6 ⇠ N and N3 ⌧ N and 1 low:
(i) N1 ⌧ N and N2, N4, N5 ⇠ N ,

(ii) N2 ⌧ N and N1, N4, N5 ⇠ N ,
(iii) N4 ⌧ N and N1, N2, N5 ⇠ N ,
(iv) N5 ⌧ N and N1, N2, N4 ⇠ N .

IIID. N6 ⇠ N and N3 ⌧ N and N1, N2, N4, N5 ⇠ N .
IVA. N3 ⌧ N, N6 ⌧ N and 2 lows:

(i) N1, N4 ⌧ N and N2, N5 ⇠ N ,
(ii) N1, N5 ⌧ N and N2, N4 ⇠ N ,

(iii) N2, N4 ⌧ N and N1, N5 ⇠ N ,
(iv) N2, N5 ⌧ N and N1, N4 ⇠ N .

IVB. N3 ⌧ N, N6 ⌧ N and 1 low:
(i) N1 ⌧ N and N2, N4, N5 ⇠ N ,

(ii) N2 ⌧ N and N1, N4, N5 ⇠ N ,
(iii) N4 ⌧ N and N1, N4, N5 ⇠ N ,
(iv) N5 ⌧ N and N1, N2, N4 ⇠ N .

IVC. N3 ⌧ N, N6 ⌧ N and N1, N2, N4, N5 ⇠ N .

In what follows we will use the following estimates repeatedly:

Lemma 4.9. Let wNi be as above. Then

kwNi k
X

0+, 1
2 �  N

� 1
2 +

i kwNi k
X

2
3 �, 1

2 �
3

, (4.23)

kwNi k
X

1
2 �, 1

3 +  kwNi k
X

2
3 �, 1

2 �
3

. (4.24)
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We also have
kwNi kL8

xt
 kwNi k

X
13
24 +, 3

8 +
3

. (4.25)

If we assume that �i . N� for any � > 0, then

kwNi kL1
xt

 N0+kwNi k
X

2
3 �, 1

2 �
3

. (4.26)

Proof. The estimates (4.23) and (4.24) are a consequence of frequency localization and
Hölder’s inequality. The estimate (4.26) is a consequence of Sobolev embedding together
with the assumption that �i . N� . ut
Lemma 4.10. Let 0 < � < 2, ⇢ � 0 and � > 0. Let M > 0 and wM be such that
supp wM(·, x) ⇢ [��, �], x 2 T. Define

\J�wM(⌧, n) := �{|n|⇠M}�{|⌧+n2|M� }|dwM(⌧, n)|.
Then

kJ�wMkX0,⇢ . C�A(�, M)1/6M⇢�+kwMk
X

0,1/6
3

,

where A(M,�) defined below is bounded by 1 + M��1.
Proof. We write

kJ�wMk2
X0,⇢ =

X

|n|⇠M

Z

|⌧+n2|M�
|dwM(⌧, n)|2h⌧ + n2i2⇢ d⌧

 M2⇢�
Z

⌧

✓

X

|n|⇠M, |⌧+n2|M�

|dwM(⌧, n)|2
◆

d⌧

 M2⇢�
Z

⌧



X

|n|⇠M, |⌧+n2|M�

|dwM(⌧, n)|3
�2/3

|S(⌧, M,�)|1/3 d⌧, (4.27)

where
S(⌧, M,�) := {n 2 Z : |n| ⇠ M and |⌧ + n2|  M�},

and |S| represents the counting measure of the set.
We will show below that

A(M,�) := sup
⌧

|S(⌧, M,�)|  1 + M��1. (4.28)

Hence (4.27) is less than or equal to

A(M,�)1/3M2⇢�
Z

⌧



X

n

�{|n|⇠M}(n)�{|⌧+n2|M� }(⌧, n)|dwM(⌧, n)|3
�2/3

d⌧

= A(M,�)1/3M2⇢�
Z

⌧

�

�

�

�{|⌧+n2|M� }(⌧, n)dwM(⌧, n)
 

n

�

�

2
`3(|n|⇠M)

d⌧

⇠ A(M,�)1/3M2⇢�
Z

t

�

�F�1
⌧

�

{�{|⌧+n2|M� }(⌧, n)dwM(⌧, n)}n
�

(t)
�

�

2
`3(|n|⇠M)

dt

= A(M,�)1/3M2⇢�
Z

t

�

�

�F�1
⌧ (�{|⌧+n2|M� }(⌧, n)) ⇤ F�1

⌧ (dwM(⌧, n))
 

n
(t)

�

�

2
`3(|n|⇠M)

dt.
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Note that F�1
⌧ (dwM(·, n))(t) is still supported on [��, �] for all n and

F�1
⌧ (�{|⌧+n2|M� }(·, n))(t) = 2e�itn2 sin(M� t)

t
.

We then continue the above chain of inequalities with

= A(M,�)1/3M2⇢�

⇥
Z

t

�

�

�

�

Z

R
�[��,�](t 0)Fn(wM(t 0, ·))(n)e�i(t�t 0)n2 sin(M�(t � t 0))

t � t 0
dt 0

�

�

�

�

2

`3(|n|⇠M)

dt

 A(M,�)1/3M2⇢�

⇥
Z

R



Z

R
�[��,�](t 0)kFn(wM(t 0, ·))(n)k`3(|n|⇠M)

�

�

�

�

sin(M�(t � t 0))
t � t 0

�

�

�

�

dt 0
�2

dt.

Let p = 2� and q = 1+; then we compute
�

�

�

�

sin(M�(t � t 0))
t � t 0

�

�

�

�

L
q
t

= M�

✓

Z

R

�

�

�

�

sin(M� t)

tM�

�

�

�

�

q

dt

◆1/q

= M�M��/q

✓

Z

R

�

�

�

�

sin(r)

r

�

�

�

�

q

dr

◆1/q

. M0+. (4.29)

On the other hand, for 1/� = 1/p � 1/3,
�

��[��,�](·)kFn(wM(t, ·))(n)k`3(|n|⇠M)

�

�

2
L

p
t
. �2/�

�

�kFn(wM(t, ·))(n)k`3(|n|⇠M)

�

�

2
L3

t

. �2/�
�

�keitn2Fn(wM(t, ·))(n)k`3(|n|⇠M)

�

�

2
L3

t

= �2/�
�

�keitn2Fn(wM(t, ·))(n)kL3
t

�

�

2
`3(|n|⇠M)

. �2/�
�

�keitn2Fn(wM(t, ·))(n)k
H

1/6
t

�

�

2
`3(|n|⇠M)

= �2/� kwMk2
X

0,1/6
3

, (4.30)

where we used the Sobolev theorem and the definition of Xs,b
r . Finally by Young’s in-

equality, (4.29) and (4.30) we have the desired estimate.
It remains to show (4.28). We use an argument similar to [18]. For fixed ⌧ let S :=

S(⌧, M,�) 6= ;. Then there exists n0 2 S and hence

|S|  1 + |{l 2 Z : |n0 + l| ⇠ M, |⌧ + (n0 + l)2|  M�}|
 1 + |{l 2 Z : |l|  M, |2n0l + l2| . M�}|.

We have |2n0l + l2| = |(l + n0)
2 � n2

0| . M� if and only if

�CM� + n2
0  (l + n0)

2  n2
0 + CM� .

Hence we need |l|  M to satisfy

�
q

n2
0 + CM�  l + n0 

q

n2
0 + CM� ,

l + n0 �
q

n2
0 � CM� or l + n0  �

q

n2
0 � CM� .
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In other words we need to know the size of
h

�
q

n2
0 + CM� , �

q

n2
0 � CM�

i

[
h

q

n2
0 � CM� ,

q

n2
0 + CM�

i

which is of the order of M�/|n0|. Hence since |n0| ⇠ M we have

|S|  1 + M��1,

which implies (4.28) by taking sup⌧ . ut
In what follows we are under the assumption that �j . N7 for all j = 1, . . . , 6. Towards
the end of the proof we remove this assumption. We begin by treating all cases with at
least two high frequencies in the nonderivative terms. All cases in IC, ID, IE, IIB, IIC,
IID, IIIB, IIIC, IIID, IVA, IVB, IVC follow from the following lemma applied with the
exponent � set equal to 0.

Lemma 4.11. Assume there are i, j 2 {1, 2, 4, 5} such that Ni � N1�� for 0  � < 1/6
and Nj ⇠ N . Then (4.22) can be estimated by N�1/12+�/2 Q6

i=1 kwikX
s,b
3

.

Proof. By Plancherel we see that (4.22) is less than or equal to
X

Nj ⇠N; Ni�N1�� ; NkN,1k6

Z

R

Z

T
N3N6wN1wN2wN3wN4wN5wN6 dx dt. (4.31)

Let 0 < � < 1 to be determined below. Assume

�3  N
�
3 . (4.32)

By Cauchy–Schwarz’s inequality, grouping the first three functions in (4.31) in L2
xt and

the last three in L2
xt and using (2.3) we see that (4.31) is less than or equal to

X

Nj ⇠N; Ni�N1�� ;NkN

N3N6

6
Y

i=1
kwNi k

X
✏, 1

2 � . (4.33)

Note now that by (4.32), wN3 is equal to J�wN3 as defined in Lemma 4.10. Then we
have

kwN3k
X
✏, 1

2 �  C�N
1/2�+
3 kwN3k

X
0, 1

6 +
3

. (4.34)

Hence by (4.23), (4.34) we deduce that (4.33) is less than or equal to

X

Nj ⇠N; Ni�N1�� ; NkN

N3N6N
� 1

2 +
1 N

� 1
2 +

2 N
1
2�+

3 N
� 2

3
3 N

� 1
2 +

4 N
� 1

2 +
5 N

� 1
2 +

6

⇥
⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

.

.
X

Nj ⇠N; Ni�N1�� ; NkN

N
1
3 + �

2 +
3 N

1
2 +N�1+ �

2

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

.
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Now we apply Hölder’s inequality with r = 3, r 0 = 3/2 to sum in Nj , Ni, Nk (multi-
ply and divide by N�✏

j with a loss of N ✏ for each term). For example,
X

Nj N

kwNj kX
s,b
3

=
X

Nj N

�

�khnj ish⌧ + n2
j ibbwNj (⌧, nj )kL2

⌧

�

�

`3 . (4.35)

Set YNj (nj ) := khnj ish⌧ � n2
j ibbwNj (⌧, nj )kL2

⌧
. Then the expression in (4.35) equals

X

Nj N

N"
j N�"

j kYNj k`3  N"
⇣

X

Nj N

N
� 3

2 "

j

⌘2/3⇣ X

Nj N

kYNj k3
`3

⌘1/3

. N"
⇣

X

Nj N

X

|nj |⇠Nj

khnj ish⌧ + n2
j ibbwj(⌧, nj )k3

L2
⌧

⌘1/3

⇠ N"kwjkX
s,b
3

.

Note then that all in all we get at worst a factor of N� 1
6 + �

2 + �
2 +.

Now assume that
�3 � N

�
3 .

Then rewrite (4.31) as
X

Nj ⇠N;Ni�N1�� ;NkN

Z

R

Z

T
N3N6|�3|�

1
2 +wN1wN2 |�3|

1
2 � wN3wN4wN5 wN6 dx dt.

(4.36)

We do Hölder by placing |�3|(1/2)�wN3 in L2
xt , the product of wN6 with the two largest

among wN1 , wN2 , wN4 , wN5 in L2
xt , while the remaining ones in L1

xt . Then by (4.23) and
(4.26), we bound (4.36) by

.
X

Nj ⇠N;Ni�N1�� ;NkN

N3N
� 1

2 � �
2 +

3 N6N
� 1

2 +
6 N� 1

2 +N� 1
2 + �

2 +
⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

.
X

Nj ⇠N;Ni�N1�� ;NkN

N
1
2 � �

2 +
3 N� 1

2 + �
2 +

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

.

We want that � > � to conclude by Hölder the desired inequality with a decay in N . We
now impose that

�1
6

+ �

2
+ �

2
= ��

2
+ �

2
,

whence � = 1/6 and provided 0 < � < 1/6 the lemma follows. ut
It remains then to treat cases IA, IB, IIA and IIIA. Before starting we note the following
support condition that will be used throughout what follows.

Support condition

By (4.15) and (4.16) the triplet (wN1 , wN2 , wN3) satisfies n = n1 + n2 + n3, |nj |  N ,
N  |n|  3N and N ⇠ max(N1, N2, N3).
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Suppose that, say, max(N1, N2)  N✓ for some 0 < ✓ < 1. Without any loss of
generality assume n > 0. Then N  n  (n1+n2)+n3  2N✓+N and hence n = N +k

where 0  k  2N✓ . Next observe that n3 = n � (n1 + n2) = N + k � (n1 + n2)
with |k � (n1 + n2)|  4N✓ , whence n3 = N + O(N✓ ). In other words, whenever
max(N1, N2)  N✓ the support of dwN3 is of size O(N✓ ). Note that we could have just as
well said that the support of dwN3 is of size O(max(N1, N2)) in lieu of O(N✓ ).

When we are in this situation we say we have the support condition on wN3 . This ar-
gument is symmetric with respect to wN1 , wN2 or wN3 . The exact same analysis holds
for (wN4 , wN5 , wN6). By abuse of notation we still write, for example, dwN3(n3) for
dwN3(n3)�I3(n3), where I3 is the support of dwN3 when the support condition holds.

Remark 4.12. As a consequence of the support condition, estimate (4.23) can be im-
proved. For example if we have the support condition on dwN3 then

kwN3k
X

0+, 1
2 � . |I3|1/6kwN3k

X
0+, 1

2 �
3

.

Case IIIA. Note that (i) and (ii) are symmetric with respect to j = 1 and j = 2. So we
only consider (i). Observe also that a priori there is no help from a large �j . Let �, � be
two positive constants to be determined later but such that 1 � � > �.

Subcase 1. Assume N2, N4, N5 < N1�� , N3 . N � and N1 ⇠ N ⇠ N6 in (4.22). Then
we have the support condition on wN1 and wN6 . Let us denote by

P

⇤ the sum over the set
of Nj  N, 1  j  6, such that N1, N6 ⇠ N , Nj < N1�� for j = 2, 4, 5 and N3 . N � .
By Cauchy–Schwarz, (2.3), Lemma 4.9 and Remark 4.12 we then conclude that (4.22) is
less than or equal to

X

⇤ N3N6 max(N2, N3)
1/6N

� 2
3 +

1 N
� 1

2 +
2 N

� 1
2 +

3 N
� 1

2 +
4 N

� 1
2 +

5

⇥ max(N4, N5)
1/6N

� 2
3 +

6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

.
X

⇤ N
1
2 +

3 N
1
3 +

6 max(N2, N3)
1/6N

� 1
2 +

2 N� 2
3 +

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

since N
�(1/2)+
4 N

�(1/2)+
5 max(N4, N5)

1/6 is bounded. On the other hand the latter expres-
sion is worst possible when max(N2, N3) ⇠ N3; hence if � < 1/2 we conclude by Hölder
as before with a decay of N�1/3N2�/3.

Subcase 2. Assume N2, N4, N5 < N1�� , N3 & N � and N1 ⇠ N ⇠ N6 in (4.22). We
further subdivide as follows:

Subcase 2a. Assume N2, N4, N5 ⌧ N �, N3 & N � and N1 ⇠ N ⇠ N6 in (4.22). Then
from (4.20) there exists �j & N1+� . Denote by

P

⇤ the sum over the set of Nj  N ,
1  j  6, such that N1, N6 ⇠ N , Nj < N � for j = 2, 4, 5 and N3 � N � .

• Suppose j = 2, 4 or 5; j = 2 or 4 are symmetric. So we treat first j = 2 and then
j = 5. By Plancherel, (4.22) is less than or equal to
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X

⇤

Z

R

Z

T
N3N6�

� 1
2 +

2 wN1�
1
2 �

2 wN2wN3wN4wN5 wN6 dx dt

.
X

⇤ N
1
2 +

3 N
1
2 +

6 N� 1
2 � �

2 N
� 1

2 +
1 N

� 1
2 +

2 N0+
4 N0+

5

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

by Cauchy–Schwarz placing wN1wN3wN6 in L2, � 1/2
2 wN2 in L2 and wN4wN5 in L1.

From (2.3) and Lemma 4.9 we obtain the desired estimate with decay N��/2 so long as
� > 0.

If j = 5 we proceed as above with the same grouping in L2 but exchanging the roles
of wN2 and wN5 for the other L2 and one of the L1 bounds.

• Suppose j = 3, 6 or 1; j = 3 or 6 are symmetric. So we treat first j = 3 and then
j = 1. Proceeding as above from (4.22) we now have

X

⇤

Z

R

Z

T
N3N6�

� 1
2 +

3 wN1wN2�
1
2 �

3 wN3wN4wN5 wN6 dx dt

.
X

⇤ N
1
2 +

3 N
1
2 +

6 N� 1
2 � �

2 N
� 1

2 +
1 N0+

2 N
� 1

2 +
4 N0+

5

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

by Cauchy–Schwarz placing wN1wN4wN6 in L2, � (1/2)�
3 wN3 in L2 and wN2wN5 in L1.

We thus obtain the desired estimate as before with decay N��/2 so long as � > 0.
If j = 1 then we group wN3wN4wN6 in L2, � (1/2)�

1 wN1 in L2 and the other two in
L1 to reach the same estimate.

Subcase 2b. Suppose there exists i 2 {2, 4, 5} such that Ni & N � and Nj ⌧ N � for
j 6= i, and i, j 2 {2, 4, 5} while still N3 & N � and N1 ⇠ N ⇠ N6 in (4.22).

• Suppose i = 2 first. Then we further split the sum over this set into three sums,
S1, S2 and S3 according to whether N � . N2 ⌧ N3, N2 ⇠ N3 or N2 � N3 respectively.
When considering the sums over S1 or S3 we deduce from (4.20) that there exists �j &
N1+� and hence the estimates for S1 and S3 follow exactly as those in Subcase 2a.

We then treat S2. Since N2 ⇠ N3 and N2 < N1�� , we also have N3 < N1�� , while
N4, N5 . N � . Thus we have the support condition on wN1 and wN6 . Then from (4.22) by
Cauchy–Schwarz, (2.3), Lemma 4.9 and Remark 4.12, grouping wN1wN2wN3 in L2 and
wN4wN5 wN6 and (4.23) we have
X

S2

N3N6 max(N2, N3)
1/6N

� 2
3 +

1 N
� 1

2 +
2 N

� 1
2 +

3 N
� 1

2 +
4 N

� 1
2 +

5

⇥ max(N4, N5)
1/6N

� 2
3 +

6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

.
X

S2

N
1
3 +

6 max(N2, N3)
1/6N

� 2
3 +

1

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

since N
�(1/2)+
4 N

�(1/2)+
5 max(N4, N5)

1/6 is bounded and N2 ⇠ N3. Summing as usual,
we get the desired estimate with decay N�(1/6)+ regardless of � > 0.
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• Suppose i = 4. Again, we further split the sum over this set into three sums, over
S1, S2 and S3, according now to whether N � . N4 ⌧ N3, N4 ⇠ N3 or N4 � N3
respectively. For the sums over S1 or S3, from (4.20) we have �j & N1+� and hence the
estimates for S1 and S3 follow exactly as those in Subcase 2a.

We then treat S2. Since N4 ⇠ N3, N3 < N1�� while N2, N5 . N � , once again we
have the support condition on wN1 and wN6 . Proceeding as before we have

X

S2

N3N6 max(N2, N3)
1/6N

� 2
3 +

1 N
� 1

2 +
2 N

� 1
2 +

3 N
� 1

2 +
4 N

� 1
2 +

5

⇥ max(N4, N5)
1/6N

� 2
3 +

6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

.
X

S2

N
1
2 +

3 N6N
1/6
3 N� 2

3 +N
� 1

2 +
2 N

� 1
2 + 1

6 +
4 N

� 1
2 +

5 N� 2
3 +

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

.
X

S2

N
1
3 +

3 NN� 4
3 +

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

.

Since N4 ⇠ N3 and N3 < N1�� , summing as before we have the desired estimate with
decay N��/3 so long as � > 0.

• Suppose i = 5. We split the sum over this set into three sums, over S1, S2 and S3,
according to whether N � . N5 ⌧ N3, N5 ⇠ N3 or N5 � N3 respectively. Again for the
sums over S1 or S3, from (4.20) we have �j & N1+� and hence the estimates for S1 and
S3 follow exactly as those in Subcase 2a.

We then treat S2. Since N5 ⇠ N3, N3 < N1�� while N2, N4 . N � , we have the
support condition on wN1 and wN6 . Proceeding as before we have

X

S2

N3N6 max(N2, N3)
1/6N

� 2
3 +

1 N
� 1

2 +
2 N

� 1
2 +

3 N
� 1

2 +
4 N

� 1
2 +

5

⇥ max(N4, N5)
1/6N

� 2
3 +

6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

.
X

S2

N
1
2 +

3 N
1
3 +

6 N
1/6
3 N� 2

3 +N
� 1

2 +
2 N

� 1
2 +

4 N
� 1

2 + 1
6 +

5

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

.
X

S2

N
1
3 +

3 N� 1
3 +

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

,

which gives the desired estimate with the same N��/3 decay as in the previous case so
long as � > 0.

Subcase 2c. Suppose that there exist at least i, j 2 {2, 4, 5} (i 6= j ) such that Ni, Nj &
N � while N3 & N � and N1 ⇠ N ⇠ N6 in (4.22). Note that N4, N5 < N1�� , which
ensures the support condition on wN6 .
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• Suppose (i, j) = (4, 5). Proceeding as above and using similar arguments we have

X

⇤ N3N6N
� 1

2 +
1 N

� 1
2 +

2 N
� 1

2 +
3 N

� 1
2 +

4 N
� 1

2 +
5 max(N4, N5)

1/6N
� 2

3 +
6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

=
X

⇤ N
1
2 +

3 N
1
3 +

6 N� 1
2 +N

� 1
2 +

4 N
� 1

2 +
5 max(N4, N5)

1/6
⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

,

from which using that N4, N5 & N � and N3 & N � we get the desired bound with decay
N1/3�5�/6 so long as � > 2/5.

• Suppose (i, j) = (2, 5). Once again proceeding as before and using similar argu-
ments we have

X

⇤ N3N6N
� 1

2 +
1 N

� 1
2 +

2 N
� 1

2 +
3 N

� 1
2 +

4 N
� 1

2 +
5 max(N4, N5)

1/6N
� 2

3 +
6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

.
X

⇤ N
1
2 +

3 N
1
3 +

6 N� 1
2 +N� �

2 N� �
2 + �

6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

using that N2 & N � and that N
�(1/2)+
4 N

�(1/2)+
5 max(N4, N5)

1/6 is worse possible when
N4 ⌧ N5 but N5 & N � . Hence we once again obtain the desired estimate with decay
N1/3�5�/6 so long as � > 2/5.

• Suppose (i, j) = (2, 4). This is exactly as in the previous case by exchanging the
roles of 4 and 5.

Subcase 3. Assume there exists at least one i 2 {2, 4, 5} such that Ni & N1�� ,
N2, N4, N5 ⌧ N while N3 ⌧ N and N1 ⇠ N ⇠ N6 in (4.22). This case follows
from Lemma 4.11 with 0 < � < 1/6 as in its statement.

All in all, for Case IIIA we need 2/5 < � < 1/2 and 0 < � < 1/6.

Remark 4.13. In the proof of the remaining cases, in order to keep the notation lighter,
we will ignore the +✏ appearing in the exponent of the Ni’s in (4.23). For example we
simply write N

�1/2
i instead of N

�(1/2)+
i .

Case IA. Assume N3 ⇠ N ⇠ N6 while N1, N2, N4, N5 ⌧ N in (4.22) and denote as
before by

P

⇤ the sum over this set. Observe that from (4.17)–(4.21) there exists �j & N2.

Subcase 1. Assume in addition N1, N2 < N � for some � > 0. We then have the support
condition on wN3 .

• Suppose j = 3 or 6; say j = 3 (j = 6 is similar). Then we rewrite (4.22) as follows:

X

⇤

Z

R

Z

T
N2�

� 1
2 +

3 wN1wN2�
1
2 �

3 wN3wN4wN5 wN6 dx dt

.
X

⇤N2N�1N0+
1 N0+

2 max(N1, N2)
1/6N

�2/3
3 N

�1/2
4 N

�1/2
5 N

�1/2
6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘
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by placing � (1/2)�
3 wN3 in L2

xt , wN4wN5 wN6 in L2
xt , wN1wN2 in L1

xt and using the support
condition on wN3 . By Hölder’s inequality, summing as above, we get the desired estimate
with decay N �/6�1/6 so long as � < 1.

• Suppose j = 1, 2, 4 or 5. By symmetry (relative to conjugates) j = 1, 2, 4 are
similar; so suppose j = 1. We rewrite (4.22) as
X

⇤

Z

R

Z

T
N2�

� 1
2 +

1 wN1�
1
2 �

1 wN2wN3 wN4wN5 wN6 dx dt

.
X

⇤N2N�1N
�1/2
1 N0+

2 max(N1, N2)
1/6N

�2/3
3 N

�1/2
4 N0+

5 N
�1/2
6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

by placing � (1/2)�
1 wN1 in L2

xt , wN3wN4wN6 in L2
xt , wN2wN5 in L1

xt and using the support
condition on wN3 . Once again, by Hölder’s inequality, summing as before we get the
desired estimate with decay N �/6�1/6 so long as � < 1.

If j = 5, then
X

⇤

Z

R

Z

T
N2�

� 1
2 +

5 wN1wN2wN3wN4�
1
2 �

5 wN5 wN6 dx dt

.
X

⇤ N2N�1N0+
1 N0+

2 max(N1, N2)
1/6N

� 2
3

3 N
� 1

2
4 N

� 1
2

5 N
� 1

2
6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

by placing � (1/2)�
5 wN5 in L2

xt , wN3wN4wN6 in L2
xt , wN1wN2 in L1

xt and using the support
condition on wN3 . Once again, by Hölder’s inequality, summing as before we get the
desired estimate with decay N �/6�1/6 so long as 0 < � < 1.
Subcase 2. Assume either N1 or N2 is > N � . Suppose N1 > N �; otherwise exchange the
roles of wN1 and wN2 below. We no longer rely on the support condition but on the lower
bound on N1 as follows.

• Suppose j = 3 or 6; say j = 3 (j = 6 is similar). Then proceeding as before we
rewrite (4.22) as

X

⇤

Z

R

Z

T
N2�

� 1
2 +

3 wN1wN2�
1
2 �

3 wN3wN4wN5 wN6 dx dt

.
X

⇤ N2N�1N
�1/2
1 N0+

2 N
�1/2
3 N0+

4 N
�1/2
5 N

�1/2
6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

by placing � (1/2)�
3 wN3 in L2

xt , wN1wN5 wN6 in L2
xt , wN2wN4 in L1

xt . By Hölder’s inequal-
ity, summing as above, we get the desired estimate with decay N��/2 so long as � > 0.

• Suppose j = 1 or 2; say j = 1 (j = 2 is similar). We now write
X

⇤

Z

R

Z

T
N2�

� 1
2 +

1 wN1�
1
2 �

1 wN2wN3wN4wN5 wN6 dx dt

.
X

⇤ N2N�1N
�1/2
1 N

�1/2
2 N

�1/2
3 N0+

4 N0+
5 N

�1/2
6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘
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by placing � (1/2)�
1 wN1 in L2

xt , wN2wN3 wN6 in L2
xt , wN4wN5 in L1

xt . Once again, by
Hölder’s inequality and summing as above, we get the desired estimate with decay N��/2

so long as � > 0.
• Suppose j = 4. Then proceed as above but place � (1/2)�

4 wN4 in L2
xt , wN1wN3wN6

in L2
xt , and wN2wN5 in L1

xt .

• Suppose j = 5. Then once again we proceed as above but now place � (1/2)�
5 wN5 in

L2
xt , wN1wN3 wN6 in L2

xt , and wN2wN4 in L1
xt .

Remark 4.14. Matching Subcases 1 and 2 above means ��/2 = �/6 � 1/6, which re-
quires � = 1/4 and yields a decay of N�(1/8)+.

Case IIA. Part (i) will follow similarly to Case IA while part (ii) to Case IIIA.

Part (i). We are under the assumptions N3 ⇠ N ⇠ N5 while N1, N2, N4, N6 ⌧ N . It
follows from (4.21) that there exists �j & N2. We proceed exactly as in IA exchanging in
each instance the roles of wN6 and wN5 .

Part (ii). We are under the assumptions N3 ⇠ N ⇠ N4 while N1, N2, N5, N6 ⌧ N .
We have a priori no help from a large �j at our disposal. We then proceed as in IIIA
above with the role of (N3; wN3) switched with that of (N6; wN6), and (N1; wN1) with
(N4; wN4). Hence for �, � > 0 to be determined, in Subcase 1 we are under the assump-
tion N1, N2, N5 < N1�� , N6 . N � and N3 ⇠ N ⇠ N4. In Subcase 2 we assume that
N1, N2, N5 < N1�� while N6 & N � and N3 ⇠ N ⇠ N4, and further subdivide just as
before into Subcase 2a: N1, N2, N5 ⌧ N � while N6 & N � which implies from (4.19) the
existence of a �j & N1+�; Subcase 2b: there exists i 2 {1, 2, 5} such that Ni � N � and
Nj . N � for j 6= i and i, j 2 {1, 2, 5} while still N6 & N � and N3 ⇠ N ⇠ N4 in (4.22),
and Subcase 2c: there exist at least i, j 2 {1, 2, 5} (i 6= j ) such that Ni, Nj � N � while
N6 & N � and N3 ⇠ N ⇠ N4 in (4.22). Note that N1, N2 < N1�� , which ensures the
support condition on wN3 . Subcase 3: Assume there exists at least one i 2 {1, 2, 5} such
that Ni & N1�� , N2, N1, N5 ⌧ N while N6 ⌧ N and N3 ⇠ N ⇠ N4 in (4.22). This
case follows from Lemma 4.11 with 0 < � < 1/6 as in its statement.

Proceeding then just as in IIIA we deduce the desired estimate with the same decay
in N as in IIIA as long as 2/5 < � < 1/2 and 0 < � < 1/6 as before.

Case IB. We first note that parts (ii), (iii) and (iv) are all symmetric relative to conjuga-
tion; so we only consider (i) and (ii).

Part (i). We are under the assumptions N3 ⇠ N5 ⇠ N6 ⇠ N while N1, N2, N4 ⌧ N . It
follows from (4.21) that there exists �j & N2.

• Suppose j = 1, 2 or 4. By symmetry it is enough to consider j = 1 and j = 4. To
obtain decay we need to use the support condition. Thus we further subdivide into two
cases.
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Subcase 1. Assume in addition N1, N2 < N � for some � > 0. We then have the support
condition on wN3 . For j = 1 we have

X

⇤

Z

R

Z

T
N2�

� 1
2 +

1 wN1�
1
2 �

1 wN2wN3wN4wN5 wN6 dx dt

.
X

⇤ N2N�1N
�1/2
1 N

�1/2
2 N

�2/3
3 N �/6N0+

4 N0+
5 N

�1/2
6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

by placing � (1/2)�
1 wN1 in L2

xt , wN2wN3 wN6 in L2
xt , wN4wN5 in L1

xt . By Hölder’s in-
equality, summing as above, we get the desired estimate with decay N�1/6+�/6 so long as
0 < � < 1.

For j = 4, we place � 1/2
4 wN4 in L2

xt , wN1wN3wN6 in L2
xt and wN2wN5 in L1

xt and
proceed similarly.

Subcase 2. Assume either N1 or N2 is > N � . By symmetry suppose N1 > N �; otherwise
exchange the roles of wN1 and wN2 below. We use then the lower bound on N1 as follows.
For j = 1,

X

⇤

Z

R

Z

T
N2�

� 1
2 +

1 wN1�
1
2 �

1 wN2wN3wN4wN5 wN6 dx dt

.
X

⇤ N2N�1N
�1/2
1 N

�1/2
2 N

�1/2
3 N0+

4 N0+
5 N

�1/2
6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

by placing � (1/2)�
1 wN1 in L2

xt , wN2wN3 wN6 in L2
xt , wN4wN5 in L1

xt . Hence, by Hölder’s
inequality and summing as usual we get the desired estimate with decay N��/2 so long
as � > 0.

For j = 4, we place � (1/2)�
4 wN4 in L2

xt , wN1wN3 wN6 in L2
xt and wN2wN5 in L1

xt and
proceed similarly.

Remark 4.15. Note that once again, matching Subcases 1 and 2 above means ��/2 =
�/6 � 1/6, which requires � = 1/4 and yields a decay of N�(1/8)+.

• Suppose j = 3, 6 or 5. By symmetry relative to conjugation it is enough to consider
j = 3. We have

X

⇤

Z

R

Z

T
N2�

� 1
2 +

3 wN1wN2�
1
2 �

3 wN3wN4wN5 wN6 dx dt

.
X

⇤ N2N�1N0+
1 N0+

2 N
�1/2
3 N

�1/2
4 N

�1/2
5 N

�1/2
6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

by placing � (1/2)�
3 wN3 in L2

xt , wN4wN5 wN6 in L2
xt , wN1wN2 in L1

xt . Hence, by Hölder’s
inequality, summing as usual we get the desired estimate with decay N�(1/2)+.
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Part (ii). We are under the assumptions N3 ⇠ N4 ⇠ N6 ⇠ N while N1, N2, N5 ⌧ N . It
follows from (4.19) that there exists �j & N2.

• Suppose j = 1, 2 or 5. If j = 1 then

X

⇤

Z

R

Z

T
N2�

� 1
2 +

1 �
1
2 �

1 wN1wN2wN3wN4wN5 wN6 dx dt

.
X

⇤ N2N�1N
�1/2
1 N0+

2 N
�1/2
3 N

�1/2
4 N0+

5 N
�1/2
6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

by placing � (1/2)�
1 wN1 in L2

xt , wN4wN3 wN6 in L2
xt , wN2wN5 in L1

xt . Hence, by Hölder’s
inequality and summing as usual we get the desired estimate with decay N�(1/2)+.

If j = 2, 5 we proceed similarly, keeping wN4wN3 wN6 in L2
xt and exchanging the

roles of either wN2 or wN5 with that of wN1 above.
• Suppose j = 3, 6 or 4. If j = 3 then

X

⇤

Z

R

Z

T
N2�

� 1
2 +

3 wN1wN2�
1
2 �

3 wN3wN4wN5 wN6 dx dt

.
X

⇤ N2N�1N0+
1 N

�1/2
2 N

�1/2
3 N

�1/2
4 N0+

5 N
�1/2
6

⇣

6
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

by placing � (1/2)�
3 wN3 in L2

xt , wN2wN4wN6 in L2
xt , wN1wN5 in L1

xt . Hence, by Hölder’s
and summing as usual we get the desired estimate with decay N�(1/2)+.

If j = 6 we proceed similarly exchanging the roles of wN3 and wN6 above.
If j = 4 we place � (1/2)�

4 wN4 in L2
xt and group wN2wN3 wN6 in L2

xt to derive the
same conclusion.

We now remove the assumption we made at the beginning of the proof. Suppose that
there is at least one �j > N7. It follows from (4.19) and (4.20) that there are two indices
1  i1 6= i2  6 such that �i1 , �i2 & N7. Then, by (2.4) and (4.24), we have

|I1| .
X

N|n|3N

X

NiN;i=1,...6

Z

⌧

✓

Z

⌧=⌧1+⌧2+⌧3

X

n=n1+n2+n3

|dwN1 | |dwN2 | |n3| |dwN3 | d⌧1 d⌧2

◆

⇥
✓

Z

�⌧=⌧4+⌧5+⌧6

X

�n=n4+n5+n6

|dwN4 | |dwN5 | |n6| |dwN6 | d⌧4 d⌧5

◆

d⌧

.
X

N|n|3N

X

NiN; i=1,...6
N2kwN1wN2wN3kL2

xt
kwN4wN5wN6kL2

xt

.
X

N|n|3N

X

NiN; i=1,...6
N� 1

3 +kwNi1
k
X

1
2 �, 1

2 �kwNi2
k
X

1
2 �, 1

2 �

Y

j 6=i1,i2

kwjk
X

1
2 �, 1

3 +

. N� 1
3 +

6
Y

j=1
kwjk

X
2
3 �, 1

2 �
3

. (4.37)
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To treat the remaining terms in (4.9) we first note that these are either higher order
with no derivatives or the same order as the first but with only one derivative term. We
again start by assuming that �j . N9 for all j . Under this assumption the estimate follows
from the following lemma.

Lemma 4.16 (Remaining terms). There exists � > 0 such that

X

N|n|3N

X

NiN; i=1,...6

Z

⌧

✓

Z

⌧=⌧1+⌧2+⌧3

X

n=n1+n2+n3

|dwN1 | |dwN2 | |dwN3 |
◆

⇥
✓

Z

�⌧=⌧4+⌧5+⌧6

X

�n=n4+n5+n6

|dwN4 | |dwN5 | |m(n6)| |dwN6 |
◆

d⌧ . N��
6
Y

i=1
kwik

X
2
3 �, 1

2 �
3

,

(4.38)
X

N|n|3N

X

NiN;i=1,...8

Z

⌧

✓

Z

⌧=P5
i=1 ⌧i

X

n=P5
i=1 ni

|dwN1 | |dwN2 | |dwN3 | |dwN4 | |dwN5 |
◆

⇥
✓

Z

�⌧=⌧6+⌧7+⌧8

X

�n=n6+n7+n8

|dwN6 | |dwN7 | |m(n8)| |dwN8 |
◆

d⌧ . N��
8
Y

i=1
kwik

X
2
3 �, 1

2 �
3

,

(4.39)

where the multiplier m satisfies |m(⇠)|  h⇠i.

Proof. Here we will only prove (4.39) since (4.38) is similar but simpler. Without loss
of generality we can assume that N1 ⇠ N ⇠ N8. Fix any 0 < � < 1 and consider the
following cases.

Case 1. Assume that Ni . N� , i 6= 1, 8. Then we have the support condition on wN1
and wN8 . By Plancherel, (4.39) is less than or equal to

X

N1,N8⇠N; NiN� , i 6=1,8

Z

R

Z

T
N8wN1wN2wN3wN4wN5wN6wN7wN8 dx dt

.
X

N1,N8⇠N; NiN� , i 6=1,8
NkwN1wN2wN3kL2

xt
kwN4wN5kL1

xt
kwN6wN7wN8kL2

xt

.
X

N1,N8⇠N; NiN� , i 6=1,8
NN

�2/3
1 max(N2, N3, N4, N5)

1/6N0+
4 N0+

5 N
�1/2
6 N

�1/2
7 N

�2/3
8

⇥ max(N6, N7)
1/6

⇣

8
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

. N� 1
3 + �

6 +
⇣

8
Y

i=1
kwik

X
2
3 �, 1

2 �
3

⌘

. (4.40)

Case 2. Assume there exists k 6= 1, 8 such that Nk > N� . Without loss of generality
k = 4. Then we bound (4.40) as follows:



Invariant weighted Wiener measure and a.s. GWP for DNLS 1307

X

N1,N8⇠N; N4>N� ,NiN; i 6=1,4,8
NkwN1wN4wN3kL2

xt
kwN2wN5kL1

xt
kwN6wN7wN8kL2

xt

.
X

N1,N8⇠N; N4>N� , NiN; i 6=1,4,8
NN

�1/2
1 N

�1/2
3 N

�1/2
4 N0+

2 N0+
5 N

�1/2
6 N

�1/2
7 N

�1/2
8

⇥
⇣

8
Y

i=1
kwNi k

X
2
3 �, 1

2 �
3

⌘

. N� �
2 +

⇣

8
Y

i=1
kwik

X
2
3 �, 1

2 �
3

⌘

. ut

We now remove the assumption we made before the lemma above. Suppose that there is
at least one �j > N9. The term with six factors is handled just as in (4.37). To estimate
the term with eight factors we first observe that as before there are at least two indices
1  i1 6= i2  8 such that �i , �j & N9. Next we use Hölder’s inequality to bound the left
hand side of (4.39) by

X

N|n|3N

X

NiN; i=1,...8
N

8
Y

i=1
kwNi kL8

tx
.

X

N|n|3N

X

NiN; i=1,...8
N

8
Y

i=1
kwNi k

X
13
24 +, 3

8 +
3

by (4.25). Using �i1 , �i2 > N9 we conclude that the above is

.
X

N|n|3N

X

NiN; i=1,...8
N� 1

8 +kwNi1
k
X

13
24 +, 1

2 �
3

kwNi2
k
X

13
24 +, 1

2 �
3

Y

i 6=i1,i2

kwNi k
X

13
24 +, 3

8 +
3

. N� 1
8 +

8
Y

i=1
kwik

X
2
3 �, 1

2 �
3

.

5. Construction of weighted Wiener measures

In this section we construct weighted Wiener measures and associated probability spaces
on which we establish well-posedness. To construct these measures we make use of the
conserved quantities E(v) (given in (2.13)) and the L2-norm. As a motivation we re-
call a well known fact in finite-dimensional spaces. Suppose we have a well-posed ODE
yt = F(y), where F is a divergence-free vector field. Assume G(y) is a constant of
motion such that for reasonable f , f (G(y)) 2 L1(dy). Then by Liouville’s Theorem,
dµ(y) = Z�1f (G(y))dy is, for a suitable normalization constant Z, an invariant proba-
bility measure for the flow map for the ODE.

To construct measures on infinite-dimensional spaces we will consider conserved
quantities of the form exp(��

2 E(v)). But there is a priori little hope of constructing a
finite measure using this quantity since (a) the nonlinear part of E(v) is not bounded be-
low and (b) the linear part is only nonnegative but not positive definite. To resolve this we
use the conservation of L2-norm and consider instead the conserved quantity

�{kvk
L2B}e� �

2 N (v)e� �
2
R

(|v|2+|vx |2) dx
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where N (v) is the nonlinear part of the energy, i.e.

N (v) = �1
2

Im
Z

T
v2vvx dx � 1

4⇡

✓

Z

T
|v|2 dx

◆✓

Z

T
|v|4 dx

◆

+ 1
⇡

✓

Z

T
|v|2 dx

◆✓

Im
Z

T
vvx dx

◆

+ 1
4⇡2

✓

Z

T
|v|2 dx

◆3
, (5.1)

and B is a (suitably small) constant.
By analogy with the finite-dimensional case we would like to construct the measure

(with v(x) = u(x) + iw(x))

“ dµ� = Z�1�{kvk
L2B}e� �

2 N (v)e� �
2
R

(|v|2+|vx |2) dx
Y

x2T
du(x)dw(x) ”.

This is a purely formal, although suggestive, expression since it is impossible to define
the Lebesgue measure on an infinite-dimensional space as a countably additive measure.
Moreover, it will turn out that

R

|ux |2 = 1, µ-almost surely.
One uses instead a Gaussian measure as reference measure and the measure µ is

constructed in two steps. First one constructs a Gaussian measure ⇢ as the limit of the
finite-dimensional measures on R4N+2 given by

d⇢N = Z�1
0,N exp

✓

��
2

X

|n|N

(1 + |n|2)|bvn|2
◆

Y

|n|N

dandbn (5.2)

where bvn = an + ibn. The construction of such Gaussian measures is a classical subject
(see e.g. Gross [20] and Kuo [29]). For our purpose we will need to realize this measure
as a measure supported on a suitable Banach space. Once this measure ⇢ has been con-
structed one constructs the measure µ as a measure which is absolutely continuous with
respect to ⇢ and whose Radon–Nikodym derivative is

dµ

d⇢
= Z̃�1�{kvk2

LB}e
� �

2 N (v).

For this measure to be normalizable it turns out that one needs B to be sufficiently
small. Also the constant � in the measure does not play any role in the analysis (although
the cutoff B depends on �) and thus in the sequel we will set � = 1. But note that the
measures for different � are all invariant and they are all mutually singular [20, 29].

First let us recall some facts on Gaussian measures in Hilbert spaces and Banach
spaces. For details see Zhidkov [48], Gross [20] and Kuo [29]. Let n 2 N and T be a
symmetric positive n ⇥ n matrix with real entries. The Borel measure ⇢ in Rn given by

d⇢(x) = 1p
(2⇡)n det(T )

exp(� 1
2 hT �1x, xiRn) dx

is called a (nondegenerate centered) Gaussian measure in Rn. Note that ⇢(Rn) = 1.
Now, we consider the analogous definition of the infinite-dimensional (centered)

Gaussian measures. Let H be a real separable Hilbert space and T : H ! H be a
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linear positive self-adjoint operator (generally unbounded) with eigenvalues {�n}n2N and
the corresponding eigenvectors {en}n2N forming an orthonormal basis of H . We call a set
M ⇢ H cylindrical if there exists an integer n � 1 and a Borel set F ⇢ Rn such that

M = {x 2 H : (hx, e1iH , . . . , hx, eniH ) 2 F }. (5.3)

Given the operator T , we denote by A the set of all cylindrical subsets of H ; one can
easily verify that A is a field. The centered Gaussian measure in H with correlation
operator T is defined as the additive (but not countably additive in general) measure ⇢
defined on the field A via

⇢(M) = (2⇡)�n/2
n
Y

j=1
�

�1/2
j

Z

F
e
� 1

2
Pn

j=1 �
�1
j x2

j dx1 · · · dxn for M 2 A as in (5.3).
(5.4)

The following proposition tells us when this Gaussian measure ⇢ is countably additive.

Proposition 5.1. The Gaussian measure ⇢ defined in (5.4) is countably additive on the
field A if and only if T is an operator of trace class, i.e.,

P1
n=1 �n < 1. If the latter

holds, then the minimal � -field M containing the field A of all cylindrical sets is the
Borel � -field on H .

Consider a sequence of finite-dimensional Gaussian measures {⇢n}n2N defined as follows.
For fixed n 2 N, let Mn be the set of all cylindrical sets in H of the form (5.3) with this
fixed n and arbitrary Borel sets F ⇢ Rn. Clearly, Mn is a � -field, and setting

⇢n(M) = (2⇡)�n/2
n
Y

j=1
�

�1/2
j

Z

F
e
� 1

2
Pn

j=1 �
�1
j x2

j dx1 · · · dxn

for M 2 Mn, we obtain a countably additive measure ⇢n defined on Mn. Then, one
can extend the measure ⇢n onto the whole Borel � -field M of H by setting ⇢n(A) :=
⇢n(A \ span{e1, . . . , en}) for A 2 M.6 Then we have

Proposition 5.2. Let ⇢ in (5.4) be countably additive. Then {⇢n}n2N constructed above
converges weakly to ⇢ as n ! 1.

For our problem we consider the Gaussian measure ⇢ which is the weak limit of the
finite-dimensional Gaussian measures

d⇢N = Z�1
0,N exp

✓

�1
2

X

|n|N

(1 + |n|2)|bvn|2
◆

Y

|n|N

dandbn. (5.5)

Let Js := (1 �1)s�1. Then we have
X

n

(1 + |n|2)|bvn|2 = hv, viH 1 = hJ�1
s v, viHs .

6 Note a slight abuse of notation. We use ⇢n to denote a Gaussian measure on span{e1, . . . , en}
as well as its extension on H . A similar comment applies in the following.
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The operator Js : Hs ! Hs has the set of eigenvalues {(1 + |n|2)s�1}n2Z and the corre-
sponding eigenvectors {(1 + |n|2)�s/2einx}n2Z form an orthonormal basis of Hs . Since
Js is of trace class if and only if s < 1/2, by Proposition 5.1, ⇢ is a countably additive
measure on Hs for any s < 1/2 (but not for s � 1/2).

Unfortunately, (2.6) is locally well-posed in Hs(T) only for s � 1/2 [26]. Instead, we
propose to work in the Fourier–Lebesgue space FLs,r (T) defined in (2.2) in view of the
local well-posedness result by Grünrock–Herr [22]. Since FLs,r is not a Hilbert space,
we need to construct ⇢ as a measure supported on a Banach space.

5.1. General Banach space setting

Let us recall the basic theory of abstract Wiener spaces [29]. Given a real separable Hilbert
space H with norm k ·k, let F denote the set of finite-dimensional orthogonal projections
P of H . Then define a cylinder set E by E = {x 2 H : Px 2 F } where P 2 F and F is a
Borel subset of PH , and let R denote the collection of such cylinder sets. Note that R is
a field but not a � -field. The Gaussian measure ⇢ on H is defined by

⇢(E) = (2⇡)�n/2
Z

F
e�kxk2/2 dx

for E 2 R, where n = dimPH and dx is the Lebesgue measure on PH . It is known that
⇢ is finitely additive but not countably additive in R.

Definition 5.3 (Gross [20]). A seminorm ||| · ||| in H is called measurable if for every
" > 0, there exists P" 2 F such that

⇢(|||Px||| > ") < "

for P 2 F orthogonal to P".

Any measurable seminorm is weaker than the norm of H , and H is not complete with
respect to |||·||| unless H is finite-dimensional. Let B be the completion of H with respect
to ||| · ||| and denote by i the inclusion map of H into B. The triple (i, H,B) is called an
abstract Wiener space.

Now, regarding y 2 B⇤ as an element of H ⇤ ⌘ H by restriction, we embed B⇤ in H .
Define the extension of ⇢ onto B (still denoted by ⇢) as follows. For a Borel set F ⇢ Rn,
set

⇢({x 2 B : ((x, y1), . . . , (x, yn)) 2 F }) := ⇢({x 2 H : (hx, y1iH , . . . , hx, yniH ) 2 F }),
where yj ’s are in B⇤ and (·, ·) denotes the natural pairing between B and B⇤. Let RB
denote the collection of cylinder sets {x 2 B : ((x, y1), . . . , (x, yn)) 2 F } in B.

Proposition 5.4 (Gross [20]). ⇢ is countably additive on the � -field generated by RB.

5.2. Back to our setting

In the present context, we will let H = H 1(T) and B = FLs,r (T) with 2  r < 1 and
(s � 1)r < �1. First we prove the following result.
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Proposition 5.5. Let 2  r < 1 and assume (s � 1)r < �1. Then the seminorm
k · kFLs,r is measurable. Moreover, we have the following exponential tail estimate: there
exist C > 0 and c > 0 (which both depend on (s, r)) such that, for K > 0,

⇢(kvkFLs,r > K)  Ce�cK2
. (5.6)

This shows that (i, H,B) = (i, H 1,FLs,r ) (2  r < 1) is an abstract Wiener space if
(s � 1)r < �1 and thus the Wiener measure ⇢ can be realized as a countably additive
measure supported on FLs,r for (s � 1)r < �1. This is hardly surprising since this is
equivalent to � ⌘ s + 1/r � 1/2 < 1/2, and FLs,r scale as H � .

The second part of Proposition 5.5 is a consequence of Fernique’s theorem [19] (cf.
Theorem 3.1 of Chapter III in [29]).

Remark 5.6. Proposition 5.5 was essentially proved in [35] in the context of white noise
for the KdV equation. We include here a proof in our DNLS context for completeness.7

It is useful to note that the measure ⇢N given in (5.5) can be regarded as the induced
probability measure on C2N+1 ⇠= R4N+2 under the map

! 7!
n

gn/

q

1 + |n|2
o

|n|N
, (5.7)

where gn(!), |n|  N , are independent standard complex Gaussian random variables on a
probability space (�,F, P ) (i.e. bvn = gn/

p

1 + |n|2). In a similar manner, we can view
⇢ as the induced probability measure under the map ! 7! {gn/

p

1 + |n|2}n2Z, where
gn(!) are independent standard complex Gaussian random variables.

For the proof of Proposition 5.5, we first recall the following result.

Lemma 5.7 ([36, Lemma 4.7]). Let {gn} be a sequence of independent standard com-
plex-valued Gaussian random variables. Then, for M dyadic and � < 1/2, we have

lim
M!1

M2� max|n|⇠M |gn|2
P

|n|⇠M |gn|2
= 0 a.s.

Proof of Proposition 5.5. Let 2  r < 1 and (s � 1)r < �1. In view of Definition 5.3,
it suffices to show that for given " > 0, there exists a large M0 such that

⇢(kP ?
M0

vkFLs,r > ") < ",

where P ?
M0

is the projection onto the frequencies |n| > M0. Note that if P is a finite-
dimensional projection such that P ? PM0 then kPvkFLs,r  kP ?

M0
vkFLs,r .

In view of (5.7), we assume that v is of the form

v(x) =
X

n

gn
p

1 + |n|2
einx, (5.8)

where {gn} is as in (5.7).

7 Proposition 5.5 also holds for r < 2 and (s � 1)r < �1, albeit with a different proof (see [1]
for details). For our purposes 2  r < 1 suffices and so we restrict ourselves to that case.
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Let � < 1/2 to be chosen later. Then, by Lemma 5.7 and Egoroff’s theorem, there
exists a set E such that ⇢(Ec) < 1

2" and the convergence in Lemma 5.7 is uniform on E,
i.e. we can choose dyadic M0 large enough such that

k{gn(!)}|n|⇠MkL1
n

k{gn(!)}|n|⇠MkL2
n

 M�� (5.9)

for all ! 2 E and dyadic M > M0. In the following, we will work only on E and drop
‘\ E’ for notational simplicity. However, it should be understood that all the events are
under the intersection with E so that (5.9) holds.

Let {�j }j�1 be a sequence of positive numbers such that
P

�j = 1, and let Mj =
M02j dyadic. Note that �j = C2��j = CM�

0 M��
j for some small � > 0 (to be deter-

mined later). Then, from (5.8), we have

⇢(kP ?
M0

v(!)kFLs,r > ") 
1
X

j=1
⇢
�

k{hnis�1gn(!)}|n|⇠Mj kLr
n

> �j"
�

. (5.10)

By interpolation and (5.9),

k{hnis�1gn}|n|⇠Mj kLr
n

⇠ Ms�1
j k{gn}|n|⇠Mj kLr

n
 Ms�1

j k{gn}|n|⇠Mj k2/r

L2
n
k{gn}|n|⇠Mj k(r�2)/r

L1
n

 Ms�1
j k{gn}|n|⇠MkL2

n

✓k{gn}|n|⇠Mj kL1
n

k{gn}|n|⇠Mj kL2
n

◆(r�2)/r

 M
s�1��(r�2)/r
j k{gn}|n|⇠Mj kL2

n
.

Thus, if k{hnis�1gn}|n|⇠Mj kLr
n

> �j", then k{gn}|n|⇠Mj kL2
n
& Rj where Rj := �j"M

↵
j

with ↵ := �s + 1 + �(r � 2)/r . With r = 2 + ✓ , we have

↵ = �(s � 1)r + �✓

2 + ✓
>

1
2

by taking � sufficiently close to 1/2 since �(s � 1)r > 1. Then, by taking � > 0 suffi-
ciently small, Rj = �j"M

↵
j = C"M�

0 M↵��
j & C"M�

0 M
(1/2)+
j . By a direct computation

in polar coordinates, we have

⇢(k{gn}|n|⇠Mj kL2
n
& Rj ) ⇠

Z

Bc(0,Rj )
e� 1

2 |gn|2 Y

|n|⇠Mj

dgn .
Z 1

Rj

e� 1
2 s2

s2#{|n|⇠Mj }�1 ds.

Note that, in the inequality, we have dropped the implicit constant � (S2#{|n|⇠Mj }�1),
a surface measure of the 2#{|n| ⇠ Mj } � 1-dimensional unit sphere, since � (Sn) =
2⇡n/2/0(n/2) . 1. By the change of variable t = M

�1/2
j s, we have s2#{|n|⇠Mj }�2 .

s4Mj ⇠ M
2Mj

j t4Mj . Since t > M
�1/2
j Rj = C"M�

0 M0+
j , we have M

2Mj

j = e2Mj ln Mj <



Invariant weighted Wiener measure and a.s. GWP for DNLS 1313

e
1
8 Mj t2

and t4Mj < e
1
8 Mj t2

for M0 sufficiently large. Thus, s2#{|n|⇠Mj }�2 < e
1
4 Mj t2 = e

1
4 s2

for s > Rj . Hence,

⇢(k{gn}|n|⇠Mj kL2
n
& Rj )  C

Z 1

Rj

e� 1
4 s2

s ds  e
�cR2

j = e
�cC2M2�

0 M1+
j "2

. (5.11)

From (5.10) and (5.11), we have

⇢(kP ?
M0

vkFLs,r > ") 
1
X

j=1
e�cC2M1+2�+

0 (2j )1+"2  1
2"

by choosing M0 sufficiently large as long as (s�1)r < �1. Hence, the seminorm k·kFLs,r

is measurable for (s � 1)r < �1.
The tail estimate (5.6) is a direct consequence of Fernique’s theorem [29, Theorem

3.1]. ut
To construct the weighted Wiener measure µ let us define

R(v) := �{kvk
L2B}e� 1

2N (v), RN(v) := R(vN), (5.12)

where N (v) is the nonlinear part of the energy defined in (5.1) and at this stage and for
the remainder of this section vN = PN(v) for some generic function v. In the next section
vN will denote the solution to the FGDNLS (3.1) as in Section 3. We write

NN(v) := N (vN) = FN(v) + GN(v) + KN(v),

where

FN(v) = �1
2

Im
Z

T
(vN)2vN vN

x dx,

GN(v) = � 1
4⇡

✓

Z

T
|vN |2 dx

◆✓

Z

T
|vN |4 dx

◆

,

KN(v) = 1
⇡

✓

Z

T
|vN |2 dx

◆✓

Im
Z

T
vNvN

x dx

◆

+ 1
4⇡2

✓

Z

T
|vN |2 dx

◆3
.

We will construct the measure

dµ = Z�1R(v)d⇢,

for sufficiently small B, as the weak limit of the finite-dimensional weighted Wiener
measures µN on R4N+2 given by

dµN = Z�1
N RN(v)d⇢N = Z�1

N �{kvNk
L2B}e

� 1
2N (vN )d⇢N (5.13)

for a suitable normalization ZN .
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Lemma 5.8. (a) The sequence FN converges in L2(d⇢) to

F(v) = �1
2

Im
Z

T
v2v vx dx.

Moreover, for ↵ < 3/4, there are C, � > 0 such that for all M � N � 1 and � > 0,

⇢(|FM(v) � FN(v)| > �)  Ce��N↵�1/2

(b) Let p 2 [2, 1). Then there exist ↵, C such that for all M � N � 1 and � > 0,

⇢(kPNvkLp(T) > �) < Ce�c�2
, (5.14)

⇢(kPMv � PNvkLp(T) > �) < Ce�cN2↵�2
. (5.15)

Proof. Part (a) was proved by Thomann and Tzvetkov in [42, Proposition 3.1] using
Proposition 5.10 below. Note that their proof only uses the fact that v is in the support of
the measure and is independent of the function space v is in.

To prove (b) we first note that for any 2  p < 1 and N  M ,

kPNvkLp(T)  CkPNvk
FL

2
3 �,3

(T)
, (5.16)

kPNv � PMvkLp(T)  C
1

N↵
kPMvk

FL
2
3 �,3

(T)
, (5.17)

where ↵ = (1/p)�. Then use (5.16) and (5.17) in conjunction with (5.6) to conclude the
proof. ut
Lemma 5.9. KN(v) is Cauchy in measure, i.e. for every � > 0 and N  M ,

lim
N,M!1

⇢(|KM(v) � KN(v)| > 2� ) = 0,

and hence KN converges in measure to

K(v) = 1
⇡

✓

Z

T
|v|2 dx

◆✓

Im
Z

T
vvx dx

◆

+ 1
4⇡2

✓

Z

T
|v|2 dx

◆3
.

Before the proof we need the following Proposition 5.10 (see Thomann and Tzevtkov
[42] for a proof) and Lemma 5.11 which we prove below.

Proposition 5.10. Let d � 1 and c(n1, . . . , nk) 2 C. Let {gn}1nd 2 NC(0, 1) be com-
plex L2 normalized independent Gaussians. For k � 1 set A(k, d) := {(n1, . . . , nk) 2
{1, . . . , d}k : n1  · · ·  nk} and

Sk(!) =
X

A(k,d)

c(n1, . . . , nk)gn1(!) . . . gnk (!). (5.18)

Then for all d � 1 and p � 2,

kSkkLp(�) 
p

k + 1 (p � 1)k/2kSkkL2(�).

Let XN(v) =
R

T vNvN
x .
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Lemma 5.11. For any N  M and " > 0 we have

|XN(v)| . N2"kvNk2
FL2/3�",3 , (5.19)

kXM(v) � XN(v)kL4 . 1
N1/2 , (5.20)

kXM(v) � XN(v)kLq . c(q � 1)
1

N1/2 for any q � 2. (5.21)

Proof. To prove (5.19) we use Plancherel and Hölder’s inequality to obtain

|XN(v)| 
X

|n|N

|n| |cvN(n)|2


⇣

X

|n|N

|n|�1+6"
⌘1/3⇣ X

|n|N

(|n|2/3�"|cvN(n)|)3
⌘2/3

 N2"kvNk2
FL2/3�",3 .

To prove (5.20) we start by recalling that vN(!, x) := P

|n|N
gn(!)
hni einx . Then by

Plancherel,

XN(v) = �i
X

|n|N

n
|gn(!)|2

hni2 and XM(v) � XN(v) = �i
X

N|n|<M

n
|gn(!)|2

hni2 ,

and

|XM(v) � XN(v)|2 =
X

N|n1|,|n2|<M

n1n2
|gn1(!)|2|gn2(!)|2

hn1i2hn2i2 =: Y 1
N,M + Y 2

N,M + Y 3
N,M,

(5.22)
where

Y 1
N,M :=

X

N|n1|,|n2|<M

n1n2
(|gn1(!)|2 � 1)(|gn2(!)|2 � 1)

hn1i2hn2i2 ,

Y 2
N,M :=

X

N|n1|,|n2|<M

n1n2
(|gn1(!)|2 � 1) + (|gn2(!)|2 � 1)

hn1i2hn2i2 ,

Y 3
N,M :=

X

N|n1|,|n2|<M

n1n2

hn1i2hn2i2 .

By symmetry Y 3
N,M = 0. We now observe that

kXM(v) � XN(v)k4
L4 . kY 1

N,Mk2
L2 + kY 2

N,Mk2
L2 . (5.23)

We now proceed as in [42]. Set Gn(!) := |gn(!)|2 �1 and note that by the independence
of gn(!) (cf. (5.7)),

E[Gn(!)Gm(!)] = 0 for n 6= m. (5.24)
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Since
|Y 1

N,M |2 =
X

N|n1|,|n2|,|n3|,|n4|<M

n1n2n3n4
Gn1Gn2Gn3Gn4

hn1i2hn2i2hn3i2hn4i2 .

We compute E[|Y 1
N,M |2] and by (5.24) the only contributions come from (n1 = n3 and

n2 = n4), (n1 = n2 and n3 = n4) and (n2 = n3 and n1 = n4) . Hence by symmetry and
using that the fourth moments of the Gaussians gn(!) are bounded we have

kY 1
N,Mk2

L2 = E[|Y 1
N,M |2]  C

X

N|n1|,|n2|<M

n2
1n

2
2

hn1i4hn2i4 . 1
N2 . (5.25)

On the other hand, since

|Y 2
N,M |2 =

X

N|n1|,|n2|,|n3|,|n4|<M

n1n2n3n4
(Gn1 + Gn2)(Gn3 + Gn4)

hn1i2hn2i2hn3i2hn4i2 ,

by symmetry it is enough to consider a single term of the form

X

N|n1|,|n2|,|n3|,|n4|<M

n1n2n3n4
Gnj Gnk

hn1i2hn2i2hn3i2hn4i2 ,

with 1  j 6= k  4, which we set without any loss of generality to be j = 1, k = 3. We
then have

kY 2
N,Mk2

L2 = E[|Y 2
N,M |2]  C

X

N|n1|,|n2|,|n4|M

n2
1n2n4

hn1i4hn2i2hn4i2 = 0

by symmetry. From (5.23) and (5.25) we obtain (5.20) as desired.
To prove (5.21) we use (5.22) to define

SM,N(v) := |XM(v) � XN(v)|2 =
X

N|n1|,|n2|<M

n1n2
|gn1(!)|2|gn2(!)|2

hn1i2hn2i2 (5.26)

which fits the framework of (5.18) in Proposition 5.10 with k = 4. Then it follows that
for any p � 2,

kSM,N(v)kLp . (p � 1)2kSM,N(v)kL2 = (p � 1)2kXM(v) � XN(vk2
L4 . (p � 1)2 1

N
.

(5.27)

On the other hand if we set q = 2p, then by (5.27) we have

kXM(v) � XN(v)kLq = kSM,N(v)k1/2
Lp . (q � 1)

1
N1/2 ,

hence (5.21) for q � 4. Finally, Hölder’s inequality gives (5.21) for 2  q  4. ut
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Proof of Lemma 5.9. Let us denote MN(v) :=
R

T |vN |2 dx. Up to absolute constants we
write

⇢(|KM(v) � KN(v)| > 2� )  ⇢(|XM(v)MM(v) � XN(v)MN(v)| > � )

+ ⇢(|MM(v)3 � MN(v)3| > � ). (5.28)

Then

⇢(|XM(v)MM(v) � XN(v)MN(v)| > � )

 ⇢(|XM(v)�XN(v)|MM(v) > � /2)+⇢(|MM(v)�MN(v)||XN(v)| > � /2) = I1+I2.

Let � > 0 to be determined. Then by (5.19), (5.6) and (5.17) with p = 2, ↵ = (1/2)�,
we have

I2  ⇢(|XN(v)| > �) + ⇢

✓

|MM(v) � MN(v)| >
�

2
��1

◆

 e�c�N�2" + ⇢

✓

kvN � vMkL2 >
�

4B
��1

◆

 e�c�N�2" + e�c� ,BN1���2
.

By setting � = N1/3+(2"/3)� we have I2 . e�c� ,BN1/3�(4"/3)�
.

To estimate I1 we first note that

MM(v)  kvk2
L2  B2. (5.29)

Then by (5.21) and Chebyshev’s inequality8 we have

I1  ⇢

✓

|XM(v) � XN(v)| >
�

2B2

◆

. e�CBN
1
2 � . (5.30)

To estimate the second term of (5.28), we use (5.29) to obtain

⇢(|MM(v)3 � MN(v)3| > � )  ⇢(|MM(v) � MN(v)| > cB� )  e�CB�
2N1�

by arguing as in the estimate for I2 above. ut
Lemma 5.12. RN(v) converges in measure to R(v).

Proof. If kPNvkL2  B for all N 2 N, then kvkL2  B. Hence, by continuity from
above, we have, for � 2 (0, 1),

lim
N!1

⇢
�

{v : |�{kvNk
L2B} � �{kvk

L2B}| > �}
�

= lim
N!1

⇢(kvNkL2  B) � ⇢(kvkL2  B)

= ⇢
⇣

1
\

N=1
{kvNkL2  B}

⌘

� ⇢(kvkL2  B) = 0.

Thus, �{kvNk
L2B} converges to �{kvk

L2B} in measure. By Lemma 5.8(a), FN converges
to F in measure, and by Lemma 5.9, KN converges to K in measure.

8 Cf. Lemma 4.5 in [46].
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Lastly, we consider GN(v) and show it is Cauchy in measure provided kvkL2  B.
Assume N  M . Then

4⇡GN(v) � 4⇡GM(v)

=
✓

Z

T
(|vM |2 � |vN |2) dx

◆✓

Z

T
|vM |4 dx

◆

+
✓

Z

T
|vN |2 dx

◆✓

Z

T
(|vM |4 � |vN |4) dx

◆

 cBkvM � vNkL2kvMk4
L4 + kvNk2

L2

�

�

�

kvMk4
L4 � kvNk4

L4

�

�

�

 CB [kvM � vNkL2kvMk4
L4 + 3(kvMk3

L4 + kvNk3
L4)kvM � vNkL4 ].

Fix any � > 0; then

⇢(|4⇡GM(v) � 4⇡GN(v)| > � )  ⇢

✓

kvM � vNk2
L2kvMk4

L4 >
�

2CB

◆

+ ⇢
✓

(kvMk3
L4 + kvNk3

L4)kvM � vNkL4 >
�

6CB

◆

.

To treat the first term we write

⇢

✓

kvM � vNkL2kvMk4
L4 >

�

2CB

◆

 ⇢

✓

kvM � vNkL2 > ��1 �

2CB

◆

+⇢(kvMk4
L4 > �)

for some � > 0 to be determined. We use (5.15) with ↵ = (1/2)� corresponding to
p = 2 and (5.14) to get

⇢(kvM � vNkL2 > cB� �
�1)  e�c0

B�
2N1���2

and
⇢(kvMkL4 > �1/4)  e�c�1/2

.

A decay of e�CBN(1/5)�� 2/5
follows by setting � = N(2/5)�� 4/5.

For the second term write

⇢

✓

kvM � vNkL4(kvMk3
L4 + kvNk3

L4) >
�

6CB

◆

 ⇢(kvM � vNkL4 > cB� �
�1) + ⇢(kvMkL4 > c1�

1/3) + ⇢(kvNkL4 > c2�
1/3)

 e�c0
B�

2N
1
2 �
��2 + 2e�c�2/3

,

since ↵ = (1/4)� when p = 4 in (5.15). A decay of e�CBN(1/8)�� 1/2
follows by setting

� = N(3/16)�� 3/4.
Thus, GN(v) converges to G(v) in measure and hence, by composition and multipli-

cation of continuous functions, RN(v) converges to R(v) in measure. ut
The following proposition shows that the weight R(v) is indeed integrable with respect
to the Wiener measure ⇢.
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Proposition 5.13. (a) For sufficiently small B > 0, we have R(v) 2 L2(d⇢). In partic-
ular, the weighted Wiener measure µ is a probability measure, absolutely continuous
with respect to the Wiener measure ⇢.

(b) We have the following tail estimate: Let 2  r < 1 and (s � 1)r < �1; then there
exists a constant c such that

µ(kvkFLs,r > K)  e�cK2
(5.31)

for sufficiently large K > 0.
(c) The finite-dimensional weighted Wiener measure µN in (5.13) converges weakly to µ.

Proof. (a) By Hölder’s inequality, we have
Z

R2
N(v) d⇢(v)  CB

✓

Z

�{kvNk
L2B}e

�3 Im
R

(vN )2vN vN
x dx d⇢(v)

◆1/3

⇥
✓

Z

�{kvNk
L2B}e

3B2
2⇡ (

R

|vN |4 dx) d⇢(v)

◆1/3

⇥
✓

Z

�{kvNk
L2B}e

� 6
⇡ MN(v) Im

R

vNvN
x dx d⇢(v)

◆1/3
.

It follows from Lemma 3.10 in [3] (see also [30]) that the second factor is finite for
any B > 0, whereas it was shown in [42, Proposition 4.2] that the first factor is finite
for sufficiently small B > 0. For the third factor we proceed as in the proof of [42,
Proposition 4.2]. In what follows we always implicitly assume that kvNkL2  B. If we
define

A� ,N = {�{kvNk
L2B}e

� 6
⇡ MN(v) Im

R

vNvN
x dx > � },

then we need to show that
Z 1

0
� 2⇢(A� ,N ) d� (5.32)

is convergent uniformly with respect to N for B > 0 small enough. Let N0 = ln � and
assume first that N  N0  (C/B2) ln � for B small enough. We first observe that

�

�

�

�

MN(v) Im
Z

vNvN
x dx

�

�

�

�

 CB2k@x(vN)2kL1(T).

We also note that

⇢(A� ,N )  ⇢

✓

�

�

�

�

MN(v) Im
Z

vNvN
x dx

�

�

�

�

> C ln �
◆

; (5.33)

combining (5.33) and (5.32) with Proposition 4.1 in [42], we can continue with

⇢(A� ,N )  ⇢(k@x(vN)2kL1(T) > CB�2 ln � ) . e
� C

B2 ln � = ��C/B2
,

and the convergence of (5.32) follows by taking B small enough.



1320 Andrea R. Nahmod et al.

Assume now that N > N0 = ln � . Then we observe that A� ,N ⇢ B� ,N [C� ,N where

B� ,N :=
⇢

|XN0(v)| >
⇡

12B2 ln �
�

, C� ,N :=
⇢

|XN � XN0(v)| >
⇡

12B2 ln �
�

.

We first observe that from the argument above

⇢(B� ,N )  ⇢(k@x(vN0)2kL1(T) > CB�2 ln � ) . ��C/B2
.

On the other hand from (5.30) and the fact that N > ln � we have

⇢(C� ,N ) . e�CBN1/2 ln �  e�CB(ln � )1+1/2  CB,L�
L,

for any L � 1 and an appropriate constant CB,L depending on B and L. From this again
the convergence of (5.32) follows.

Hence we see that RN(v) 2 L2( d⇢) for sufficiently small B > 0, independent of N .
Then, by Lemma 5.12 and Fatou’s lemma, we obtain R(v) 2 L2( d⇢).

(b) By the Cauchy–Schwarz inequality, we have
Z

�{kvkFLs,r >K} dµ  kR(v)kL2( d⇢){⇢(kvkFLs,r > K)}1/2.

Then (5.31) follows from (5.6).
(c) Let us define

H :=
[

M

{F : F = G(bv�M, . . . ,bvM), G bounded and continuous} . (5.34)

Note this is a dense set in L1(FLs,r , µ) with 2  r < 1 and (s �1)r < �1. Fix F 2 H;
then F depends on M , finitely many modes, for some M . Fix " > 0. Then, for N > M ,
we have

�

�

�

�

Z

F(v) dµN �
Z

F(v) dµ

�

�

�

�

=
�

�

�

�

Z

F(v)(RN(v) � R(v)) d⇢

�

�

�

�


�

�

�

�

Z

{|RN(v)�R(v)|<"}
F(v)(RN(v) � R(v)) d⇢

�

�

�

�

+
�

�

�

�

Z

{|RN(v)�R(v)|�"}
F(v)(RN(v) � R(v)) d⇢

�

�

�

�

 " sup |F | + sup |F |kRN(v) � R(v)kL2( d⇢){⇢(|RN(v) � R(v)| � ")}1/2.

From the proof of Proposition 5.13, we have kRN(v)�R(v)kL2( d⇢)  kRN(v)kL2( d⇢) +
kR(v)kL2( d⇢) < C < 1 for all N . By Lemma 5.12, ⇢(|RN(v) � R(v)| � ") ! 0 as
n ! 1.
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Now, let F be a general bounded continuous function on FLs,r with 2  r < 1
and (s � 1)r < �1. Let FM denote its restriction to EM , i.e. FM(v) = F(vM) where
vM = PMv. By the Cauchy–Schwarz inequality, we have

�

�

�

�

Z

F(v) dµ �
Z

FM(v) dµ

�

�

�

�

=
�

�

�

�

Z

(F (v) � F(vM))R(v) d⇢

�

�

�

�

 kR(v)kL2( d⇢)

✓

Z

|F(v) � F(vM)|2 d⇢

◆1/2
. (5.35)

By continuity of F , given " > 0, there exists � > 0 such that

kP ?
MvkFLs,r = kv � vMkFLs,r < � ) |F(v) � F(vM)| < ".

Then the contribution to (5.35) from {v : kP ?
MvkFLs,r < �} is at most "kR(v)kL2( d⇢).

Without loss of generality, assume �  "2. By the measurability of the FLs,r -norm (see
Definition 5.3), the contribution to (5.35) from {v : kP ?

MvkFLs,r � �} is at most

2 sup |F | · kR(v)kL2( d⇢){⇢(kP ?
MvkFLs,r � �)}1/2

 2 sup |F | · kR(v)kL2( d⇢)�
1/2  2 sup |F | · kR(v)kL2( d⇢)"

for sufficiently large M . A similar argument can be used to show |
R

F(v) dµN �
R

FM(v) dµN |  C(f, R)", independent of N . Hence, µN converges weakly to µ. ut

Remark 5.14. A tail estimate similar to (5.31) holds for the finite-dimensional weighted
Wiener measure µN , i.e. we have

µN(kvNkFLs,r > K)  e�cK2
, (5.36)

where the constant is independent of N .

Remark 5.15. The measure ⇢N is not absolutely continuous with respect to µN but its
restriction to {kvNkL2  B}, i.e., e⇢N = bZ�1

N �{kvNk
L2B}⇢N is absolutely continuous

with respect to µN , and from (5.13) we have

de⇢N

dµN
:= R̃N = Z̃�1

N �{kvNk
L2B}e

1
2N (vN )

for a suitable renormalization Z̃N . Since N (vN) does not have a definite sign, Lemma 5.8,
Lemma 5.12 and Proposition 5.13(a) hold for R̃N and its corresponding limit R̃. In par-
ticular, for sufficiently small B, R̃N 2 L2(d⇢) for all N with bound independent of N .
The latter fact will be used in the proof of Proposition 6.2 below.

Remark 5.16. Given any p < 1, one can prove R(v) 2 Lp( d⇢) for sufficiently small
B  B(p). However, B(p) ! 0 as p ! 1, i.e. there is no uniform lower bound on the
size of the L2-cutoff. For our purpose, the integrability with p = 2 suffices.
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6. Almost sure well-posedness of FGDNLS and invariance of the measure

In order to prove the global well-posedness of µ-almost all solutions of FGDNLS (3.1)
we fix once again s = (2/3)� and r = 3 so that we have at our disposal the local well-
posedness result in FLs,r , that the measure is supported on FLs,r , and also the energy
growth estimates in Theorem 4.2 as explained in Remark 4.3.

We first use the almost invariance of the finite-dimensional measure µN under the
flow of the truncated equation (3.1) to control the growth of solutions.

Lemma 6.1. For any given T > 0 and " > 0 there exists an integer N0 = N0(T , ") and
sets e�N = e�N(", T ) ⇢ R4N+2 such that for N > N0:

(a) µN(e�N) � 1 � ".

(b) For any initial condition vN
0 2 e�N , FGDNLS (3.1) is well-posed on [�T , T ] and its

solution vN(t) satisfies the bound

sup
|t |T

kvN(t)k
FL

2
3 �,3 .

✓

log
T

"

◆1/2
.

Proof. It is enough to consider t 2 [0, T ]; the argument for t 2 [�T , 0] is similar. We set

CN(K, B) := {wN 2 R4N+2 : kwNk
FL

2
3 �,3  K, kwNkL2  B}.

If the initial condition vN
0 is in CN(K, B) then FGDNLS (3.1) is locally well-posed

on the time interval of length � ⇠ K�� by Theorem 3.2, where � > 0 is indepen-
dent of N . Furthermore, if µN is given by (5.13), then for sufficiently large K we have
µN(CN(K, B)c)  e�cK2

for some constant c which is independent of N by (5.36).
Let 8N(t) be the flow map of (3.1). We define

e�N := {vN
0 : 8N(j�)(vN

0 ) 2 CN(K, B), j = 0, 1, . . . , [T/�]}.

Note that e�c
N = S[T/�]

k=0 Dk , where

Dk = {vN
0 ; k = min{j : 8N(j�)(vN

0 ) 2 CN(K, B)c}},

=
h

k�1
\

j=0
8N(�j�)(CN(K, B))

i

\8N(�k�)(CN(B, K)c). (6.1)

One verifies easily that the sets Dk satisfy

D0 = CN(K, B)c, Dk = CN(K, B) \8N(��)(Dk�1). (6.2)

By Lemma 4.1, the Lebesgue measure dµ0
N ⌘ Q

|n|N dandbn is invariant under the
flow 8N(t) (i.e. for any f 2 L1( dµ0

N) we have
R

f �8N(t) dµ0
N =

R

f dµ0
N ).
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Using the energy growth estimate9 in Theorem 4.2 and the invariance of the L2 norm
m(v) = 1

2⇡ kvkL2 under 8N(t) (i.e. m � 8N(t) = m for all t ; see Remark 3.1) we have,
for any set A ⇢ R4N+2,

µN(CN(K, B) \ A) = Z�1
N

Z

�{CN(K,B)\A}�{m2⇡B2}e
� 1

2E�⇡m dµ0
N

= Z�1
N

Z

�{CN(K,B)\A} �8N(��)�{m2⇡B2}e
�E�8N(��)�⇡m dµ0

N

=
Z

�{8N(�)(CN (K,B)\A)}e� 1
2 (E�8N(��)�E) dµN

 ec(�)N��K8
µN (8N(�)(CN(K, B) \ A))

 ec(�)N��K8
µN (8N(�)(A)) . (6.3)

Applying (6.3) to (6.2) with A = 8N(��)(Dk�1) and iterating in k 2 {0, . . . , [T/�]},
we obtain

µN(DK)  ec(�)N��K8
µN(DK�1)  ekc(�)N��K8

e�cK2

and thus

µN(e�c
N ) 

[T/�]
X

k=0
ekc(�)N��K8

e�cK2 .


T

�

�

e�cK2 ⇠ T K� e�cK2

for N � N0(T , K). By choosing K ⇠ (log (T /"))1/2, we have µN(e�c
N ) < " as desired.

Finally, by construction, we have kvN(j�)kFL(2/3)�,3  K for j = 0, . . . , [T/�] and
by the local theory, we have

sup
0tT

kvN(t)k
FL

2
3 �,3  2K ⇠

✓

log
T

"

◆1/2
. ut

Combining Lemma 6.1 with the approximation Lemma 3.3 we can now prove a similar
result for the solution of the initial value problem GDNLS (2.6).

Proposition 6.2. For any given T > 0 and " > 0 there exists a set �(", T ) such that:

(a) µ (�(", T )) � 1 � ".

(b) For any initial condition v0 2 �(", T ) the initial value problem GDNLS (2.6) is
well-posed on [�T , T ] with the bound

sup
|t |T

kv(t)k
FL

2
3 �,3 .

✓

log
T

"

◆1/2
.

9 Without loss of generality we assume max(K6, K8) = K8 in Theorem 4.2.
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Proof. Let e�N = e�N(", T ) be the set given in Lemma 6.1 for N � N0(", T ). This set is
defined in terms of K ⇠ (log (T /"))1/2 and for that same K we define

�N := �N(", T ) := {v0 2 FL
2
3 �,3 : kv0kFL

2
3 �,3  K, PNv0 2 e�N }

If v0 2 �N then by Lemma 6.1 we have

sup
tT

k8N(t)(PNv0)kFL
2
3 �,3  2K. (6.4)

On the other hand for v0 2 �N the local well-posedness theorem in [22] gives a � > 0
and a solution v(t) of GDNLS (2.6) for |t |  �.

By (3.5) in the proof of Lemma 3.3, with K in place of A, we find that for every
s1 < (2/3)�,

kv(�) � vN(�)kFLs1,3 . KNs1� 2
3 +.

By choosing a larger N0 if necessary, so that [T/�] KNs1�(2/3)+ ⌧ 1 for N > N0 we can
repeat this argument [T/�] times over the intervals [j�, (j+1)�], j = 0, 1, . . . , [T/�]�1,
to obtain

kv(j�) � vN(j�)kFLs1,3 < 1. (6.5)

Then from (6.4) and (6.5) we conclude

kv(t)kFLs1,3 . 2K + 1 ⇠
✓

log
T

"

◆1/2
,

and since the right hand side is independent of s1 < (2/3)�, we obtained the desired
estimate.

To estimate µ(�N) note first that

�c
N ⇢ {v0 2 FL

2
3 �,3 : kv0kFL

2
3 �,3 � K} [ {v0 2 FL

2
3 �,3 : PNv0 2 e�c

N } (6.6)

The first set on the right hand side of (6.6) has µ measure less than " by the tail bound
in Proposition 5.13. The set FN ⌘ {v0 2 FL(2/3)�,3 : PNv0 2 e�c

N } is a cylinder set
and we have FN \ EN = e�c

N (recall EN = span{einx}|n|N ). Thus ⇢(FN) = ⇢N(FN) =
⇢N(e�c

N ). On the other hand, recall that µ ⌧ ⇢ and that e⇢N , the restriction of ⇢N to the
ball {kvNkL2  B}, is absolutely continuous with respect to µN (see Remark 5.15). Then
using Cauchy–Schwarz repeatedly we obtain

µ(FN) 
✓

Z

R2 d⇢

◆1/2✓Z

e�c
N

�{kvNk
L2B} d⇢N

◆1/2


✓

Z

R2 d⇢

◆1/2✓Z

R̃2
N dµN

◆1/4
µN(e�c

N )1/4


✓

Z

R2 d⇢

◆1/2✓Z

R̃N d⇢N

◆1/4
µN(e�c

N )1/4, (6.7)
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where R̃N is as defined in Remark 5.15 and where in the last inequality we have used that
by definition R̃2

NRN = R̃N .
By relying on Lemma 5.12, Proposition 5.13 and Remark 5.15 we can bound the first

two terms in (6.7) by a constant independent of N . This combined with Lemma 6.1 allows
us to conclude that there exist a constant d > 0 and N1(", T ) such that µ(FN)  d" for
N � N1. So for N � max(N0, N1), any set �(", T ) := �N(", T ) satisfies the desired
hypothesis. ut

Theorem 6.3 (Almost sure global well-posedness). There exists a subset � of the space
FL(2/3)�,3 with µ(�c) = 0 such that for every v0 2 � the initial value problem GDNLS
(2.6) with initial data v0 is globally well-posed.

Proof. Fix an arbitrary T and let " = 2�i . Using the sets given in Proposition 6.2 we set

�(T ) :=
[

i

�(2�i , T ).

If v0 2 �(T ) then the initial value problem GDNLS (2.6) is well-posed up to time T .
Since µ(�(T )) � 1 � 2�i for any i 2 N, the set �(T ) has full measure.

Finally by taking T := 2j the set

� =
\

j

�(2j ) (6.8)

also has full measure and if v0 2 � then the initial value problem GDNLS (2.6) is globally
well-posed. ut

Remark 6.4. We note that by slightly modifying the proof of Theorem 6.3 above we
could also derive a logarithmic bound in time on solutions similar to the one in [3]
and [12].

Now that we have a well-defined flow on the measure space (FL(2/3)�,3, µ), we show
that µ is invariant under the flow 8(t), following the argument in [38].

Theorem 6.5. The measure µ is invariant under the flow 8(t).

Proof. Let us consider the measure space (FL(2/3)�,3, µ). We need to show that for any
measurable A we have µ(A) = µ(8(�t)(A)) for all t 2 R. Note that by the group
property of the flow without loss of generality we can assume that |t |  �. An equivalent
characterization of invariance is that for all F 2 L1(FL(2/3)�,3, µ) we have

Z

F(8(t)(v)) dµ =
Z

F(v) dµ. (6.9)

By an elementary approximation argument it is enough to show (6.9) for F in a dense set
in L1(FL(2/3)�,3, µ) which we choose as in (5.34) to be

H :=
[

M

{F : F = G(bv�M, . . . ,bvM), G bounded and continuous}.
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For F 2 H choose an arbitrary ✏ > 0 and assume N � M . By Proposition 5.13, µN

converges weakly to µ and thus
�

�

�

�

Z

F dµ �
Z

F dµN

�

�

�

�

+
�

�

�

�

Z

F �8(t) dµ �
Z

F �8(t) dµN

�

�

�

�

 ✏. (6.10)

Let 8N(t) be the flow map for FGDNLS (3.1). For s1 < (2/3)�, by Lemma
3.3, we deduce that k8(t)(v) � 8N(t)(v)kFLs1,3 converges to 0 uniformly on {v :
kvkFL(2/3)�,3  K}. Using the tail estimate µN(kvNkFL(2/3)�,3 > K)  e�cK2

(uni-
formly in N ) and the continuity of F in FLs1,3 we obtain

�

�

�

�

Z

F �8(t) dµN �
Z

F �8N(t) dµN

�

�

�

�

 2kFk1e�cK2 + ✏  3✏ (6.11)

for large enough K and N .
Finally using again the tail estimate for µN , the invariance of Lebesgue measure under

8N(t) and the energy estimate given in Theorem 4.2 we obtain
�

�

�

�

Z

F �8N(t) dµN �
Z

F dµN

�

�

�

�

 2kFkL1e�cK2 +
�

�

�

�

Z

{kvk
FL

2
3 �,3K}

F [e� 1
2 (E�8N(�t)�E) � 1] dµN

�

�

�

�

 2✏ + kFkL1(ec(�)N��K8 � 1)  3✏, (6.12)

for sufficiently large N . By combining (6.10)–(6.12) we obtain invariance. ut

7. The ungauged DNLS equation

Recall that if u(t, x) is a solution of DNLS (2.1) then w(t, x) = G(u(t, x)) where
G(f )(x) = exp(�iJ (f ))f (x) (see (2.5)) is a solution of

wt � iwxx � 2m(w)wx = �w2wx + i

2
|w|4w � i (w)w � im(w)|w|2w (7.1)

with initial data w(0) = G(u(0)). Furthermore v(t, x) = w(t, x � 2tm(w)) is a solution
of (2.6) with initial condition v(0) = w(0). If 8(t) denotes the flow map for GDNLS
(2.6), let e8(t) denote the flow map of (7.1) and let 9(t) denote the flow map of (2.1).

Clearly we have the relation

9(t) = G�1 � e8(t) � G. (7.2)

To elucidate the relation between 8(t) and e8(t) let ⌧↵(s) denote the action of the group
of spatial translations on functions, i.e., (⌧↵(s)w)(x) := w(x � ↵s). We define a state
dependent translation

(0(s)w)(x) := (⌧2m(w)(s)w)(x) = w(x � 2sm(w)).
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Note that the Hs , Lp and FLs,r norms are all invariant under this transformation. Fur-
thermore we have

v(t, x) := (0(t)w)(t, x).

Since m is preserved under G, 0(s) and both flows 9(t) and e8(t), we have the relation

8(t) = 0(t)e8(t) = e8(t)0(t), (7.3)

in particular e8(t) and 0(t) commute.
Finally if µ is a measure on � as in Theorem 6.3 and ' : � ! � is a measurable

map then we define the measure ⌫ = µ � '�1 by

⌫(A) := µ('�1(A)) = µ({x : '(x) 2 A}).
for all measurable sets A or equivalently by

Z

F d⌫ =
Z

F � ' dµ

for integrable F .
Consider the measure defined by

⌫ := µ � G. (7.4)

Since the measure µ constructed in Proposition 5.13 is invariant under the flow 8(t) we
show that the flow 9(t) for DNLS is well defined ⌫ almost surely and that ⌫ is invariant
under the flow 9(t).

Theorem 7.1 (Almost sure global well-posedness for DNLS). There exists a subset 6
of the space FL(2/3)�,3 with ⌫(6c) = 0 such that for every u0 2 6 the IVP DNLS (2.1)
with initial data u0 is globally well-posed.

Proof. Let � be the set of full µ measure given in Theorem 6.3 and let 6 = G�1(�).
Note that 6 is a set of full ⌫ measure by (7.4). For v0 2 � the IVP GDNLS (2.6) with
initial data v0 is globally well-posed. Hence since the map G : C([�T , T ];FLs,r ) !
C([�T , T ];FLs,r ) is a homeomorphism if s > 1/2 � 1/r when 2 < r < 1, the IVP
(DNLS) (2.1) with initial data u0 = G�1(v0) is also globally well-posed. ut
Finally we show that the measure ⌫ is invariant under the flow map of DNLS (2.1).

Theorem 7.2. The measure ⌫ = µ � G is invariant under the flow 9(t).

Proof. First we note that the measure µ is invariant under 0(t). The density of µ with re-
spect to ⇢ is R(v) (see (5.12)), and it is verified easily that R�0(t) = R. Furthermore one
also verifies easily that the finite-dimensional measures ⇢N are also invariant under 0(t).
As a consequence, since µ is invariant under 8(t) by Theorem 6.5, µ is also invariant
under e8(t) because of (7.3). Finally ⌫ is invariant under 9(t) since by (7.2),

Z

F �9(t) d⌫ =
Z

F � G�1 � e8(t) � G dµ � G =
Z

F � G�1 � e8(t) dµ

=
Z

F � G�1 dµ =
Z

F d⌫. ut
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